
Generalized integral representation method as
applied to numerical simulation of Boussinesq wave

Gantulga Tsedendorj1, Baljinnyam Tsangia2, Khongorzul Dorjgotov3,∗

1Department of Mathematics, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
2Department of Mathematics, School of Applied Sciences, Mongolian University of Science and Technology,
Ulaanbaatar, Mongolia
3Department of Applied Mathematics, School of Engineering and Applied Sciences, National University of Mongolia,
Ulaanbaatar, Mongolia
*Correspondence author. Email: khongorzul@seas.num.edu.mn

ABSTRACT
In this study, we present discretization schemes based on Generalized Integral Representation Method (GIRM) for numerical
simulation of the Boussinesq wave. The schemes numerically evaluate the coupled Boussinesq equation for different solitary wave
phenomena, namely, propagation of a single soliton, head-on collision of two solitons and reflection of a soliton at a fixed wall
boundary. In these three soliton interactions, we utilize different Generalized Fundamental Solutions (GFS) along with piecewise
constant approximations for the unknown functions. For the case of soliton reflection at a wall, time evolution in GIRM is coupled
with the Green’s function in order to cope with the complicated boundary conditions that arise from the GIRM derivation. We
conduct numerical experiments and obtain satisfactory approximate result for each case of the soliton interactions.

Keywords: Numerical Simulation of Boussinesq Wave, Soliton Interactions, Generalized Integral Represen-
tation Method (GIRM), Numerical Schemes based on GIRM

1. INTRODUCTION
Boussinesq type equations have been studied and

numerically evaluated in various ways because of their
importance in many computational fields particularly,
in wave studies [1], [2], [3], [4]. These equations are
approximations that are applicable for weakly nonlinear
and dispersive long water waves of small amplitudes
[5], [6]. We below briefly mention a few previous work
regarding numerical study of Boussinesq equations that
are most relevant to our study.

Tzirtzilakis et al. [7] applied a combination of
Fourier Spectral method in space and finite differences
in time to the Boussinesq equation and investigated
stability properties of solitary wave propagation by
varying the velocity parameter of the wave. Bratsos [8]
derived a nonlinear finite difference scheme which in
turn was solved by using a modified predictor-corrector
scheme in order to numerically evaluate the bad and
the good Boussinesq equations. Wazwaz [9] used the
tanh-coth method to determinate the one-soliton solu-
tions and a combination of Hirota’s direct method to
determinate the N-soliton solutions of the Boussinesq
equation. Further, Dehghan and Salehi [10] employed
the boundary-only mesh-free method for a numerical
solution of the classical Boussinesq equation in one

dimension. Walkley and Berzins [11] used unstructured
triangular finite element spatial discretization coupled
with an adaptive time integration for numerical solutions
of two-dimensional extended Boussinesq equations. Re-
cently, Lteif and Gerbi [12] proposed a splitting scheme
for numerical simulation of higher-ordered Boussinesq
waves over a flat bottom. In their second order numerical
scheme, the authors have used a high-order finite volume
scheme for the hyperbolic part of the governing equation
and a finite difference technique for the dispersive part.

In the present study, we extend the application of
Generalized Integral Representation Method (GIRM) to
numerical simulation of the coupled Boussinesq equa-
tion. GIRM uses Generalized Fundamental Solution
(GFS). Effects of various GFSs on GIRM were discussed
in [13]. In [14], GIRM was applied to the numerical
solution of two–dimensional advection–diffusion equa-
tion. Further, an unsteady diffusion problem in a circular
domain was numerically investigated via GIRM in [15].

We develop numerical schemes based on GIRM
and evaluate the Boussinesq equation for three different
soliton interactions. Firstly, for a single-soliton (SS)
case, the water bottom is considered to be flat in order to
understand the behavior of propagation of a soliton as if
it travels in the middle of the sea. Next, for a soliton-to-
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soliton (StS) case, we evaluate head-on collision of two
solitons. Finally, for a soliton-to-wall (StW) case, we
evaluate reflection of a soliton at vertical walls placed
at the boundaries.

2. GIRM FOR BOUSSINESQ EQUATION
Let us consider water waves on a free surface of

water. The flow is incompressible and irrotational in the
(x, z) plane with x–horizontal and z–vertical coordi-
nates. The water bottom is located at z = −h, where h
is the water depth. Let ϕ(x, z, t) be the velocity potential
and η(x, t) be the free surface elevation. In this setting,
the Boussinesq equation is given by the following set of
equations:

∂η

∂t
+

∂

∂x

[
(η + h)v

]
=

1

6
h3 ∂

3v
∂x3

(1)

∂v
∂t

+ v
∂v
∂x

+ g
∂η

∂x
=

1

2
h2 ∂3v

∂t∂x2
(2)

with the horizontal velocity v(x, t) = ϕ(x,−h, t) at the
bottom. Here g is the gravitational acceleration.

