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ABSTRACT 

The global bifurcation and chaotic dynamics of the symmetrically laid orthotropic composite rectangular laminated 

plate on four simply supported sides is investigated for the first time by means of making use of the generalized 

Melnikov method. By utilizing the coordinate transformation theory to obtain the nonlinear dynamic system in five 

dimensions of composite laminated rectangular plates. Calculating the k-pulse Melnikov function of the system based 

on the generalized Melnikov theory so as to obtain the interval of the chaotic threshold for the composite laminated 

rectangular plate system. The numerical simulations are performed to validate the theoretical results by making use of 

MATLAB software, in order to come by bifurcation diagrams, phase diagrams and time history charts for composite 

laminated rectangular plates and identify the validity of the theoretical analysis. Finally, theoretical analysis and 

numerical simulation further demonstrate the existence of multi-pulse chaotic motion in composite laminated 

rectangular plates. 
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1. INTRUCTION 

Composite materials are favoured by an increasing 

number of researchers owing to their unique mechanical 

and electrical coupling, high specific strength, high 

specific stiffness and fatigue resistance [1-3], as a result 

of composite materials are usually thin-walled structures, 

and they are susceptible to undergo significant 

deformations under a great variety of external loads, 

making for complex geometric nonlinear dynamic 

characteristics. The nonlinear dynamic properties of 

composite material structures often result in the material 

structural destruction. Therefore, investigating ways to 

reduce or avoid the damage caused by nonlinear vibration 

in composite materials and make them play a maximum 

role in practical engineering and scientific applications is 

a highly meaningful research. Zhang et al. [4] analysed the 

nonlinear dynamics about

 

an expanded orthotropic 

composite rectangular cantilever plate under the 

combined action of harmonic excitation in the flat surface 

and aerodynamic pressure. Yang et al. [5] utilized a multi-

scale method for investigating the subharmonic resonance 

of a truncated conical shell of functionally gradient 

composites under the combined action of aerodynamic 

pressure and excitation within a two-dimensional plane. 

Ma et al. [6] discussed the nonlinear subharmonic 

resonance of the orthogonal anisotropic composite 

laminated rectangular plate. Noroozi and Bakhtiari-Nejad 

[7] studied the nonlinear dynamics and vibration 

characteristics of a composite cantilevered trapezoidal 

plates reinforced with carbon nanotubes for micro-

aircraft, and examined the impact of plate geometric 

shape, volume fraction in carbon nanotubes, various 

excitation modes and other variables

 

on

 

the laminated 
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plate nonlinear vibration. Based on the first order shear 

deformation theory. Yang et al.[8] established a dynamic 

model for the laminated cylindrical shell with eccentric 

rotating carbon fiber reinforced polymer (CFRP), and 

studied the behaviour of the eccentric rotating CFRP 

laminated cylindrical shell under axial excitation with 

respect to buckling and free vibration. Yang et al.[9] 

investigated the buckling analysis and free vibration of a 

composite cylindrical shell reinforced with functionally 

gradient graphene sheet under axial excitation. Wu et al. 

[10] examined the nonlinear vibration behaviour of 

asymmetric composite laminated flat shells with bistable 

characteristics under fundamental excitation by theory 

and experiment. 

In actuality, the mathematical models for the majority 

of engineering issues can be represented using high-

dimensional nonlinear dynamics models. The dynamic 

behaviour exhibited high dimensional systems of 

nonlinear dynamics is exceptionally complex. It's 

precisely because of these complex dynamic behaviours 

in the system that the systemic material structure is often 

destroyed. Therefore, studying these complex dynamics 

behaviours in high-dimensional nonlinear dynamical 

systems, such as bifurcation, chaos and other complex 

dynamics, is of significant importance for the 

advancement of high dimensional nonlinear theory and 

the practical applications of engineering. 

