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ABSTRACT
We study a class of time fractional diffusion-wave equations with variable coefficients using Lie symmetry analysis. We obtain not
only infinitesimal symmetries but also a complete group classification and a classification of group invariant solutions of this class
of equations. Group invariant solutions are given explicitly corresponding to every element in an optimal system of Lie algebras
generated by infinitesimal symmetries of equations in the class. We express the solutions in terms of Mittag-Leffler functions,
generalized Wright functions, and Fox H-functions. These solutions contain previously known solutions as particular cases.
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1. INTRODUCTION
In 1987, Bluman and Kumei [1] gave a complete

group classification and some invariant solutions to
variable coefficient wave equation utt = c2(x)uxx and
its corresponding system ut = c2(x)vx, vt = ux. In
[2], some group invariant solutions to a time fractional
generalization of the corresponding system of the wave
equation were given. As a continuation of [2], in this
work we consider a class of time fractional diffusion-
wave equations with variable coefficients of the follow-
ing form:

∂α

∂tα
u(x, t) = c2(x)

∂2

∂x2
u(x, t), x > 0, t > 0, α > 0,

(1)
where c(x) is a sufficiently differentiable, nonzero func-
tion. The equation (1) can be considered as a time frac-
tional generalization of diffusion-wave equations with
variable coefficients. Here, fractional differentiation is
defined by the following Riemann-Liouville manner:

∂α

∂tα
u(x, t) =


∂nu
∂tn , for α = n ∈ N,

1
Γ(n−α)

∂n

∂tn

∫ t

0
u(x,τ)

(t−τ)α−n+1 dτ,

for α ∈ (n− 1, n), with n ∈ N.
(2)

In recent years, the study of time fractional diffusion-
wave equations gains increasing attention as they model
anomalous diffusion processes. There are a variety of
inhomogeneous media ranging from plasma to living
cell where diffusion exhibits anomalous properties. So,

studying invariance properties and presenting explicit
invariant solutions of (1) is of great practical importance.

The particular case of the equation (1) with constant
diffusion coefficient

∂α

∂tα
u(x, t) = C

∂2

∂x2
u(x, t) (3)

has been studied extensively. In [3], [4], when 0 < α <
2, the solutions of (3) with appropriate initial conditions
were expressed in terms of Fox H-functions using Mellin
integral transformations. Also, in the sequential works of
F. Mainardi et al. [5], [6], [7], the fundamental solutions
of Cauchy and boundary value problems of (3) in means
of Riemann-Liouville and Caputo fractional derivatives
were obtained using Laplace transformations. In [8] the
invariance of the equation (3) under scaling transforma-
tions was studied and the scale-invariant solutions were
found in terms of generalized Wright functions when
α > 1.

Solutions of (1) with c(x) = xm were given for
α = 1 in [9] and for 0 < α < 1 in [10] using Laplace
transformations. To the best of our knowledge (see the
references), the classification of infinitesimal symmetries
and invariant solutions of (1) have not been studied
when the diffusion coefficient is non-constant. Thus,
the main purpose of this study is to obtain a complete
group classification depending on the function c(x) and
to give explicitly invariant solutions that correspond
to each infinitesimal symmetry in an optimal system
of infinitesimal symmetries of (1) in terms of special
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functions: Mittag-Leffler functions, generalized Wright
functions, and Fox H-functions. The solutions obtained
in this work coincide with the previously known solu-
tions for particular choice of c(x) or for particular values
of α. From the definition (2), we know that the equation
(1) interpolates between the diffusion equations and the
wave equations as α varies from 1 to 2. In Section 5,
this interpolating behaviour can be seen from the plots
of the solution obtained.

The structure of this work is as follows. In Section
2, we present a simple introduction to the Lie sym-
metry analysis of fractional partial differential equa-
tions (FPDEs) and provide formulas that are useful
in studying (1). In Section 3, we carry out a com-
plete group classification with respect to the function
c(x). In Section 4, we investigate the structure of the
corresponding Lie algebras of infinitesimal symmetries
and determine optimal systems. Then, we reduce (1)
to fractional ordinary differential equations (FODEs) in
accordance with these optimal systems. In Section 5,
we explicitly present solutions to (1) using the results
of preceding work [11] by the authors. Additionally, we
include a brief introduction to the special functions and
relevant formulas in order to make the current study self-
contained. Finally, we show that for α = 1 and α = 2 the
well known solutions can be derived from the solutions
that we give in this work.

2. LIE SYMMETRY ANALYSIS FOR
FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS

To study the equation given in (1) via Lie symmetry
analysis, we present basic definitions and formulas that
are needed to carry out the Lie symmetry analysis of
FPDEs. The general form of time fractional PDEs with
two independent variables x and t is as follows:

∂α

∂tα
u(x, t) = F (x, t, u, ux, uxx, . . .), (4)

where the subscripts denote partial derivatives and α is a
positive real number. In the Lie symmetry analysis, the
infinitesimal generator and the corresponding prolonged
infinitesimal generator of (4) are given by

X = ξ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
and

X̃ = X + µ(α) ∂

∂tα
+ µ(1) ∂

∂ux
+ · · · ,

respectively, where ξ, τ and µ are infinitesimals and
µ(α), µ(n) (n = 1, 2, . . .) are extended infinitesimals.
Explicitly, µ(n) is given by

µ(1) = Dx(µ)− uxDx(ξ)− utDx(τ),

µ(2) = Dx(µ
(1))− uxxDx(ξ)− uxtDx(τ),

...

where Dx is the total derivative operator defined as

Dx :=
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · · .

The αth order extended infinitesimal µ(α) has the fol-
lowing form [12], [13]:

µ(α) =
∂αµ

∂tα
+ (µu − αDt(τ))

∂αu

∂tα
− u

∂αµu

∂tα

+

∞∑
n=1

[(
α

n

)
∂nµu

∂tn
−
(

α

n+ 1

)
Dn+1

t (τ)

]
Dα−n

t (u)

−
∞∑

n=1

(
α

n

)
Dn

t (ξ)D
α−n
t (ux) + µ1,

where

µ1 =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!

× tn−α

Γ(n+ 1− α)
(−u)

r ∂m

∂tm
(
uk−r

) ∂n−m+kµ

∂tn−m∂uk
.

Here we denote the generalized binomial coefficient
(
α
n

)
and the total derivative operator Dt, respectively by(

α

n

)
=

(−1)n−1αΓ(n− α)

Γ(1− α)Γ(n+ 1)
and

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · .

It should be noted that µ1 = 0 when the infinitesimal µ
is linear in u.

We have the following initial condition

τ(x, t, u)|t=0 = 0 (5)

because of the fixed lower limit in the integral of (2).
The infinitesimal invariance criterion in the Lie sym-

metry analysis for the equation (4) is

X̃(utα − F (t, x, u, ux, uxx, · · · ))|(4) = 0. (6)

Now we are prepared for the investigation of the in-
finitesimal symmetries of the class of equations given
in (1).

3. LIE SYMMETRY ANALYSIS OF THE
DIFFUSION-WAVE EQUATION GIVEN IN
(1)

In this section, we study (1) using the formulas
obtained in the previous section. We show that there
are six cases regarding the symmetry groups of (1),
as determined by the form of the function c(x), five
in which c(x) possesses the special forms (specified
below), and one in which it does not. In the former
five cases, the symmetry groups of (1) possess additional
symmetries which do not exist in the latter case. For each
of the six cases we obtain the infinitesimal symmetries.