2.1. GIRM for SS and StS interactions

Since the Boussinesq equation expresses waves prop-
agating to both directions of the x coordinate, we con-
sider region −L < x < L, where L is large enough. We
assume that the functions η and v (thus their derivatives)
vanish at the boundary.

Firstly, we derive generic integral representations of
Eqs. (1-2) for SS and StS interactions as these two cases
have the same boundary conditions. Multiplying both
sides of Eq. (1) by function G = G(x, ξ) of variables x
and ξ, and integrating it over −L < x < L, we obtain∫ L

−L

[
∂η

∂t
+

∂

∂x

(
(η + h)v

)
− h3

6

∂3v
∂x3

]
Gdx = 0. (3)

Integrating and rearranging Eq. (3), we have∫ L

−L

∂η

∂t
G(x, ξ)dx =

−
[
(η + h)vG

]x=L

x=−L
+

∫ L

−L

(η + h)v
∂G

∂x
dx

+
1

6
h3

[
∂2v
∂x2

G

]x=L

x=−L

− 1

6
h3

[
∂v
∂x

∂G

∂x

]x=L

x=−L

+
1

6
h3

[
v
∂2G

∂x2

]x=L

x=−L

− 1

6
h3

∫ L

−L

v
∂3G

∂x3
dx.

(4)

Taking into account the boundary conditions and swap-
ping x and ξ in Eq. (4), yield us∫ L

−L

∂η

∂t
G(ξ, x)dξ =∫ L

−L

(η + h)v
∂G

∂ξ
dξ − 1

6
h3

∫ L

−L

v
∂3G

∂ξ3
dξ,

(5)

where G = G(ξ, x) is a GFS chosen properly. The
determination of a GFS for GIRM is always possible

in advance [13]. If η and v are known at time t in
−L < x < L, then Eq. (5) is an integral equation with
unknown ∂η/∂t in −L < x < L, where G is the kernel
function of the integral equation.

Proceeding analogously to the above, for Eq. (2) we
have∫ L

−L

[
∂v
∂t

+ v
∂v
∂x

+ g
∂η

∂x
− 1

2
h2 ∂3v

∂t∂x2

]
Gdx = 0. (6)

Integrating and rearranging Eq. (6), we obtain∫ L

−L

∂v
∂t

[
G− 1

2
h2 ∂

2G

∂x2

]
dx =

− 1

2

[
v2G

]x=L

x=−L

+
1

2

∫ L

−L

v2 ∂G

∂x
dx

− g

[
ηG

]x=L

x=−L

+ g

∫ L

−L

η
∂G

∂x
dx

+
1

2
h2

[
∂2v
∂t∂x

G

]x=L

x=−L

− 1

2
h2

[
∂v
∂t

∂G

∂x

]x=L

x=−L

.

(7)

By substituting the boundary conditions and swapping
x and ξ in Eq. (7), it boils down to∫ L

−L

∂v
∂t

G̃dξ =
1

2

∫ L

−L

v2 ∂G

∂ξ
dξ + g

∫ L

−L

η
∂G

∂ξ
dξ, (8)

with G̃ = G̃(ξ, x) = G− 1
2h

2 ∂2G
∂ξ2 . Again, Eq. (8) is an

integral equation for ∂v/∂t in −L < x < L, if η and v
are given at t.

Thus, we are able to compute η and v numerically
by using for instance, the procedure described in Algo-
rithm 2.1.

Algorithm 1 GIRM for SS and StS cases
Initialize η(x, t) and v(x, t) at given time t
for current t do
Compute ∂η

∂t from Eq. (5)
Compute ∂v

∂t from Eq. (8)
Obtain η and v at t+∆t via time-splitting
Increment time t by ∆t

end for

For our schemes, we use a simple explicit scheme

η(x, t+∆t) = η(x, t) + ∆t
∂η(x, t)

∂t

v(x, t+∆t) = v(x, t) + ∆t
∂v(x, t)

∂t

(9)

in the time-splitting step. For more stable results if
needed, a different time-splitting technique such as a
predictor-corrector type scheme can be used.

