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ABSTRACT
In this paper, the symmetry group method is used to study a new (2 + 1)−dimensional generalized KdV equation. The Lie point
symmetries of (2 + 1)−dimensional generalized KdV equation are obtained. Symmetry reductions and several interesting explicit
solutions to the (2 + 1)−dimensional generalized KdV equation are given by the Riccati equation expansion method.
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1. INTRODUCTION
The nonlinear partial differential equations (PDEs)

arise in different areas of applied mathematics, physics,
and engineering, including plasma physics [1], biology
[2], fluid mechanics [3], thermodynamics [4], [5], non-
linear optics [6], quantum mechanics [7], condensed
matter physics [8], plasma wave [9], etc. Therefore,
seeking the exact solutions of the nonlinear PDEs play
an important role in the nonlinear field. So far, many ef-
fective methods have been developed, such as the Hirota
bilinear method [10], simplest equation method [11],
auxiliary equation method [12], inverse scattering theory
[13], homotopy perturbation transform method [14],
Darboux transformation [15], Lie symmetry method
[16], [17], [18], [19], and so on. Among the above-
mentioned methods, the Lie symmetry method is a very
effective method for solving linear and nonlinear PDEs,
which enables to derive of the solutions of differen-
tial equations in a completely algorithmic way with-
out appealing to special lucky guesses. Lie symmetry
method can also be used to determine invariant solutions
to initial and boundary value problems and to derive
conserved quantities. In recent years, some interesting
results for higher-order nonlinear equations have been
obtained by combining the symmetry reduction method
with other methods, such as the auxiliary function
method and the simplest equation method.

In this paper, we consider the (2 + 1)−dimensional
generalized KdV equation in the form of

6auxuxx + auxxxx + 3b(uxut)x + buxxxt + cuxx

+ duyy + euxt = 0,
(1)

where a, b, c, d and e are arbitrary constants. In [20],

the new class of soliton solutions to gKdV (1) were
constructed by using the new extended generalized
Kudryashov and improved tan(ϕ/2)-expansion meth-
ods. In [21], N-soliton solutions of the equation (1) were
investigated by the Hirota method. As far as we know,
Lie symmetry analysis of equation (1) have not been
studied.

This paper is organized as follows: In Sect. 2, Lie
symmetries of equation (1) are given. In Sect. 3, Riccati
equation method is introduced. In Sect. 4, we will
constructe the exact solutions of the reduced equations
by Riccati equation expansion method. In Sect. 5, we
give some summaries and discussions.

2. LIE SYMMETRY ANALYSIS
In this section, we will construct Lie symmetries of

the (2+1)−dimensional generalized Korteweg-de Vries
equation.

Let us consider the Lie group of point transforma-
tions in x, y, t, u given by

x∗ =x+ ϵξ(x, y, t, u) +O(ϵ2),

y∗ =y + ϵτ(x, y, t, u) +O(ϵ2),

t∗ =t+ ϵη(x, y, t, u) +O(ϵ2),

u∗ =u+ ϵϕ(x, y, t, u) +O(ϵ2),

where ϵ ≪ 1 is a group parameter, and ξ, τ, η, ϕ are
the infinitesimals. The corresponding Lie algebra is
generated by the vector field

V =ξ(x, y, t, u)
∂

∂x
+ τ(x, y, t, u)

∂

∂y
+ η(x, y, t, u)

∂

∂t

+ ϕ(x, y, t, u)
∂

∂u
.

(2)
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The above transformation group is admitted by equation
(1) if and only if

pr(4)V (∆)|∆=0 = 0, (3)

where ∆ = 6auxuxx + auxxxx +3b(uxut)x + buxxxt +
cuxx+ duyy + euxt and pr(4) is the fourth prolongation
of the vector field (2).

From Lie’s theory, we have

pr(4)V =ϕx ∂

∂ux
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕyy ∂

∂uyy
+

ϕxt ∂

∂uxt
+ ϕxxxx ∂

∂uxxxx
+ ϕxxxt ∂

∂uxxxt
,

where
ϕx =Dx(ϕ− ξux − τuy − ηut) + ξuxx

+ τuxy + ηuxt,

ϕt =Dt(ϕ− ξux − τuy − ηut) + ξuxt

+ τuyt + ηutt,

ϕxx =Dxx(ϕ− ξux − τuy − ηut) + ξuxxx

+ τuxxy + ηuxxt,

ϕyy =Dyy(ϕ− ξux − τuy − ηut) + ξuxyy

+ τuyyy + ηuyyt,

ϕxt =Dxt(ϕ− ξux − τuy − ηut) + ξuxxt

+ τuxyt + ηuxtt,

ϕxxxx =Dxxxx(ϕ− ξux − τuy − ηut) + ξuxxxxx

+ τuxxxxy + ηuxxxxt,

ϕxxxt =Dxxxt(ϕ− ξux − τuy − ηut) + ξuxxxxt

+ τuxxxty + ηuxxxtt.