The invariance criterion (6) for the equation given in
(1) is

X̃(utα − c2(x)uxx)|(1) = 0,

38             N. Bayanmunkh et al.



which is in explicit form(
µ(α) − 2c(x)c′(x)ξuxx − c2(x)µ(2)

)∣∣∣
(1)

= 0. (7)

From (7), we obtain the following (overdetermined) sys-
tem of determining equations by setting the coefficients
of the linearly independent partial derivatives Dα−n

t u,
Dα−n

t ux, uxx, u
2
x, ux, uxt, uxuxt and uxuxx equal to

zero:(
α

n

)
∂nµu

∂tn
−
(

α

n+ 1

)
Dn+1

t τ = 0, n = 1, 2, . . . ,

Dn
t (ξ) = 0, n = 1, 2, . . . ,

2c2(x)ξx − αc2(x)τt − 2c(x)c′(x)ξ = 0,

µuu = 0,

2µxu − ξxx = 0,
∂αµ

∂tα
− u

∂αµu

∂tα
+ c2(x)µxx + µ1 = 0,

τx = τu = 0,

ξu = 0.

Analyzing the above overdetermined system with the
initial condition (5), we are able to deduce the following
infinitesimal symmetries of (1):

Case 0. This is the generic situation, which applies to all
forms of c(x) except the following five cases. In
this case, the infinitesimal symmetries are

X1 = u
∂

∂u
, Xg = g(x, t)

∂

∂u
,

where g(x, t) is a solution of the equation (1).

For the following five cases of function c(x), we get
additional symmetries along with X1 and Xg given
above.

Case 1. In the case c(x) = c (here c ∈ R), the additional
symmetries are

X2 =
∂

∂x
, X3 = x

∂

∂x
+

2

α
t
∂

∂t
.

Case 2. In the case c(x) = (k1x + k2)
2 (here k1, k2 ∈ R

and k1 ̸= 0), the additional symmetries are

X4 = −
(
x+

k2
k1

)
∂

∂x
+

2

α
t
∂

∂t
,

X5 = (k1x+ k2)
2 ∂

∂x
+ k21xu

∂

∂u

Case 3. In the case c(x) = (k1x+k2)
k3 (here k1, k2, k3 ∈

R, k1 ̸= 0 and k3 ̸= 0, 2), the additional symmetry
is

X6 =

(
x+

k2
k1

)
∂

∂x
+

2(1− k3)

α
t
∂

∂t
.

Case 4. In the case c(x) = k1e
k2x (here k1, k2 ∈ R and

k1k2 ̸= 0), the additional symmetry is

X7 = − 1

2k2

∂

∂x
+

1

α
t
∂

∂t
.

Case 5. In the case

c(x) =
(
(k1x+ k2)

2 + k3
)

× exp

(
k4

∫
dx

(k1x+ k2)2 + k3

)
(here k1, k2, k3, k4 ∈ R and k1 ̸= 0, (k3, k4) ̸=
(0, 0)), the additional symmetry is

X = ((k1x+k2)
2+k3)

∂

∂x
− 2k4

α
t
∂

∂t
+k21xu

∂

∂u
.

Since we derived a complete group classification
of (1), we are ready to determine the one-dimensional
optimal systems of Lie algebras of corresponding in-
finitesimal symmetries and the classification of group
invariant solutions of (1). In subsequent calculations,
we ignore the trivial infinitesimal symmetry Xg and in
Case 0, the Lie algebra is generated by only X1. Since
there are no invariant solutions corresponding to X1, we
consider Cases 1 through 5.

4. THE CLASSIFICATIONS OF
INVARIANT SOLUTIONS

In this section, we determine the group invariant
solutions of (1) corresponding to infinitesimal symme-
tries obtained in the previous section. More explicitly,
we express the invariant solutions as solutions of so-
called reduced fractional ordinary differential equations.
The invariant solutions of (1) corresponding to any
infinitesimal symmetry can be obtained through contin-
uous symmetry transformations, which are applied to
the invariant solutions corresponding to the infinitesimal
symmetries of any optimal system of one-dimensional
subalgebras of infinitesimal symmetries [14], [15]. For
this reason, we need only to describe the invariant
solutions corresponding to the infinitesimal symmetries
of an optimal system of one-dimensional subalgebras of
infinitesimal symmetries. The optimal systems of low-
dimensional Lie algebras are determined in [16]. We
describe the structure of Lie algebras generated by the
infinitesimal symmetries and choose the optimal systems
by using the results of [16].

In the following subsections, we present the optimal
systems and corresponding reduced equations for five
cases specified above. Notice that the point transforma-
tion

x̄ = ax+ b, t̄ = ht, ū = gu+

n∑
i=1

git
α−i,

a, b, h, g, gi ∈ R and a, h > 0 (8)

is an equivalent transformation for (1). In other words,
the equation (1) can be transformed to an equivalent one

∂α

∂tα
ū(x̄, t̄) = c̄2(x̄)

∂2

∂x2
ū(x̄, t̄),

where c̄2(x̄, t̄) =
a2

hα
c2
(
x̄− b

a

)
.

We apply the transformation (8) in order to simplify
the coefficient c(x) in (1). This means, without loss of
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generality, we assume that c(x) = xk3 instead of c(x) =
(k1x+k2)

k3 , k1 ̸= 0 and c(x) = e−
x
2 instead of c(x) =

k1e
k2x, k1k2 ̸= 0, respectively.

4.1. Reduced equations of (1) with c(x) = c,
c ∈ R

We assume, without loss of generality, that c(x) =
1. In this case, the equation given in (1) possesses the
following infinitesimal symmetries

X1 = u
∂

∂u
, X2 =

∂

∂x
, X3 = x

∂

∂x
+

2

α
t
∂

∂t
.

Except the Lie commutator of X2, X3, which is
[X2, X3] = X2, all the other Lie commutators are zero.
Thus, the Lie algebra generated by X1, X2 and X3 is
identical to the Lie algebra A1 ⊕A2 given in [16]. The
one-dimensional optimal system of this Lie algebra is
that obtained in [16],

U1 = sX1 +X3 = x
∂

∂x
+

2

α
t
∂

∂t
+ su

∂

∂u
, s ∈ R,

U2 = X1 +X2 =
∂

∂x
+ u

∂

∂u
,

U3 = X1 −X2 = − ∂

∂x
+ u

∂

∂u
,

U4 = X2 =
∂

∂x
,

U5 = X1 = u
∂

∂u
.

So, all we need to do is to present the invariant solutions
corresponding to each infinitesimal symmetry in the
above optimal system.

The characteristic equation of U1 reads as

dx

x
=

αdt

2t
=

du

su
,

which gives the similarity variable z = x− 2
α t. Thus, the

similarity transformation (ansatz) or the group invariant
solution is

u = xsφ(z). (9)

Substituting (9) into (1) with c(x) = 1, we obtain the
reduced equation

dαφ

dzα
= s(s− 1)φ+

2

α

(
2

α
− 2s+ 1

)
zφz +

4

α2
z2φzz.

(10)
The invariant solutions u = exφ(t) and u = e−xφ(t)

are found corresponding to U2 and U3, respectively. For
both cases, we get the reduced equation

dαφ

dtα
= φ. (11)

The invariant solution corresponding to U4 is found
as u(x, t) = φ(t). Thus, the reduced equation is

dαφ

dtα
= 0. (12)

The infinitesimal symmetry U5 appears in each op-
timal systems of the following subsections and it does
not yield any invariant solutions.