2.2. GIRM for StW interaction

In the case of reflection of a soliton at vertical walls
placed at the boundaries x = ±L, boundary conditions
for η(x, t) and v(x, t) become respectively

∂η(±L, t)

∂x
= 0 and v(±L, t) =

∂2v(±L, t)

∂x2
= 0.
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By substituting these conditions into Eq. (4) and swap-
ping x and ξ, Eq. (1) for StW case becomes∫ L

−L

∂η

∂t
G(ξ, x)dξ =

∫ L

−L

(η + h)v
∂G

∂ξ
dξ

− 1

6
h3

∫ L

−L

v
∂3G

∂ξ3
dξ − 1

6
h3

[
∂v
∂ξ

∂G

∂ξ

]ξ=L

ξ=−L

.

(10)

Note that in the right-hand side of Eq. (7), terms
containing the derivatives ∂2v/∂t∂x and ∂v/∂t appear
on the boundaries and this makes the computation com-
plicated. Therefore, instead of using Eq. (7) directly, we
rewrite Eq. (6) as∫ L

−L

[
∂v
∂t

− 1

2
h2 ∂3v

∂t∂x2

]
G(x, ξ)dx =

− 1

2

[
v2G

]x=L

x=−L

+
1

2

∫ L

−L

v2
∂G

∂x
dx

− g

[
ηG

]x=L

x=−L

+ g

∫ L

−L

η
∂G

∂x
dx.

(11)

Now taking into account the boundary conditions and
swapping x and ξ in Eq. (11), Eq. (2) for StW case
becomes∫ L

−L

[
1

2
h2 ∂2

∂ξ2

(
∂v
∂t

)
− ∂v

∂t

]
G(ξ, x)dξ =

−
∫ L

−L

[
1

2
v2 + gη

]
∂G

∂ξ
dξ

+ gη(L, t)G(L, x)− gη(−L, t)G(−L, x).

(12)

On the other hand, Eq. (2) can be reformulated as

1

2
h2 ∂2

∂x2

(
∂v
∂t

)
− ∂v

∂t
= f(x, t), − L < x < L (13)

with
f(x, t) = v

∂v
∂x

+ g
∂η

∂x
. (14)

This is a second order ordinary differential equation with
respect to ∂v(x, t)/∂t and ∂v(±L,t)

∂t = 0. It is well-
known [16] that the solution of Eq. (13) is

∂v(x, t)
∂t

=

∫ L

−L

Γ(x, ξ)f(ξ, t)dξ, (15)

with 1
2h

2 ∂2Γ(x,ξ)
∂x2 − Γ(x, ξ) = δ(x− ξ) in −L < x < L

and Γ(±L, ξ) = 0, where δ(x) is the Dirac delta
function. Specifically, the Green’s function Γ(x, ξ) is
explicitly given by

h
√
2 sinh( 2

√
2

h L)
sinh(

√
2

h
(x+ L)) sinh(

√
2

h
(ξ − L))

for −L ⩽ x ⩽ ξ and

h
√
2 sinh( 2

√
2

h L)
sinh(

√
2

h
(ξ + L)) sinh(

√
2

h
(x− L))

for ξ ⩽ x ⩽ L, since Γ(ξ − 0, ξ) = Γ(ξ + 0, ξ) and

∂Γ(ξ + 0, ξ)

∂ξ
− ∂Γ(ξ − 0, ξ)

∂ξ
=

2

h2
.

By now, we are able to compute η(x, t) and v(x, t)
numerically. We summarize the steps of obtaining these
functions for the StW interaction in Algorithm 2.2.

Algorithm 2 GIRM for StW case
Initialize η(x, t) and v(x, t) at given time t
for current t do
Compute ∂η(x, t)/∂t from Eq. (10)
Obtain f(x, t) by solving Eq. (12)
Compute ∂v(x, t)/∂t from Eq. (15)
Obtain η and v at t+∆t by using Eq. (9)
Increment time t by ∆t

end for

3. NUMERICAL SCHEMES
To carry out with numerical schemes for each case of

the soliton interactions, we introduce a uniform space-
time mesh as follows

xi = ξi = −L+ (i+ 0.5)∆x, i = 0, 1, . . . , N − 1,

∆x = ∆ξ = 2L/N, and tn = n∆t, n = 0, 1, . . . ,

and denote

η
(n)
i = η(xi, tn), v(n)i = v(xi, tn),[
∂η

∂t

](n)
j

=
∂η(ξj , tn)

∂t
,

[
∂v
∂t

](n)
j

=
∂v(ξj , tn)

∂t
, etc.