Zhang et al.[11] implemented the Melnikov method to 

examine the chaotic dynamics with multiple pulses of 

symmetrically laid simply supported composite materials 

under withstand the joint action of parametric excitation 

and extrinsic incentive. By using Melnikov's method, 

Zhang et al.[12] examined the chaotic dynamics and 

multi-pulse homologous orbit of a symmetrically laid 

orthogonal composite laminated cantilever rectangular 

plate under 1:1 internal resonance conditions. Zhu et 

al.[13] developed the high-dimensional Melnikov 

method, a tool suitable for studying parametric nonlinear 

dynamic systems with multi-periodic bifurcations, and 

applied the developed high-dimensional Melnikov 

method to research the multi-periodic motion of 

honeycomb sandwich composite laminates featuring a 

negative Poisson's ratio. The global bifurcation and 

chaotic dynamics of orthotropic composite laminated 

rectangular plates with four-sided simply supported 

symmetric laying under the action of external F1 are 

investigated using the generalized Melnikov method in 

this article, and the theoretical analytical correctness is 

confirmed by numerical simulation method. Ma et al.[14] 

modified the generalized Melnikov method [15] for high 

dimensional systems and applied it to the study of 

complex nonlinear dynamic behaviours such as chaotic 

motion of annular antenna structures. 

2. MECHANICAL MODEL 

The mechanical model of symmetrically laid 

orthotropic composite laminated rectangular plates with 

four-sided simple supports is represented in Fig. 1. It is 

assumed that the rectangular plate length and width, as 

well as the composite laminated plate thickness, are 

denoted as a, b and h, and apply uniformly distributed 

harmonic excitation on the transverse plane with the 

equation 𝑞 = 𝑞0 cos Ω𝑡, where 0q  is the amplitude of the 

excitation. The mechanical model of the discrete simply 

supported symmetrically laid orthotropic composite 

laminated rectangular plate with four sides is simplified as 

a two degrees of freedom ordinary differential system [6]. 

   

 
(a) Model and coordinate system 

 
(b) Diagram of layer number distribution 

Figure 1 Mechanical model of simply supported 

symmetrically laid orthotropic rectangular composite 

laminated plate on four sides 

 

2 2 2

1 1 1 1 1 1 1 2 2 2 1ω μ α αw w w w w w w     

3 3

3 1 4 2 1α α cosw w F t    ,             (1) 
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2 2 2

2 2 2 2 2 1 2 1 2 1 2ω μ β βw w w w w w w     

3 3

3 2 4 1 2β β cosw w F t    ,             (2) 

where 
2

1ω  , 1β  , 2β  , 3β  , 4β  , 2F  , 
2

2ω  , 1α  , 2α  , 3α  , 

4α , 1F  are constants associated with the system. 

The main focus of this paper is to study the global 

bifurcation and chaotic dynamics of orthotropic 

composite laminated rectangular plates with symmetric 

layout, which are located on four simply supported sides. 

In order to ensure that the theoretical analysis results are 

more consistent with the dynamic characteristics of 

simply supported orthotropic composite laminated 

rectangular plates laid symmetrically on four sides, the 

equivalent coordinate transformation is introduced 

through the application of the coordinate transformation 

theory. The two degrees of freedom nonlinear ordinary 

differential equations for the first-order and second-order 

modes of symmetrically laid orthotropic composite 

laminated rectangular plates with four simply supported 

sides are rewritten as the differential control equations in 

the five dimensional phase space. Introduce the following 

coordinate transformation. 

1 1w x , 1 2w x , 2 3w x , 2 2 4ωw x , 

φ t ,                                (3) 

then, the equivalent form of system (1)-(2) can be 

represented as 

21 xx  ,                                (4) 

2 2 2 3

2 1 1 1 1 3 2 1 3 3 1ω α α αx x x x x x x      

3

4 3 1 2 1α μ cosφx x F               (5) 

3 2 4ωx x ,                             (6) 

2 2 21 2
4 2 3 1 3 1 3

2 2

β β
ω

ω ω
x x x x x x     

3 33 4 2
3 1 2 4

2 2 2

β β
μ cosφ

ω ω ω

F
x x x    ,   (7) 

φ   .                                (8) 

The global dynamics of simply supported orthotropic 

laminated rectangular composite plates laid 

symmetrically on four sides were analysed. 