4.2. Reduced equations of (1) with
c(x) = (k1x + k2)

2 (here k1, k2 ∈ R and
k1 ̸= 0)

We assume, without loss of generality, that c(x) =
x2. Then, the infinitesimal symmetries become

X1 = u
∂

∂u
, X4 = −x

∂

∂x
+
2

α
t
∂

∂t
, X5 = x2 ∂

∂x
+xu

∂

∂u
.

Except the Lie commutator of X4, X5, which is
[X5, X4] = X5, all the other Lie commutators are zero.
As in the previous case, the optimal system is

U5 = X1 = u
∂

∂u
,

U6 = sX1 −X4 = x
∂

∂x
− 2

α
t
∂

∂t
+ su

∂

∂u
, s ∈ R,

U7 = X1 +X5 = x2 ∂

∂x
+ (x+ 1)u

∂

∂u
,

U8 = X1 −X5 = −x2 ∂

∂x
− (x− 1)u

∂

∂u
,

U9 = X5 = x2 ∂

∂x
+ xu

∂

∂u
.

The invariant solution u = xsφ(z), where z = x
2
α t,

is found corresponding to U6. The reduced equation is

dαφ

dzα
= s(s− 1)φ+

2

α

(
2

α
+ 2s− 1

)
zφz +

4

α2
z2φzz.

(13)
The invariant solutions u = xe−

1
xφ(t) and u =

xe
1
xφ(t) are found corresponding to U7 and U8, re-

spectively. For both cases, the reduced equation is same,
given as

dαφ

dtα
= φ. (14)

The invariant solution corresponding to U9 is found
as u(x, t) = xφ(t). Thus, the reduced equation is

dαφ

dtα
= 0. (15)

4.3. Reduced equations of (1) with
c(x) = (k1x + k2)

k3 (here k1, k2, k3 ∈ R,
k1 ̸= 0 and k3 ̸= {0, 2})

We may assume, without loss of generality, that
c(x) = xm (here m ∈ R and m ̸= 0, 2). Thus, the
Lie symmetries become

X1 = u
∂

∂u
and X6 = x

∂

∂x
+

2(1−m)

α
t
∂

∂t
.

The commutator of the Lie symmetries is zero, i.e.,
[X1, X6] = 0, and thus, the one-dimensional optimal
system consists of

U5 = X1 =
∂

∂u
,

U10 = sX1 +X6 = x
∂

∂x
+

2(1−m)

α
t
∂

∂t
+ su

∂

∂u
,

with s ∈ R. The characteristic equation for U10 reads as

dx

x
=

αdt

2(1−m)t
=

du

au
,
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which gives the similarity variable z = x
2(m−1)

α t and the
invariant solution

u = xsφ(z). (16)

Substituting (16) into (1) with c(x) = xm, we obtain
the following reduced FODE

dαφ

dzα
= s(s−1)φ+

2(m− 1)

α

(
2(m− 1)

α
+ 2s− 1

)
× zφz +

4(m− 1)2

α2
z2φzz. (17)

4.4. Reduced equations of (1) with
c(x) = k1e

k2x (here k1, k2 ∈ R and
k1k2 ̸= 0)

We assume, without loss of generality, that c(x) =
e−

x
2 . Thus, the Lie symmetries become

X1 = u
∂

∂u
, X7 =

∂

∂x
+

1

α
t
∂

∂t
.

The commutator of the symmetries is zero, i.e.,
[X1, X7] = 0, as in the previous case, the optimal
system is

U5 = X1 = u
∂

∂u

U11 = sX1 +X7 =
∂

∂x
+

t

α

∂

∂t
+ su

∂

∂u
, s ∈ R.

We obtain the invariant solution u = esxφ(z) with the
similarity variable z = e−

1
αxt corresponding to U11.

Consequently, the reduced FODE is

dαφ

dzα
= s2φ+

1

α

(
1

α
− 2s

)
zφz +

1

α2
z2φzz. (18)

4.5. Reduced equations of (1) with c(x) =

((k1x + k2)
2 + k3) exp

(∫
k4dx

(k1x+k2)2+k3

)
(here k1, k2, k3, k4 ∈ R, and k1 ̸= 0,
(k3, k4) ̸= (0, 0))

In the case

c(x) =
[
(k1x+ k2)

2 + k3
]
exp

(∫
k4dx

(k1x+ k2)2 + k3

)
,

the infinitesimal symmetries are

X1 = u
∂

∂u
and

X = ((k1x+ k2)
2 + k3)

∂

∂x
− 2k4

α
t
∂

∂t
+ k21xu

∂

∂u
.

We obtain the following three subcases of function c(x)
through the equivalent transformation (8).

Case A
If c(x) = (x2 + 1)e2m arctan x (here m ∈ R), then

the infinitesimal symmetries become

X1 = u
∂

∂u
, X8 = (x2 +1)

∂

∂x
− 4m

α
t
∂

∂t
+ xu

∂

∂u
.

The Lie algebra generated by the infinitesimal symme-
tries in this case is Abelian. Thus, the optimal system
is

U5 = X1 = u
∂

∂u
,

U12 = 2sX1 +X8

= (x2 + 1)
∂

∂x
− 4m

α
t
∂

∂t
+ (x+ 2s)u

∂

∂u

with s ∈ R. The invariant solution corresponding to U12

is
u =

√
1 + x2e2s arctan xφ(z),

where z = e
4m
α arctan xt and the reduced equation is

dαφ

dzα
= (4s2+1)φ+

16m

α

(m
α

+ s
)
zφz+

16m2

α2
z2φzz.

(19)

Case B
If c(x) = (1−x)m+1

(1+x)m−1 (here m ∈ R and m ̸= ±1),
then the infinitesimal symmetries become

X1 = u
∂

∂u
, X9 = (x2 − 1)

∂

∂x
− 4m

α
t
∂

∂t
+ xu

∂

∂u
.

The Lie algebra generated by X1, X9 is also Abelian.
Thus, the optimal system is

U5 = X1 = u
∂

∂u
,

U13 = 2sX1 +X2

= (x2 − 1)
∂

∂x
− 4m

α
t
∂

∂t
+ (x+ 2s)u

∂

∂u

with s ∈ R. Following the characteristic method, we

obtain the similarity variable z =
(

1−x
1+x

) 2m
α

t and the
invariant solution

u =
√

1− x2

(
1− x

1 + x

)s

φ(z).

Thus, the reduced equation is

dαφ

dzα
= (4s2−1)φ+

16m

α

(m
α

+ s
)
zφz+

16m2

α2
z2φzz.

(20)

Case C
If c(x) = x2e

1
x , then infinitesimal symmetries be-

come

X1 = u
∂

∂u
, X10 = x2 ∂

∂x
+

2

α
t
∂

∂t
+ xu

∂

∂u

and [X1, X10] = 0. Thus, the optimal system is

U5 = X1 = u
∂

∂u
,

U14 = −sX1 +X10

= x2 ∂

∂x
+

2

α
t
∂

∂t
+ (x− s)u

∂

∂u
, s ∈ R.
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The invariant solution corresponding to U14 is

u = xe
s
xφ(z)

with similarity variable z = e
2

αx t. The reduced equation
is

dαφ

dzα
= s2φ+

4

α

(
1

α
+ s

)
zφz +

4

α2
z2φzz. (21)

We have described the invariant solutions as so-
lutions to the reduced equations corresponding to the
infinitesimal symmetries of the optimal systems for
different types of functions c(x). The invariant solutions
corresponding to any other infinitesimal symmetries
can be obtained by symmetry transformations on the
invariant solutions that we obtained in this section. To
complete the work, we need to give solutions of reduced
equations, which lead us to the explicit expressions of
the invariant solutions.