(4)

Expanding (3), we obtain

6auxxϕ
x + 3buxtϕ

x + 3buxxϕ
t + 6auxϕ

xx

+ 3butϕ
xx + cϕxx + dϕyy + 3buxϕ

xt + eϕxt

+ aϕxxxx + bϕxxxt = 0.

(5)

Substituting (4) into (5), we obtain the following
determining equations

ηu = 0, ηy = 0, ηx = 0, ξu = 0, ξtt = 0,

ξy = 0, ηt =
bξt + aξx

a
, ξxt = 0, ξxx = 0,

τu = 0, τy =
bξt + 4aξx

2a
, τt = 0, τx = 0,

ϕu = −ξx, ϕyy = 0, ϕx = −2eξx
3b

,

ϕt =
1

3ab2
(−b2cξt + abeξt − 2abcξx + 4a2eξx).

Then solving the determining equations, we find that

ξ = a1t+ a2x+ a3,

τ = A1a1y + 2a2y + a5,

η = 2A1a1t+ a2t+ a4,

ϕ = −a2u−A2a2x+ a6y +A3a1t+A4a2t+ a7,
(6)

where a1, a2, a3, a4, a5, a6, a7 are arbitrary constants
and A1 = b

2a , A2 = 2e
3b , A3 = ae−bc

3ab , A4 = 4ae−2bc
3b2 .

Hence, the infinitesimal symmetry of the equation
(1) form the seven-dimensional Lie algebra L7 spanned
by the following linearly independent operators

V1 = t
∂

∂x
+A1y

∂

∂y
+ 2A1t

∂

∂t
+A3t

∂

∂u
,

V2 = x
∂

∂x
+ 2y

∂

∂y
+ t

∂

∂t
+ (A4t−A2x− u)

∂

∂u
,

V3 =
∂

∂x
,

V4 =
∂

∂t
,

V5 =
∂

∂y
,

V6 = y
∂

∂u
,

V7 =
∂

∂u
.

(7)

Using commutator operator [Vk, Vj ] = VkVj −VjVk,
we get the commutator table for (1)

3. AN OVERVIEW OF RICCATI
EQUATION EXPANSION METHOD

The Riccati equation expansion method is an efficient
mathematical analytical tool for solving the nonlinear
PDEs and has been successfully applied to many com-
plex nonlinear models.

We consider the following nonlinear PDEs of the
form

N(F, FX , FT , FXX , ...) = 0. (8)

Using the wave transformation F (X,T ) = F1(θ),
one can reduce the equation (8) into the following
ordinary differential equation

N(F1, F
′
1, F

′′
1 , ...) = 0, (9)

where θ = X −ωT is the wave transformation with the
arbitrary constants ω.

To simplify (9), we assume the trial solution to be
of the following form

F1(θ) =

n∑
i=0

mif
i(θ), (10)

where mi are arbitrary constants that will be confirmed
later and f satisfies the Riccati equation

f
′
= λ+ f2, (11)

where λ is arbitrary constant. The well-known solutions
of the Riccati Equation (11) is

f =


−
√
−λtanh(

√
−λθ), λ < 0,

−
√
−λcoth(

√
−λθ), λ < 0,

− 1
θ , λ = 0,√
λtan(

√
λθ), λ > 0,

−
√
λcot(

√
λθ), λ > 0.

(12)

Then applying the homogeneous balancing principal
to equation (9), we can determine the value of n.
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Table 1. Commutator table for (1)

[Vk, Vj ] V1 V2 V3 V4 V5 V6 V7

V1 0 0 0 −V3 − 2A1V4 −A3V7 −A1V5 A1V6 0

V2 0 0 −V3 +A2V7 −V4 −A4V7 −2V5 3V6 V7

V3 0 V3 −A2V7 0 0 0 0 0

V4 V3 + 2A1V4 +A3V7 V4 +A4V7 0 0 0 0 0

V5 A1V5 2V5 0 0 0 V7 0

V6 −A1V6 −3V6 0 0 −V7 0 0

V7 0 −V7 0 0 0 0 0

Substituting (10) and (11) into (9), and equating the
coefficients of the powers of f i to zero, we can get the
system of algebraic equations for mi and ω. Thus, the
transformation turns the solving differential equations
into algebraic manipulations.

4. EXACT SOLUTIONS
In this section, we will construct the exact solutions

of the (2 + 1)−dimensional generalized KdV equation
combining Lie symmetry and Riccati equation expansion
method.