Consider the following undisturbed system 

  xx ,                               (9) 

2 2 3 3

2 1 1 2 1 3 3 1 4 3α α α αx x x x x x     ,      (10) 

3 2 4ωx x ,                            (11) 

2 21 2
4 2 3 1 3 1 3

2 2

x x x x x x
 

   
 

 

 
3 33 4
2 1

2 2

x x
 

 
 

,                  (12) 

)0,0,0,0(),,,( 4321 xxxx  is the balance point in the 

unperturbed system, and the Jacobi matrix at this point 

is 

A=



















 0ω00

ω000

0000

0010

2

2

.          (13) 

According to the characteristic equation at point 

(0,0,0,0,), the undisturbed system has a pair of eigenvalues 

with double zeros and a pair of eigenvalues with purely 

imaginary values, which are 0λ 2,1   , 24,3 ωλ i  , 

respectively. 

The third order normal-form equations for the 

unperturbed system can be gained by using Maple 

program. 

21 xx  ,                               (14) 

2 2 3

2 2 1 3 4 3 1

1
α ( ) α

2
x x x x x    ,           (15) 

~ ~
2 2 2

3 2 4 1 4 4 3 42 3

1
ω β β ( )

2
x x x x x x x    ,   (16) 

2 2 22
4 2 3 3 3 3 4 1 3

β
ω β ( )

2
x x x x x x x     ,   (17) 

where 
2

2

2

β
β

ω
 ,

3
3

2

3β
β =

8ω
. 
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The equivalent coordinate transformation is 

performed by adding disturbance parameters to the 

damping and excitation of the equation 

2

1 1

2

α

β
x u , 2

2 2

2

α

β
x u , 3 cos γx I ,   

4 sin γx I ,                           (18) 

we get the system with perturbation parameters 

21 uu  ,                               (19) 

2 2 3

2 1 1 2 1 3 1 1 2

1
ω α α μ

2
u u I u u u      

1 cosF t  ,                         (20) 

2

2 2μ sin γ sin γcosI I F t    ,        (21) 

3 2

2 3 2 1

1
γ ω β α

2
I I I u I     

2 2μ sin γcos γ cos γcosI F t   ,   (22) 

φ   ,                               (23) 

Where 2 3
3

2

α α
α =

β
, 

2

1

2

β

α
F F , 

2
2

2

μ
μ =

ω
, 2

2

2ω

F
F  .

 

The damping term and the excitation term are regarded 

as the perturbed term, and the following scaling is 

performed 

11 εμμ  , 22
~  , 11 εFF  , 

22

~
FF  ,                          (24) 

and get the equation 

21 uu  ,                               (25) 

2 2 3

2 1 1 2 1 3 1

1
ω α α

2
u u u I u     

1 2 1εμ ε cosφu F  ,                (26) 

2

2 2εμ sin γ ε sin γcosφI I F           (27) 

3 2

2 3 2 1

1
γ ω β α

2
I I I u I     

2 2εμ sin γ cos γ ε cos γcosφF  ,   (28) 

Let 0  , then equations (25)-(27) can be 

rewritten as 

21 uu  ,                             (29) 

  

3

13

2

121

2

12 α~α
2

1
ω uIuuu  ,          (30) 

0I ,                               (31) 

IuIII 2

12

3

32
2

1~
 .          (32) 

The Hamiltion function of an unperturbed system is 

2 2 2 2 2

2 2 1 2 1

1 1 1
ω α

2 2 4
H u u u I    

4 2 4

3 1 2 3

1 1 1
α ω β

4 2 4
u I I   .        (33) 

Since I=0, I appears as a parameter in space ),( 21 uu , 

the unperturbed system (29)-(32) is a decoupled two-

degree-of-freedom system. We think about the two 

dimensional system of equations (29) and (30)  

21 uu  ,                             (34) 

3

13

2

121

2

12 α~α
2

1
ω uIuuu  .          (35) 