5. EXPLICIT EXPRESSIONS OF
INVARIANT SOLUTIONS

In this section, we derive solutions to the reduced
equations (10)-(15) and (17)-(21). Then using these
solutions, we give invariant solutions of (1) explicitly.
Notice that all of the reduced equations we obtained in
the previous section have the following general form:

dαφ

dzα
= aφ+

b

α
zφ′ +

c

α2
z2φ′′, (22)

where a, b and c are constants. Thus, the problem of
finding invariant solutions of (1) is reduced into the
problem of finding solutions of the equation given in
(22).

5.1. Solutions of the reduced equation (22)

We derive solutions of (22) in terms of generalized
Wright functions and Fox H-functions. Therefore, we
give definitions of these two special functions in the
following manner.

Definition 5.1. The Fox H-function is defined by means
of the Mellin-Barnes type contour integral

Hm,l
p,q

[
z

∣∣∣∣ (Ai, αi)1,p
(Bj , βj)1,q

]
=

1

2πi

∫
L

Hm,l
p,q (s)z

sds (23)

with

Hm,l
p,q (s) =

m∏
j=1

Γ(Bj − βjs)
l∏

i=1

Γ(1−Ai + αis)

p∏
i=l+1

Γ(Ai − αis)
q∏

j=m+1

Γ(1−Bj + βjs)

for z ∈ C \ {0}, where m, l, p, q ∈ N0, (m, l) ̸= (0, 0),
αi, βj ∈ R+, Ai, Bj ∈ R (i = 1, . . . , p; j = 1, . . . , q).
Here L is a suitable contour from γ − i∞ to γ + i∞,
where γ is a real number.

The integral in (23) converges if the following con-
ditions are satisfied [17]

µ =

l∑
i=1

αi −
p∑

i=l+1

αi +

m∑
j=1

βj −
q∑

j=m+1

βj > 0

and | arg z| < πµ
2 . For large z the Fox H-function

vanishes as [18]

Hm,0
p,q [z] ≈ O

(
exp

(
−νz

1
ν ϵ

1
ν

)
z

2δ+1
2ν

)
, (24)

where ϵ =
p∏

i=1

(αi)
αi

q∏
j=1

(βj)
−βj , δ =

q∑
j=1

Bj−
p∑

i=1

Ai+

p−q
2 and ν =

q∑
j=1

βj −
p∑

i=1

αi > 0.

Definition 5.2. The generalized Wright function is de-
fined as

pΨq

[
z

∣∣∣∣ (Ai, αi)1,p
(Bj , βj)1,q

]
=

∞∑
k=0

p∏
i=1

Γ(Ai + αik)

q∏
j=1

Γ(Bj + βjk)

zk

k!

(25)
for z ∈ C, p, q ∈ N0 = {0, 1, 2, . . .}, Ai, Bj ∈ C and
αi, βj ∈ R \ {0} (i = 1, . . . , p; j = 1, . . . , q).

If ∆ =
q∑

j=1

βj −
p∑

i=1

αi > −1 or ∆ = −1,

then the series in (25) is absolutely convergent for

z ∈ C or |z| <
p∏

i=1

|αi|−αi

q∏
j=1

|βj |βj , respectively

[19]. Moreover, the Mittag-Leffler, Wright and Gauss
hypergeometric functions can be expressed in terms of
the generalized Wright functions, respectively, as

Eα,β(z) = 1Ψ1

[
z

∣∣∣∣ (1, 1)
(β, α)

]
, (26)

Ψ(z;α, β) = 0Ψ1

[
z

∣∣∣∣ −
(β, α)

]
, (27)

2F1

(
α, β
γ

; z

)
=

Γ(γ)

Γ(α)Γ(β)
2Ψ1

[
z

∣∣∣∣ (α, 1), (β, 1)
(γ, 1)

]
.

(28)
In [11], we studied the solutions of (22) in detail. Thus,
we deduce the following two lemmas from the results
of [11].

Lemma 5.1. The equation given in (22) has the
following solutions:

1) If a = 0, b = 0 and c = 0 in (22) then

φ(z) =

n∑
k=1

ckz
α−k for z ∈ R.

2) If b = 0 and c = 0 in (22) then

φ(z) =

n∑
k=1

ckz
α−kEα,1+α−k(az

α) for z ∈ R.

3) If b > 0, c = 0 and 0 < α < 1 in (22) then

φ(z) = c1H
1,0
1,1

[
z−α

b

∣∣∣∣ (1, α)(
a
b , 1
) ] for z ∈ R+.
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4) If b ̸= 0, c = 0 in (22) then

φ(z) =

n∑
k=1

ckz
α−k

2Ψ1

[
bzα
∣∣∣∣ (1− k

α + a
b , 1
)
, (1, 1)

(1 + α− k, α)

]
for z ∈ R when α > 1, or for |z| < 1

|b| when α = 1.

5) If D = 1
α2 − 2b

αc + b2

c2 − 4a
c ≥ 0, c > 0 and

0 < α < 2 in (22) then

φ(z) = c1H
2,0
1,2

[
z−α

c

∣∣∣∣ (1, α)
(κ1, 1) , (κ2, 1)

]
for z ∈ R+.

6) If D = 1
α2 − 2b

αc +
b2

c2 −
4a
c ≥ 0, c ̸= 0 in (22) then

φ(z) =

n∑
k=1

ckz
α−k

×3Ψ1

[
czα

∣∣∣∣ (1− k
α + κ1, 1

)
,
(
1− k

α + κ2, 1
)
, (1, 1)

(1 + α− k, α)

]
for z ∈ R when α > 2, or for |z| < 2√

|c|
when α = 2.

Where n is a natural number satisfying 0 ≤ n − 1 <

α ≤ n, κ1,2 = 1
2

(
b
c −

1
α ±

√
D
)

and ck (k = 1, . . . , n)
are constants.

Lemma 5.2. Let D = 1
α2 − 2b

αc + b2

c2 − 4a
c = 1

4 and
c ̸= 0 in (22). The equation given in (22) has the
following solutions:

1) If c > 0 and 0 < α < 2 then

φ(z) = c1z
α
2 (

1
α− b

c+
1
2 )

×Ψ

[
−2z−

α
2

√
c

∣∣∣∣− α

2
,
1

2

(
3

α
− b

c
+

1

2

)]
for z ∈ R+.

2) If α ≥ 2 then

φ(z) =

n∑
k=1

ckz
α−k

2

×Ψ1

[
czα

4

∣∣∣∣ ( 32 − 2k+1
α + b

c , 2
)
, (1, 1)

(1 + α− k, α)

]
for z ∈ R when α > 2, or for |z| < 2√

|c|
when α = 2.

Here n is a natural number satisfying 0 ≤ n− 1 < α ≤
n and ck (k = 1, . . . , n) are constants.