4.1. V1 = t ∂
∂x +A1y

∂
∂y + 2A1t

∂
∂t +A3t

∂
∂u

For the generator V1, the characteristic equations are

dx

t
=

dy

A1y
=

dt

2A1t
=

du

A3t
.

The similarity form of the solution of equation (1)
is

u(x, y, t) =
A3

2A1
t+ F (X,Y ), (13)

with similarity variables X = 2A1x − t and Y = y2

t ,
where A1 = b

2a , A3 = ae−bc
3ab .

Substituting (13) into (1), we obtain reduction form
of equation (1)

2a2dFY − 3b3Y FXXFY + 4a2dY FY Y − bY

[(ae+ 3b2FX)FXY +
b3

a
FXXXY ] = 0.

(14)

4.2. V2 = x ∂
∂x + 2y ∂

∂y + t ∂
∂t + (A4t−A2x− u) ∂

∂u
For the generator V2, the characteristic equations are

dx

x
=

dy

2y
=

dt

t
=

du

A4t−A2x− u
.

The similarity form of the solution of equation (1)
is

u(x, y, t) =
1

2
A4t−A2x+

1

t
F (X,Y ), (15)

with similarity variables X = x
t and Y = y

t2 , where
A2 = 2e

3b , A4 = 4ae−2bc
3b2 .

Substituting (15) into (1), we obtain reduction form
of equation (1)

− 2eX2FX + 6bY F 2
X − dY FY Y − 2eX2Y 2FXY

− eX3FXX + 6bY 2FXFXY +
2ae

b
X2FXX

+ 3bY FXX + 6bY 2FY FXX − 6aY FXFXX

+ 6bXY FXFXX + 4bY FXXX + 2bY 2FXXXY

+ bXY FXXXX − aY FXXXX = 0.

(16)

4.3. V3 = ∂
∂x

For the generator V3, the characteristic equations are

dx

1
=

dy

0
=

dt

0
=

du

0
.

The similarity form of the solution of equation (1)
is

u = F (Y, T ), (17)

with similarity variables Y = y, T = t.
Substituting (17) into (1), we obtain reduction form

of equation (1)
dFY Y = 0. (18)

Solving (18), we have F (Y, T ) = F1(T )Y +F2(T ).
Therefore, we get the solution of (1) as

u(x, y, t) = F1(t)y + F2(t),

where F1(t) and F2(t) are arbitrary functions.
4.4. V4 = ∂

∂t
For the generator V4, the characteristic equations are

dx

0
=

dy

0
=

dt

1
=

du

0
.

The similarity form of the solution of equation (1)
is

u(x, y, t) = F (X,Y ), (19)

with similarity variables X = x and Y = y.
Substituting (19) into (1), we obtain reduction form

of the equation (1)

dFY Y + cFXX + 6aFXFXX + aFXXXX = 0. (20)

4.5. V5 = ∂
∂y

For the generator V5, the characteristic equations are

dx

0
=

dy

1
=

dt

0
=

du

0
.

The similarity form of the solution of equation (1)
is

u(x, y, t) = F (X,T ), (21)

with similarity variables X = x and T = t.
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Substituting (21) into (1), we obtain reduction form
of the equation (1)

eFXT + 3bFXFXT + cFXX + 3bFTFXX

+ 6aFXFXX + bFXXXT + aFXXXX = 0.
(22)

For this case, using the Riccati equation expansion
method, we will construct some new exact solution of
equation (1).

Let
F (X,T ) = F1(θ), (23)

where θ = X −ωT is new independent variable and F1

is new dependent variable.
Substituting (23) into (22), we obtain following

ordinary differential equation

cF
′′

1 −eωF
′′

1 +6aF
′

1F
′′

1 −6bωF
′

1F
′′

1 +aF
(4)
1 −bωF

(4)
1 = 0.

(24)
The following three cases will be considered for

equation (24).
Case (1) : When c = eω, a = bω, λ < 0, the exact

solutions of (24) can be determined as

F1(θ) = m0 −m1

√
−λtanh(

√
−λ θ),

F1(θ) = m0 −m1

√
−λcoth(

√
−λ θ).

Thus we have the corresponding exact solutions of
equation (1)

u(x, y, t) = m0 −m1

√
−λtanh(

√
−λ (x− ωt)),

u(x, y, t) = m0 −m1

√
−λcoth(

√
−λ (x− ωt)).

(25)

Case (2) : When c = eω, a = bω, λ > 0, the exact
solutions of (24) can be determined as

F1(θ) = m0 +m1

√
λtan(

√
λ θ),

F1(θ) = m0 −m1

√
λcot(

√
λ θ).