The forms of equations (34) and (35) for Hamilton 

function are as follows 

4

13

2

1

2

20 α~

4

1

2

1

2

1
uTuuH  ,           (36) 

where 
2

1

2

2 ωα
2

1
 IT . 

We suppose equation (36) satisfy the conditions 

0T ， 0~  ， 02   . Let TT   , 

3
~  , we get 

2

1

2


I  or 

2

1

2


I  based 

on 0
2

1 2

2 

 I  . The variables I   and   

represent the nonlinear vibration amplitude and phase of 

equations (19)-(22), then 0I  , and the range of I  

satisfy 

2

1

2


I . One can obtain system (33) has fixed 

points, and equilibrium point ）（ 21 ,uu  = 
3

, 0T 
  

 

are two stable center points, and equilibrium point 

),( 21 uu  = (0,0) is a hyperbolic saddle point, where the 
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analytic expression of the homologous orbits linking the 

hyperbolic saddle point ),( 21 uu = (0,0) can be written as 

1

3

2
sech

α

h T
u T t  ,                (37) 

2

3

2
sech tanh

α

hu T T t T t .      (38) 

Based on the hypothesis, we get 

0α
2

1
β
~

ω 2

12

3

32  IuII .           (39) 

Let 01 u , one get the resonance value 

3

2

~



rI . 

On the basis of condition 

2

1

2


I  , the following 

inequality 

2

1

2
~











  can be obtain, that is 

2

13

~
2  

 . According to the former analysis, 

system parameters of equations (25)-(28) satisfy 0α~3  , 

0α2  , 0β
~

3  , 2

13

~
2  

. 

Equation (37) is substituted into equation (32), and by 

integrating to get 

  dtuIt
t

t 









0

2

12

2

32 α
2

1
β
~

ωγ  

  
2

0

3

2α
tanh γ

α
T T t   .          (40) 

As 

    γ γ γγ τ, τhI x I I d



   , 

we obtain 

2

2 1

1

2
u dt




     

22

3

sechT T tdt






   

2

3

2
T


 


.                      (41) 

As        




 0,μ,φω,,μ,φ,γ, 000γ ttpgtpnIM hh  

the Melnikov function of equations (25)-(28) is 

2

1 2 2 1 0[ cos( )M u u F t



      

2

2 1 0 2 0 0

1
( sin cos( ))]

2
I I t dt        

3

2
1

1 0

3 3

4 2
sin sech

3 2

T T
F

T

  
   

 
 

2

2 1 0 2 0

1
( sin cos( ))

2
u I F t dt




      

 2

2 0

1
μ γ sin γ

2
I    .               (42) 

Through calculation, the single pulse Melnikov 

function of equations (25)-(28) is 

    

3

2
1

1

3

4

3

T
M

 
 


0 2 0csch sin

2
I F

T


   

1 0

3

2
sin sech

2

T
F

T


  


 

   
2

2 0

1
( sin )

2
I     .           (43) 

For the same reason, the systemic k- pulse Melnikov 

function is                          

 

                                                   

3

2
1

3

4

3
k

T
M k

 
 


0 2 0csch sin

2
k I F

T


    

1 0

3

2
sin sech

2

T
k F

T


  


 

2

2 0

1
( sin )

2
I     .                 (44) 

Theorem 1 If the K-pulse Melnikov function exists a 

simple zero and its first derivative is not zero, the stable 

and unstable manifolds in the system will intersect each 

other transversally, indicating the occurrence of the multi-

Study on global dynamics of a special symmetrically laid composite             17



pulse chaotic motion in the system (1)-(2) following  the 

concept of Smale's horseshoe. 

As sech (0,1]
2 T


  ,if 

lg( 2 1) 0.8814
2 T


    , we have 

csch 1
2 T


    if 0 lg( 2 1)

2 T


    , we have 

csch 1
2 T


  , Therefore, it is probable to find 

appropriate parameters that meet theorem 1, as a result, 

system (1)-(2) will exhibit multi-pulse chaotic motion in 

the sense of Smale's horseshoe. 

3. THEORETICAL ANALYSIS 

According to the above-mentioned theoretical 

derivation so as to gain that 0~
3  , 02  , 0

~


. 