Knowing the solutions of (22), we give explicit
invariant solutions of (1) for different types of function
c(x) and show that these solutions coincide with the
known solutions for particular cases of α = 1 and α = 2.

5.2. Solutions of (1) with c(x) = 1

We give invariant solutions of (1) with c(x) = 1 as
follows:

1) Since D = 1
4 in (10), using Lemma 5.2 we have

the following solutions to (10)

φ(z) = c1z
sα
2 Ψ

(
−z−

α
2 ;−α

2
, 1 +

sα

2

)

for 0 < α < 2 and

φ(z) =

n∑
k=1

ckz
α−k

2Ψ1

[
zα
∣∣∣∣ (2− 2k

α − s, 2
)
, (1, 1)

(1 + α− k, α)

]
for α ≥ 2. We obtain through (9) the following invariant
solutions of (1) with c(x) = 1 correspond to U1

u(x, t) = c1t
sα
2 Ψ

(
−xt−

α
2 ;−α

2
, 1 +

sα

2

)
(29)

for 0 < α < 2 and

u(x, t) =

n∑
k=1

ckx
s−2+ 2k

α tα−k

× 2Ψ1

[
tα

x2

∣∣∣∣ (2− 2k
α − s, 2

)
, (1, 1)

(1 + α− k, α)

]
(30)

for α ≥ 2. E. Buckwar and Yu. Luchko [8] studied the
diffusion-wave equation (1) with c(x) = 1 and found
solutions via scaling transformations. The solution (29)
and (30) coincide with those solutions obtained in [8].

Moreover, if we set α = 1, c1 = 1
2 and s = −1 in

(29), then it becomes

u(x, t) =
1

2
√
t

∞∑
k=0

(−xt−
1
2 )k

k!Γ
(
1
2 − k

2

)
=

1

2
√
t

∞∑
k=0

(
−xt−

1
2

)2k
(2k)!Γ

(
1
2 − k

) .
Substituting Γ

(
1
2 − k

)
= (−4)kk!

√
π

(2k)! into the above
solution, we arrive to the fundamental solution of the
diffusion equation

u(x, t) =
1

2
√
πt

e−
x2

4t .

If we set α = 1, c1 = 1
2 and s = 0 in (29), then it

becomes

u(x, t) =
1

2

∞∑
k=0

(−xt−
1
2 )k

k!Γ
(
1− k

2

) .
Analogously to the previous computation, the above
solution equals to

u(x, t) =
1

2

(
1− erf

(
x

2
√
t

))
,

where erf(z) = 2√
π

∞∑
k=0

(−1)k

(2k+1)
z2k+1

k! .

If we set α = 2 in (30), then it becomes

u(x, t) = c1x
s−1t2Ψ1

[
x−2t2

∣∣∣∣ (1− s, 2), (1, 1)
(2, 2)

]
+ c2x

s
2Ψ1

[
x−2t2

∣∣∣∣ (−s, 2), (1, 1)
(1, 2)

]
.

Applying the formulas

z2Ψ1

[
z2
∣∣∣∣ (A, 2), (1, 1)

(2, 2)

]
=

Γ(A− 1)

2

×
[
(1− z)1−A − (1 + z)1−A

]
, (31)
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2Ψ1

[
z2
∣∣∣∣ (A, 2), (1, 1)

(1, 2)

]
=

Γ(A)

2

×
[
(1− z)−A + (1 + z)−A

]
(32)

to the above solution, it becomes

u(x, t) = c̃1(x− t)s + c̃2(x+ t)s,

where c̃1 = Γ(−s)(c1+c2)
2 and c̃2 = −Γ(−s)(c1−c2)

2 .
2) Using the second assertion of Lemma 5.1, we get

the following solutions to (11)

φ(t) =

n∑
k=1

ckt
α−kEα,1+α−k(t

α).

So invariant solutions of (1) with c(x) = 1 correspond-
ing to U2 and U3 are, respectively,

u(x, t) = ex
n∑

k=1

ckt
α−kEα,1+α−k(t

α), (33)

u(x, t) = e−x
n∑

k=1

ckt
α−kEα,1+α−k(t

α). (34)

If we set α = 1 in (33) and (34), we get the following
solutions, respectively,

u(x, t) = c1e
x+t and u(x, t) = c1e

−x+t.

When α = 2 in (33) and (34), by (4.2.2) of [20], we have
the following traveling wave solutions, respectively,

u(x, t) =
c1 + c2

2
ex+t − c1 − c2

2
ex−t and

u(x, t) =
c1 + c2

2
e−x+t − c1 − c2

2
e−x−t.

3) Using the first assertion of Lemma 5.1, we have
the following solutions of (1) with c(x) = 1 correspond-
ing to U4,

u(x, t) = φ(t) =

n∑
k=1

ckt
α−k. (35)

If we take α = 1 and α = 2 in (35), then we get the
following solutions, respectively,

u(x, t) = c1 and u(x, t) = c1t+ c2.

5.3. Solutions of (1) with c(x) = x2

Similarly, the invariant solutions of (1) with c(x) =
x2 are obtained as follows:

1) Since D = 1
4 in the equation (13), using

Lemma 5.2 we get solutions of (13)

φ(z) = c1z
α
2 (1−s)Ψ

(
−z−

α
2 ;−α

2
, 1 +

α

2
(1− s)

)
for 0 < α < 2 and

φ(z) =

n∑
k=1

ckz
α−k

2Ψ1

[
zα
∣∣∣∣ (1− 2k

α + s, 2
)
, (1, 1)

(1 + α− k, α)

]

for α ≥ 2. Then invariant solutions of (1) with c(x) =
x2 corresponding to U6 are

u(x, t) = c1xt
α
2 (1−s)Ψ

(
−x−1t−

α
2 ;−α

2
, 1 +

α

2
(1− s)

)
(36)

for 0 < α < 2 and

u(x, t) =

n∑
k=1

ckx
s+2− 2k

α tα−k

× 2Ψ1

[
x2tα

∣∣∣∣ (1− 2k
α + s, 2

)
, (1, 1)

(1 + α− k, α)

]
(37)

for α ≥ 2. When α = 1, if we take s = 2 and s = 1 in
(36), we get the following solutions, respectively,

u(x, t) = c1
x√
πt

exp

(
− 1

4x2t

)
and

u(x, t) = c1x

[
1− erf

(
1

2x
√
t

)]
.

By setting α = 2 in (37), it becomes

u(x, t) = c1x
s+1t2Ψ1

[
x2t2

∣∣∣∣ (s, 2), (1, 1)
(2, 2)

]
+ c2x

s
2Ψ1

[
x2t2

∣∣∣∣ (s− 1, 2), (1, 1)
(1, 2)

]
.

We can rewrite it using (31) and (32) as

u(x, t) =
Γ(s− 1)

2
(c1 + c2)x

s(1− xt)1−s

− Γ(s− 1)

2
(c1 − c2)x

s(1 + xt)1−s.

2) Using the second assertion of Lemma 5.1, we have
the following solutions to (14)

φ(t) =
n∑

k=1

ckt
α−kEα,1+α−k(t

α).

So invariant solutions of (1) with c(x) = x2 correspond-
ing to U7 and U8 are, respectively,

u(x, t) =

n∑
k=1

ckxe
− 1

x tα−kEα,1+α−k(t
α), (38)

u(x, t) =

n∑
k=1

ckxe
1
x tα−kEα,1+α−k(t

α). (39)

By setting α = 1 in (38) and (39), we get the following
solutions, respectively,

u(x, t) = c1xe
t− 1

x and

u(x, t) = c1xe
t+ 1

x .