3.1. Numerical schemes for SS and StS cases

For the SS and StS interactions, we prepare the
following approximations for discretizating Eq. (5)∫ L

−L

∂η

∂t
G(ξ, x)dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

∂η(ξ, tn)

∂t
G(ξ, x)dξ =

N−1∑
j=0

Λj(x)

[
∂η

∂t

](n)
j

,

(16)

∫ L

−L

(η + h)v
∂G(ξ, x)

∂ξ
dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

(η(ξ, tn) + h)v(ξ, tn)
∂G

∂ξ
dξ =

N−1∑
j=0

Θj(x)v
(n)
j (η

(n)
j + h),

(17)

∫ L

−L

v
∂3G(ξ, x)

∂ξ3
dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

v(ξ, tn)
∂3G

∂ξ3
dξ =

N−1∑
j=0

Φj(x)v
(n)
j ,

(18)
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and the following approximations for Eq. (8)∫ L

−L

∂v
∂t

G̃(ξ, x)dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

∂v(ξ, tn)
∂t

G̃dξ =

N−1∑
j=0

Ψj(x)

[
∂v
∂t

](n)
j

,

(19)

∫ L

−L

v2 ∂G(ξ, x)

∂ξ
dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

v2(ξ, tn)
∂G

∂ξ
dξ =

N−1∑
j=0

Θj(x)

[
v(n)
j

]2
,

(20)

∫ L

−L

η
∂G(ξ, x)

∂ξ
dξ =

N−1∑
j=0

∫ ξ+j

ξ−j

η(ξ, tn)
∂G

∂ξ
dξ =

N−1∑
j=0

Θj(x)η
(n)
j ,

(21)

respectively, with

Λj(x) =

∫ ξ+j

ξ−j

G(ξ, x)dξ,

Ψj(x) =

∫ ξ+j

ξ−j

G̃(ξ, x)dξ,

Θj(x) =

∫ ξ+j

ξ−j

∂G(ξ, x)

∂ξ
dξ,

Φj(x) =

∫ ξ+j

ξ−j

∂3G(ξ, x)

∂ξ3
dξ,

where ξ−j = ξj −∆ξ/2 and ξ+j = ξj +∆ξ/2.
Now by utilizing the above piecewise constant approx-
imations for the unknown functions i.e. Eqs. (16-21),
Eq. (5) and Eq. (8) can be discretized resp. as

N−1∑
j=0

Λj(x)

[
∂η

∂t

](n)
j

=

N−1∑
j=0

Θj(x)v
(n)
j (η

(n)
j + h)

− 1

6
h3

N−1∑
j=0

Φj(x)v
(n)
j ,

(22)

N−1∑
j=0

Ψj(x)

[
∂v
∂t

](n)
j

=

N−1∑
j=0

Θj(x)

(
gη

(n)
j +

1

2

[
v(n)j

]2)
.

(23)

The unknowns in Eq. (22) and Eq. (23) are the time

derivatives
[
∂η

∂t

](n)
j

and
[
∂v
∂t

](n)
j

respectively, and these

equations are satisfied at the interior points of the mesh:
x0, x1, . . . , xN−1. Hence, we have two simultaneous
linear systems each of which is of N equations for N
unknowns.

3.2. Numerical scheme for StW case

In this case, from Eq. (10) we have the following
discretized equation for ∂η/∂t

N−1∑
j=0

Λj(x)

[
∂η

∂t

](n)
j

=

N−1∑
j=0

Θj(x)v
(n)
j (η

(n)
j + h)− h3

6

N−1∑
j=0

Φj(x)v
(n)
j

− h3

6

[
∂v(L, tn)

∂ξ

∂G(L, x)

∂ξ

− ∂v(−L, tn)

∂ξ

∂G(−L, x)

∂ξ

]
.

(24)

Using Eq. (15) together with Eq. (12), we have the
following equation for ∂v/∂t[

∂v
∂t

](n)
j

=

N−1∑
j=0

Γ̂j(x)f
(n)
j (25)

with

f
(n)
j = −

N−1∑
j=0

Θj(x)

(
1

2

(
v(n)j

)2
+ gη

(n)
j

)
+ gη(L, tn)G(L, x)− gη(−L, tn)G(−L, x),

(26)

where Γ̂j(x) =
∫ ξ+j

ξ−j
Γ(x, ξ)dξ, j = 0, 1, ..., N − 1.

Again, Eq. (24) is a linear system of N equations for
N unknowns [∂η/∂t]

(n)
j , if we use for instance, the

following finite differences

∂v(−L, tn)

∂ξ
=

2

∆ξ

[
v(x0, tn)− v(−L, tn)

]
∂v(L, tn)

∂ξ
=

2

∆ξ

[
v(L, tn)− v(xN−1, tn)

]
.

Finally, Eq. (25) is a linear system of N equations for
N unknowns [∂v/∂t](n)j along with Eq. (26).