Now take the parameters 78.0μ1   , 16.02   , 

2.2ω1   , 23α1   , 9.3α2   , 8.10α3   , 

7.3α4   , 6.2ω2   , 2.4β1   , 8.16β2   , 

6.13β3   , 2.3β4   , 11   , 12   , and initial 

values are 8913.01 x  , 7621.02 x  , 

4565.03 x , 0185.04 x . 

Fig. 2 shows a two-dimensional bifurcation diagram of a 

composite laminated rectangular plate system that is 

simply supported and orthotropic with symmetrically laid 

layers. Fig. 2(a) displays the bifurcation diagram in phase 

space ),( 11 xF  and the bifurcation diagram in phase space 

),( 31 xF is shown in Fig. 2(b). 

The amplitude of external excitation F1 is represented 

on the horizontal axis, and the displacement of the first-

order and second-order modes of orthotropic symmetrical 

composite rectangular laminates on four simply supported 

sides is represented on the vertical axis, respectively. 

Fig. 2 can visually demonstrate the multi-pulse chaotic 

motion for the orthotropic composite lamellar rectangular 

plate system with simply supported symmetric laying on 

four sides under the action of external excitation F1. 

 

(a) Bifurcation diagram of first-order mode 

 

(b) Bifurcation diagram of second-order mode 

Figure 2 Bifurcation diagram of orthotropic 

symmetrically laid composite laminated rectangular plate 

 

As shown in Fig. 2, when the external excitation 

amplitude F1 of the four-sided simply supported 

orthotropic sympathetically laid composite laminated 

rectangular plate increases from 50 to 150, the system 

undergoes a transformational process from chaotic motion 

to periodic motion and back to chaotic motion. It can be 

observed from Fig. 2(a) that the vibration response of the 

first-order mode of the four-sided simply supported 

symmetrically laid orthotropic composite rectangular 

laminated plate exhibits chaotic operation. The system 

exhibits a period-doubling motion with increase of the 

amplitude under the external excitation. With further 

increase in the amplitude of the external excitation, the 

vibration response of the system transitions from chaotic 

motion to periodic motion and then back to chaotic motion  

It is evident to find from Fig. 2(b) that the vibration 

response of the second-order mode of the four-sided 

simply supported symmetrically laid orthotropic 

composite rectangular laminated plate is similar to that of 

the first-order mode, and the vibration response generated 

by the system also alternates between chaotic motion and 

periodic motion. By comparing Fig. 2(a) and Fig. 2(b), it 

is evident that the first-order mode of vibration for the 
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four-sided simply supported symmetrically laid 

orthotropic composite laminated rectangular plate has a 

smaller amplitude than the second-order mode.  

Fig. 3 represents the maximum Lyapunov exponent 

diagram of the four-sided simply supported orthotropic 

symmetrically laid composite laminated rectangular 

plates system. It is evident from the Fig. 3 that the interval 

of chaotic motion in the system in accordance with that of 

chaotic motion in the bifurcation diagram Fig. 2. 

 

Figure 3 Lyapunov diagram of orthotropic symmetrically 

laid composite laminated rectangular plate 

The external excitation amplitude 601 F  is taken, and 

it can be judged from Fig. 2 and Fig. 3 that chaotic motion 

occurs in system (1)-(2). Next, the chaotic motion of the 

system subjected to the action of additional excitation is 

further verified through phase diagram and time history 

diagram. Figure 4 shows that chaos occurred in the system 

of composite laminated rectangular plates laid 

symmetrically on four sides simply supported orthotropic 

when the external excitation amplitude 601 F  . Fig. 

4(a) is the phase diagram in plane ),( 21 xx , Fig. 4(b) is the 

time history diagram in plane ),( 1xt ,   Fig. 4(c) is the phase 

diagram in plane ),( 43 xx , and Fig. 4(d) shows the temporal 

course diagram in plane ),( 3xt . 