When α = 2 in (38) and (39), by virtue of formula
(4.2.2) of [20], we get the following solutions, respec-
tively,

u(x, t) =
c1 + c2

2
xet−

1
x − c1 − c2

2
xe−t− 1

x and

u(x, t) =
c1 + c2

2
xet+

1
x − c1 − c2

2
xe−t+ 1

x .
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3) Using the first assertion of Lemma 5.1, we have
the following invariant solution of (1) with c(x) = x2

corresponding to U9

u(x, t) = xφ(t) =

n∑
k=1

ckxt
α−k. (40)

If we set α = 1 and α = 2 in (40), we get the following
solutions, respectively,

u(x, t) = c1x and u(x, t) = c1xt+ c2x.

5.4. Solutions of (1) with c(x) = xm (here
m ∈ R and m ̸= 0, 2)

We give invariant solutions of (1) with c(x) = xm

as follows:
1) If m = 1, then the reduced equation given in (17)

becomes
dαφ

dzα
= s(s− 1)φ.

Using the second assertion of Lemma 5.1, we obtain the
following solutions

φ(z) =

n∑
k=1

ckz
α−kEα,1+α−k(s(s− 1)zα) for α > 0.

So, invariant solutions of (1) with c(x) = x correspond-
ing to U10 is obtained through (16) as

u(x, t) =

n∑
k=1

ckx
stα−kEα,1+α−k(s(s− 1)tα). (41)

By setting α = 1 in (41), we get

u(x, t) = c1x
ses(s−1)t.

If α = 2 and s(s− 1) > 0, then (41) becomes

u(x, t) =

(
c1

2
√
s(s− 1)

+
c2
2

)
xse

√
s(s−1)t

+

(
− c1

2
√
s(s− 1)

+
c2
2

)
xse−

√
s(s−1)t

by virtue of (4.2.2) of [20]. This is the exact solution
(2.60) of [1].

2) If m ̸= 1, using the fifth and sixth assertions of
Lemma 5.1, we have the following solutions of (17) for
0 < α < 2

φ(z) = c1H
2,0
1,2

[
z−α

A2

∣∣∣∣ (1, α)(
s
A , 1

)
,
(
s−1
A , 1

) ]
and for α ≥ 2

φ(z) =

n∑
k=1

ckz
α−k

× 3Ψ1

[
A2zα

∣∣∣∣ (B − k
α , 1

)
,
(
C − k

α , 1
)
, (1, 1)

(1 + α− k, α)

]
,

where A = 2(m − 1), B = 1 + s
2(m−1) and C = 1 +

s−1
2(m−1) . Then, by virtue of (16), invariant solutions of

(1) with c(x) = xm corresponding to U10 are for 0 <
α < 2

u(x, t) = c1x
sH2,0

1,2

[
x2(1−m)

A2tα

∣∣∣∣ (1, α)(
s
A , 1

)
,
(
s−1
A , 1

) ]
(42)

and for α ≥ 2

u(x, t) = xs+2(m−1)tα
n∑

k=1

ck

(
x

2(1−m)
α

t

)k

× 3Ψ1

[
A2xAtα

∣∣∣∣ (B − k
α , 1

)
,
(
C − k

α , 1
)
, (1, 1)

(1 + α− k, α)

]
.

(43)

We include graphical illustrations of the solution (42)
with c1 = 1, s = 2m − 1 and m = 1

4 . From the plots
we can see that the solution behaviour changes visibly
when α steps over 1.

R. Metzler et.al. [10] studied the anomalous diffusion
equation (1) with c(x) = xm and found solutions for
0 < α < 1 using the Laplace transformations. The
solution (42) coincides with the solutions obtained in
[10].

Furthermore, if α = 1 then by setting s = 2m − 1
and s = 2m − 2 in (42), we obtain through (1.125) of
[17] the following solutions, respectively,

u(x, t) = (2|m− 1|)−2− 1
m−1 c1t

−1− 1
2(m−1)

× exp

(
− x2(1−m)

4(m− 1)2t

)
and

u(x, t) = (2|m− 1|)−2+ 1
m−1 c1xt

−1+ 1
2(m−1)

× exp

(
− x2(1−m)

4(m− 1)2t

)
.

If we set α = 2 in (43), then it becomes

u(x, t) = c1x
sz

× 3Ψ1

[
A2z2

∣∣∣∣ ( 12 + s
A , 1

)
,
(
1
2 + s−1

A , 1
)
, (1, 1)

(2, 2)

]
+ c2x

s
3Ψ1

[
A2z2

∣∣∣∣ ( s
A , 1

)
,
(
s−1
A , 1

)
, (1, 1)

(1, 2)

]
,

where A = 2(m− 1) and z = xm−1t. By virtue of the
following formulas

3Ψ1

[
z

∣∣∣∣ (A1, 1), (A2, 1), (1, 1)
(1, 2)

]
= Γ(A1)Γ(A2)

× 2F1

(
A1, A2

1
2

;
z

4

)
for |z| < 4, (44)

3Ψ1

[
z

∣∣∣∣ (A1, 1), (A2, 1), (1, 1)
(2, 2)

]
= Γ(A1)Γ(A2)

× 2F1

(
A1, A2

3
2

;
z

4

)
for |z| < 4, (45)
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(a) α = 1
2

(b) α = 1

(c) α = 3
2

(d) α = 7
4

Figure 1: Solution plots of (1) with c(x) = x
1
4

the above solution equals to

u(x, t) = Γ

(
1

2
+ ω1

)
Γ

(
1

2
+ ω2

)
c1x

sz

× 2F1

(
1
2 + ω1,

1
2 + ω2

3
2

; (m− 1)2z2
)

+ Γ (ω1) Γ (ω2) c2x
s
2F1

(
ω1, ω2

1
2

; (m− 1)2z2
)
,

(46)

where ω1 = s
2(m−1) , ω2 = s−1

2(m−1) . We recall the
formulae (37) and (38) in [2]

2Γ
(
1
2

)
Γ
(
a+ b+ 1

2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

) 2F1

(
a, b
1
2

; z2
)

=

[
1 +

Γ
(
a+ b+ 1

2

)
Γ
(
1
2 − a− b

)
Γ
(
a− b+ 1

2

)
Γ
(
b− a+ 1

2

)]

× 2F1

(
2a, 2b

a+ b+ 1
2

;
1 + z

2

)
+

Γ
(
a+ b− 1

2

)
Γ
(
a+ b+ 1

2

)
Γ (2a) Γ (2b)

(
1 + z

2

) 1
2−a−b

× 2F1

(
a− b+ 1

2 , b− a+ 1
2

3
2 − a− b

;
1 + z

2

)
(47)

and

2Γ
(
− 1

2

)
Γ
(
a+ b− 1

2

)
Γ
(
a− 1

2

)
Γ
(
b− 1

2

) z2F1

(
a, b
3
2

; z2
)

=

[
Γ
(
a+ b− 1

2

)
Γ
(
3
2 − a− b

)
Γ
(
a− b+ 1

2

)
Γ
(
b− a+ 1

2

) − 1

]

× 2F1

(
2a− 1, 2b− 1
a+ b− 1

2

;
1 + z

2

)