Then we have the corresponding exact solutions of
equation (1)

u(x, y, t) = m0 +m1

√
λtan(

√
λ (x− ωt)),

u(x, y, t) = m0 −m1

√
λcot(

√
λ (x− ωt)).

(26)

Case (3) : When c = eω, a = bω, λ = 0, the exact
solutions of (24) can be determined as

F1(θ) = m0 −
m1

θ
.

Thus we have the corresponding exact solutions of
equation (1)

u(x, y, t) = m0 −
m1

x− ωt
. (27)

4.6. V4 + b5V5 + b6V6 = ∂
∂t + b5

∂
∂y + b6y

∂
∂u

For the generator V4+b5V5+b6V6, the characteristic
equations are

dx

0
=

dy

b5
=

dt

1
=

du

b6y
.

The similarity form of the solution of equation (1)
is

u(x, y, t) =
b6
2b5

y2 + F (X,T ), (28)

with similarity variables X = b5x and T = b5t− y.
Substituting (28) into (1), we obtain reduction form

of the equation (1)

b6d+ b5dFTT + b35(e+ 3bb5Fx)FXT

+ b35cFXX + 3bb45FTFXX + 6ab45FXFXX

+ bb55FXXXT + ab55FXXXX = 0.

(29)

For this case, using the Riccati equation expansion
method, we will construct some new exact solution of
equation (1).

Let
F (X,T ) = F2(θ), (30)

where θ = X − ωT is new independent variable, and
F2 is new dependent variable.

Substituting (30) into (29), we obtain following
ordinary differential equation

b6d+ ( b5dω
2 + b35(c− eω) + 6b45(a− bω)F

′

2 )F
′′

2

+ b55(a− bω)F
(4)
2 = 0.

(31)

The following three cases will be considered for
equation (31).

Case (1) : When ω ̸= 0, d = b6 = 0, c = eω, a =
bω, λ < 0, the exact solutions of (31) can be determined
as

F2(θ) = m0 −m1

√
−λtanh(

√
−λ θ),

F2(θ) = m0 −m1

√
−λcoth(

√
−λ θ).

Then we get the corresponding exact solutions of
equation (1)

u(x, y, t) =
b7
b5
y +

b6
2b5

y2 +m0 −m1

√
−λ

tanh[
√
−λ (b5x− ω(b5t− y))],

u(x, y, t) =
b7
b5
y +

b6
2b5

y2 +m0 −m1

√
−λ

coth[
√
−λ (b5x− ω(b5t− y))].

(32)

Case (2) : When ω ̸= 0, d = b6 = 0, c = eω, a =
bω, λ > 0, the exact solutions of (31) can be determined
as

F2(θ) = m0 +m1

√
λtan(

√
λ θ),

F2(θ) = m0 −m1

√
λcot(

√
λ θ).

Then we get the corresponding exact solutions of
equation (1)

u(x, y, t) =
b7
b5
y +

b6
2b5

y2 +m0 +m1

√
λ

tan[
√
λ (b5x− ω(b5t− y))],

u(x, y, t) =
b7
b5
y +

b6
2b5

y2 +m0 −m1

√
λ

cot[
√
λ (b5x− ω(b5t− y))].

(33)
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Case (3) : When ω ̸= 0, d = b6 = 0, c = eω, a =
bω, λ = 0, the exact solutions of (31) can be determined
as

F2(θ) = m0 −
m1

θ
,

Thus we get the corresponding exact solutions of
equation (1)

u(x, y, t) =
b7
b5
y +

b6
2b5

y2 +m0 −
m1

b5x− ω(b5t− y)
.

(34)
4.7. The generator V5 + b6V6 = ∂

∂y + b6y
∂
∂u

For the generator V5 + b6V6, the characteristic equa-
tions are

dx

0
=

dy

1
=

dt

0
=

du

b6y
.

The similarity form of the solution of equation (1)
is

u(x, y, t) =
b6
2
y2 + F (X,T ), (35)

with similarity variables X = x and T = t.
Substituting (35) into (1), we obtain reduction form

of equation (1)

b6d+ (e+ 3bFx)FXT + (c+ 3bFT + 6aFX)FXX

+ bFXXXT + aFXXXX = 0.
(36)

5. CONCLUSION
In this paper, the Lie group analysis is used to carry

out the similarity reductions of the (2+1)−dimensional
modified KdV equation. We have obtained the infinites-
imal generators, commutator table of Lie algebra, and
similarity reduction for the modified KdV equation.
The modified KdV equation has been reduced into a
new partial differential equation with less number of
independent variables. Using Riccati equation expansion
method, the new partial differential equation is reduced
into an ordinary differential equation and further some
new exact solution of the modified KdV are constructed.
It is hoped that all the results obtained in this paper can
be used to enrich the applications of the nonlinear PDEs
in mathematical physics.
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