As depicted in Fig. 4(a) and 4(b), the vibration 

response of the first-order mode of the orthotropic laid 

symmetrically composite laminated rectangular plate 

system on four simply supported sides exhibits chaotic 

motion, and there is a chaotic attractor located at the origin 

of the system. Fig. 4(c) and 4(d) show that the vibration 

response of the orthotropic symmetrically laid composite 

laminated rectangular plate system with four simply 

supported sides also exhibits chaotic motion for the 

second order mode, and the system displays chaotic 

attractors on both sides of the origin. 

 

(a) The phase portrait on plane ),(
21

xx  

 

 

 

 

(b) The time history portrait on plane ),(
1

xt  

 

 

(c) The phase portrait on plane ),(
43

xx  

 

(d) The time history portrait on plane ),(
3

xt  

Figure 4 Chaotic motion of simply supported orthotropic 

symmetrically laid composite laminated rectangular plate 

on four sides at the external excitation F1=60 

In Fig. 5 and Fig. 6, when F1=120 and F1=140, chaos 

occur in the system of rectangular composite laminated 

rectangular plates laid symmetrically with simply 

supported orthotropic materials on four sides. It is easy to 

notice that the number of chaotic attractors in the first and 

second order modes of the simply supported orthotropic 

symmetrically laid composite laminated rectangular plate 

system on four sides remains unchanged with the increase 

in the amplitude of external excitation. On the basis of    

Fig. 5(d) and Fig. 6(d), the corresponding amplitude of 

Study on global dynamics of a special symmetrically laid composite             19



vibration for the second order mode of the simply 

supported orthotropic symmetrically laid rectangular 

composite laminated plate system varies under different 

external excitation.  
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Figure 5 Chaotic motion of simply supported orthotropic 

symmetrically laid composite laminated rectangular plate 

on four sides at the external excitation F1=120 
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Figure 6 Chaotic motion of simply supported orthotropic 

symmetrically laid composite laminated rectangular plate 

on four sides at the external excitation F1=140 

4. CONCLUSION 

This paper explores the global bifurcation and chaotic 

dynamics of orthotropic symmetrically laid rectangular 

composite laminated plates with four simply supported 

sides under the external excitation F1. The utilization of 

the coordinate transformation theory leads to the 

derivation of the five-dimensional dynamic system in 

composite laminated rectangular plates. The nonlinear 

term that has a relatively small impact on the global 
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dynamics of the system is determined using the canonical 

form theory. The system is reduced to the sum of the 

undisturbed part and the disturbed part. The k-pulse 

Melnikov function, used to assess the occurrence of the 

multi-pulse chaotic motion in the system, is calculated by 

using the generalized Melnikov theorem. The study 

determine the chaotic threshold interval for the 

rectangular plate made of four-sided simply supported 

orthotropic symmetrically laid composite laminates. 

Through theoretical analysis and numerical simulation, 

the multi-pulse chaotic motion in the rectangular plate 

system with composite material lamination in the sense of 

Smale's horseshoe is further verified. The conclusions are 

as follows: 

(1) Both the bifurcation diagram and the maximum 

Lyapunov exponential diagram verify that multi-pulse 

chaotic motion will occur in the system, and the regions 

of chaotic motion identified in the bifurcation diagram and 

the maximum Lyapunov exponential diagram are 

consistent. The bifurcation diagram reveals that as the 

amplitude of the external excitation increases, the system 

can go through various vibration states, such as quasi-

periodic, periodic and chaotic motion. 

(2) From Fig. 4 to 6, it can be observed that there is an 

chaotic attractor in the systemic first order mode, while 

there are two chaotic attractors in the systemic second 

order mode. Additionally, as the amplitude increases in the 

excitation, the chaotic attractor region of the system 

expands correspondingly. 

(3) It can be observed from the time history diagrams 

in Fig. 5 and Fig. 6 that with the increment of excitation 

amplitude, the amplitudes in vibration with both the first-

order and second-order modes in the system also 

experience an increase. Therefore, the amplitudes of the 

orthotropic symmetrically laid composite laminated 

rectangular plates on four simply supported sides can be 

controlled by adjusting the amplitude of the external 

excitation. 
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