+
Γ
(
a+ b− 3

2

)
Γ
(
a+ b− 1

2

)
Γ (2a− 1) Γ (2b− 1)

(
1 + z

2

) 3
2−a−b

× 2F1

(
a− b+ 1

2 , b− a+ 1
2

5
2 − a− b

;
1 + z

2

)
. (48)

Using (47) and (48), we can rewrite the solution (46) as

u(x, t) = c̃1x
sF1(x

m−1t) + c̃2x
sF2(x

m−1t),

where

c̃1 = 4−(ω1+ω2)
√
πΓ(2ω1)Γ(2ω2)

(
c1 + 2c2

Γ(ω1 + ω2 +
1
2 )

−
Γ( 12 − ω1 − ω2)(c1 − 2c2)

Γ(ω1 − ω2 +
1
2 )Γ(ω2 − ω1 +

1
2 )

)
,

c̃2 = −4−(ω1+ω2)
√
πΓ

(
ω1 + ω2 −

1

2

)
(c1 − 2c2),

F1(z) = 2F1

(
2ω1, 2ω2

ω1 + ω2 +
1
2

;
1 + (m− 1)z

2

)
,

F2(z) =

(
1 + (m− 1)z

2

) 1
2−ω1−ω2

×2F1

(
ω1 − ω2 +

1
2 , ω2 − ω1 +

1
2

3
2 − ω1 − ω2

;
1 + (m− 1)z

2

)
,

ω1 =
s

2(m− 1)
, ω2 =

s− 1

2(m− 1)
.

This is the exact solution (2.47) of [1].
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5.5. Solutions of (1) with c(x) = e−x
2

Using the fifth and sixth assertions of Lemma 5.1,
we get the following solutions of (18)

φ(z) = c1H
2,0
1,2

[
z−α

∣∣∣∣ (1, α)
(−s, 1), (−s, 1)

]
for 0 < α < 2 and

φ(z) =

n∑
k=1

ckz
α−k

×3Ψ1

[
zα
∣∣∣∣ (1− k

α − s, 1
)
,
(
1− k

α − s, 1
)
, (1, 1)

(1 + α− k, α)

]
for α ≥ 2. Then, invariant solutions of (1) with c(x) =
e−

x
2 corresponding to U11 are for 0 < α < 2

u(x, t) = c1e
sxH2,0

1,2

[
ex

tα

∣∣∣∣ (1, α)
(−s, 1), (−s, 1)

]
(49)

and for α ≥ 2

u(x, t) = e(s−1)xtα
n∑

k=1

ck

(
e

x
α

t

)k

×3Ψ1

[
tα

ex

∣∣∣∣ (1− k
α − s, 1

)
,
(
1− k

α − s, 1
)
, (1, 1)

(1 + α− k, α)

]
.

(50)

By setting α = 1, s = −1 in (49), we get the following
solution through (1.125) of [17]

u(x, t) = c1
1

t
exp

(
−ex

t

)
.

By setting α = 2 in (50), we obtain

u(x, t) = c1e
sxz

× 3Ψ1

[
z2
∣∣∣∣ ( 12 − s, 1

)
,
(
1
2 − s, 1

)
, (1, 1)

(2, 2)

]
+ c2e

sx
3Ψ1

[
z2
∣∣∣∣ (−s, 1) , (−s, 1) , (1, 1)

(1, 2)

]
,

where z = e−
x
2 t. Applying (44) and (45) into the above

solution, it becomes

u(x, t) = Γ

(
1

2
− s

)2

c1e
sxz2F1

(
1
2 − s, 1

2 − s
3
2

;
z2

4

)
+Γ (−s)

2
c2e

sx
2F1

(
−s,−s

1
2

;
z2

4

)
.

(51)

Substituting (47) and (48) into (51), we derive

u(x, t) = c̃1e
sxF1

(
e−

x
2 t
)
+ c̃2e

sxF2

(
e−

x
2 t
)
,

where

c̃1 = 24s+1
√
πΓ(−2s)2

×

(
c1 + c2

Γ
(
1
2 − 2s

) − Γ
(
1
2 + 2s

)
(c1 − c2)

π

)
,

c̃2 = −24s+1
√
πΓ

(
−1

2
− 2s

)
(c1 − c2),

F1(z) = 2F1

(
−2s,−2s
1
2 − 2s

;
2 + z

4

)
,

F2(z) =

(
2 + z

4

) 1
2+2s

2F1

(
1
2 ,

1
2

3
2 + 2s

;
2 + z

4

)
.

This is the exact solution (2.71) of [1].

5.6. Solutions of (1) with
c(x) = (x2 + 1)e2m arctanx (here m ∈ R)

In the special case of m = 0, the reduced equation
given in (19) becomes

dαφ

dzα
= (4s2 + 1)φ.

Solutions of which are given by the second assertion of
Lemma 5.1

φ(z) =

n∑
k=1

ckz
α−kEα,1+α−k

(
(4s2 + 1)zα

)
.

Thus, invariant solutions of (1) with c(x) = x2 + 1
corresponding to U12 are

u(x, t) =
√

x2 + 1e2s arctan x

×
n∑

k=1

ckt
α−kEα,1+α−k

(
(4s2 + 1)tα

)
. (52)

By taking α = 1 in (52), we get

u(x, t) = c1
√
x2 + 1e2s arctan x+(4s2+1)t.

If we set α = 2 in (52), then we get the following
solution by virtue of (4.2.2) of [20]

u(x, t) =
√

(x2 + 1)e2s arctan x

×
(
c̃1e

√
4s2+1t + c̃2e

−
√
4s2+1t

)
,

where c̃1 = c1
2
√
4s2+1

+ c2
2 , c̃2 = − c1

2
√
4s2+1

+ c2
2 . This

is the exact solution (2.89) of [1].
If m ̸= 0, then the discriminant of (19) is less than

zero and we cannot apply the lemmas to give a solution.

5.7. Solutions of (1) with c(x) = (1−x)m+1

(1+x)m−1

(here m ∈ R and m ̸= ±1)

1. If m ̸= 0, we have the following solutions of (20)

φ(z) = c1H
2,0
1,2

[
z−α

16m2

∣∣∣∣ (1, α)(
2s+1
4m , 1

)
,
(
2s−1
4m , 1

) ]
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for 0 < α < 2 and

φ(z) =
n∑

k=1

ckz
α−k

× 3Ψ1

[
16m2zα

∣∣∣∣ (B − k
α , 1

)
,
(
C − k

α , 1
)
, (1, 1)

(1 + α− k, α)

]
for α ≥ 2, where B = 1 + 2s+1

4m , C = 1 + 2s−1
4m . Then,

when 0 < x < 1, the invariant solutions of (1) with
c(x) = (1−x)m+1

(1+x)m−1 , m ̸= 0, corresponding to U13 are for
0 < α < 2

u(x, t) = c1
√

1− x2g(x)s

×H2,0
1,2

[
1

16m2g(x)2mtα

∣∣∣∣ (1, α)(
2s+1
4m , 1

)
,
(
2s−1
4m , 1

) ]
(53)

and for α ≥ 2

u(x, t) =
√
1− x2g(x)s+2mtα

n∑
k=1

ck

(
1

g(x)
2m
α t

)k

×3Ψ1

[
16m2tα

g(x)−2m

∣∣∣∣ (B − k
α , 1

)
,
(
C − k

α , 1
)
, (1, 1)

(1 + α− k, α)

]
.