4. NUMERICAL EXPERIMENTS
4.1. Numerical results of SS and StS cases

Numerical experiments for these two cases are con-
ducted straightforward by using Eq. (22) and Eq. (23).
The initial conditions are taken as v(x, 0) = 0 and

η(x, 0) = η0sech2(σx) (27)

for the SS case and

η(x, 0) = η0
[
sech2(σ(x− L

5 ))+sech2(σ(x+ L
5 ))

]
(28)

for the StS case, respectively. Here σ =
√
3η0/4h3. In

each of these cases, we use common Gaussian GFS

G(x, ξ) =
1√
2πγ

exp

(
− (x− ξ)2

2γ2

)
(29)

and same parameter values for comparison of the so-
lution behaviors. Values for the parameters used in
the experiments are given in Table 1 (middle column).
Numerical results are shown in Fig. 1 and Fig. 2.
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Table 1. Values of the simulation parameters

Parameters Values used for
descriptions SS, StS cases StW case

Initial depth of water h 1.0 1.0

Initial amplitude η0 0.1 0.2

Comput. region [−L,L] [-64,64] [-50,50]

No. of division N 320 500

Mesh step ∆x 0.4 0.2

Time step ∆t 0.005 0.0025

Scale of GFS γ 0.3 0.15
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Figure 1 Simulation plot of SS case.
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Figure 2 Simulation plot of StS case.

4.2. Numerical results of StW case

Using the Gaussian GFS given by Eq. (29) for a
non-zero boundary value problem produces unsatisfac-
tory numerical results [13]. In the StW case, it causes
spurious oscillations in the solution as soon as the soliton
interacts with the wall (see Fig. (3)). Therefore, in this
case we take the harmonic GFS

G(x, ξ) =
1

2
|x− ξ|

and treat the derivatives of G(x, ξ) as

∂2G

∂x2
= δ(x− ξ) and

∂3G

∂x3
=

∂δ(x− ξ)

∂x

through the following properties of the delta function∫
∂2G

∂x2
f(ξ)dξ = f(x) and

∫
∂3G

∂x3
f(ξ)dξ =

df(x)

dx
.

Numerical experiments are conducted by using
Eqs. (24-26). The initial conditions are given by Eq. (27)
and values for the parameters used in the experiments
are given in Table 1 (last column). The numerical result

of the StW case with the harmonic GFS is shown
in Fig. (4). For comparison purpose, we also evaluate
the StW interaction by using Finite Difference Method
(FDM) coupled with the Green’s function and provide
the solution plot in Fig. (5). It can be seen that the former
solution plot in Fig. (4) is more accurate than the latter
one in Fig. (5).

For further numerical demonstration, we compute a
combination of the StS and StW interactions or shortly
soliton-to-soliton-to-wall (StStW) interaction with the
harmonic GFS. In this experiment, we take the initial
condition given by Eq. (28) and the same parameter
values that were used in the StW experiments. The
solution plot is shown on the top of Fig. (6). The
numerical result is accurate and interesting. For the
purpose of visual convenience, we show this result at
several chosen timesteps on the bottom part of Fig. (6).
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Figure 3 Solution plot of StW case obtained by GIRM
with the Gaussian GFS.
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Figure 4 Solution plot of StW case obtained by GIRM
with the harmonic GFS.
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Figure 5 Solution plot of StW case obtained by FDM.

28             G. Tsedendorj et al.



5. CONCLUSION
In this study, we develop numerical schemes based

on GIRM for the coupled Boussinesq equation for sim-
ulating propagation of a single soliton, soliton-to-soliton
and soliton-to-wall interactions. We emphasize the last
case where GIRM is coupled with the Green’s function
in order to evaluate reflection of a soliton at a vertical
wall. In this way we avoid computing complicated
partial derivatives that appear on the boundary. This
idea of treating time evolution in GIRM through the
Green’s function can also be applied to other numerical
techniques such as FDM. For further numerical demon-
stration, a combination of soliton-to-soliton and soliton-
to-wall interactions is also included. For each wave
interaction above, we conduct numerical experiment and
obtain satisfactory result.

By their constructions, our schemes do not require
continuity of the approximate solutions across the mesh
intervals. We use piecewise constant approximations for
the unknown functions (with different GFSs) and thus
it is appropriate for coarse meshes. The schemes are
simple and it is easy–to–program.
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Figure 6 Solution plot of StStW interaction obtained by GIRM with the harmonic GFS (top figure). This plot is
shown below in time–by–time manner at timesteps t = 0.0; 5.0; 15.0; 17.5; 22.5; 25.0 (from left top to right down).
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