(54)

where g(x) = 1−x
1+x . By setting α = 1 in (53), we get

u(x, t) = c1
√

1− x2g(x)s

×H2,0
1,2

[
1

16m2g(x)2mt

∣∣∣∣ (1, 1)(
2s+1
4m , 1

)
,
(
2s−1
4m , 1

) ] .
(55)

If we take s = 2m − 1
2 and s = 2m + 1

2 in (55), by
(1.125) of [17], it becomes, respectively,

u(x, t) = c1(4m)
1
m−2(1− x)t

1
2m−1

× exp

(
− 1

16m2

(
1 + x

1− x

)2m
1

t

)
and

u(x, t) = c1(4m)−
1
m−2(1 + x)t−

1
2m−1

× exp

(
− 1

16m2

(
1 + x

1− x

)2m
1

t

)
.

If we take α = 2 in (54), by (44), (45), (47) and (48),
it becomes

u(x, t) = c̃1
√

1− x2

(
1− x

1 + x

)s

F1

((
1− x

1 + x

)m

t

)
+ c̃2

√
1− x2

(
1− x

1 + x

)s

F2

((
1− x

1 + x

)m

t

)
,

where

c̃1 =

√
πΓ(2ω1)Γ(2ω2)

22(ω1+ω2)

[
c1 + 2c2

Γ
(
ω1 + ω2 +

1
2

)
−

Γ
(
1
2 − ω1 − ω2

)
(c1 − 2c2)

Γ
(
ω1 − ω2 +

1
2

)
Γ
(
ω2 − ω1 +

1
2

)] ,

c̃2 = −2−2(ω1+ω2)
√
πΓ

(
ω1 + ω2 −

1

2

)
(c1−2c2),

F1(z) = 2F1

(
2ω1, 2ω2

ω1 + ω2 +
1
2

;
1 + 2mz

2

)
,

F2(z) =

(
1 + 2mz

2

) 1
2−ω1−ω2

× 2F1

(
ω1 − ω2 +

1
2 , ω2 − ω1 +

1
2

3
2 − ω1 − ω2

;
1 + 2mz

2

)
,

ω1 =
2s+ 1

4m
and ω2 =

2s− 1

4m
.

This is the exact solution (2.104) of [1].

2. If m = 0, then the reduced equation (20) becomes

dαφ

dzα
= (4s2 − 1)φ.

Solutions of which are given by the second assertion of
Lemma 5.1

φ(z) =

n∑
k=1

ckz
α−kEα,1+α−k

(
(4s2 − 1)zα

)
.

Thus, for 0 < x < 1, invariant solutions of (1) with
c(x) = 1− x2 corresponding to U13 are

u(x, t) =
√

1− x2

(
1− x

1 + x

)s

tα

×
n∑

k=1

ck
1

tk
Eα,1+α−k

(
(4s2 − 1)tα

)
. (56)

If we take α = 1 in (56), we get

u(x, t) = c1
√
1− x2

(
1− x

1 + x

)s

e(4s
2−1)t.

If α = 2 and 4s2 − 1 > 0, then (56) becomes

u(x, t) =
√
1− x2

(
1− x

1 + x

)s [(
c1

2
√
4s2 − 1

+
c2
2

)
×e

√
4s2−1t −

(
c1

2
√
4s2 − 1

− c2
2

)
e−

√
4s2−1t

]
.

by virtue of (4.2.2) of Ref. [20]. This is the exact
solution (2.107) of [1].

5.8. Solutions of (1) with c(x) = x2e
1
x

We can give solutions to (18) by fifth and sixth
assertions of Lemma 5.1

φ(z) = c1H
2,0
1,2

[
z−α

4

∣∣∣∣ (1, α)(
s
2 , 1
)
,
(
s
2 , 1
) ]

for 0 < α < 2,

φ(z) =

n∑
k=1

ckz
α−k

×3Ψ1

[
4zα
∣∣∣∣ (1− k

α + s
2 , 1
)
,
(
1− k

α + s
2 , 1
)
, (1, 1)

(1 + α− k, α)

]

48             N. Bayanmunkh et al.



for α ≥ 2. Then invariant solutions of (1) with c(x) =
x2e

1
x corresponding to U14 are for 0 < α < 2

u(x, t) = c1xe
s
xH2,0

1,2

[
1

4
e−

2
x t−α

∣∣∣∣ (1, α)(
s
2 , 1
)
,
(
s
2 , 1
) ]

(57)
and for α ≥ 2

u(x, t) = xe
2+s
x tα

n∑
k=1

ck

(
e

2
αx t
)−k

× 3Ψ1

[
4e

2
x tα
∣∣∣∣ (B − k

α , 1
)
,
(
B − k

α , 1
)
, (1, 1)

(1 + α− k, α)

]
,

(58)

where B = 1 + s
2 . If we take α = 1, s = 2 in (57), by

(1.125) of Ref. [17], we get

u(x, t) =
c1
4
xt−1 exp

(
−1

4
e−

2
x t−1

)
.

When α = 2 in (58), by (44), (45), (47) and (48), the
solution (58) becomes

u(x, t) = c̃1xe
s
xF1

(
e

1
x t
)
+ c̃2xe

s
xF2

(
e

1
x t
)
,

where

c̃1 =

√
πΓ(s)2

22s−1

[
c1 + c2

Γ
(
1
2 + s

) − Γ
(
1
2 − s

)
(c1 − c2)

π

]
,

c̃2 = −21−2s
√
πΓ

(
−1

2
+ s

)
(c1 − c2),

F1(z) = 2F1

(
s, s

1
2 + s

;
1 + z

2

)
,

F2(z) =

(
z + 1

2

) 1
2−s

2F1

(
1
2 ,

1
2

3
2 − s

;
1 + z

2

)
.

This is the exact solution (2.116) of [1].
Remark. From the invariant solutions that we obtained,
we can see the following equivalent relationships:

1) If we introduce a new unknown function v = 1
xu

and a new independent variable y = 1
x , then

u(x, t) solves ∂α

∂tαu = x2muxx if and only
if v(y, t) solves ∂α

∂tα v = y2(2−m)vyy . In other
words, the equation (1) with c(x) = xm is
equivalent to the equation (1) with c(x) = x2−m.

2) By introducing v = 1
1+xu and y = 2

1
m

1−x
1+x ,

we can see that u(x, t) solves ∂α

∂tαu =
(1−x)2(m+1)

(1+x)2(m−1)uxx if and only if v(y, t) solves
∂α

∂tα v = y2(m+1)vyy .
3) Again by introducing v = 1

xv and y = − 2
x−ln 4,

u(x, t) solves ∂α

∂tαu = x4e
2
xuxx if and only if

v(y, t) solves ∂α

∂tα v = e−yvyy .

6. CONCLUSION
We have studied a class of linear diffusion-wave

equations with variable coefficients via Lie symmetry
analysis. The group invariant classifications of the equa-
tions under study have been systemically done and exact
invariant solutions that correspond to each symmetry in
the optimal systems of infinitesimal symmetries have
been derived. We obtain the invariant solutions explicitly
in means of the special functions. The invariant solutions
can be considered as generalizations of the well-known
solutions of corresponding diffusion and wave equations
in means of order of time differentiation. We have also
done analysis revealing some equivalent relationships
between the solutions obtained. Interested readers may
continue doing analysis on the given solutions, such as
plotting graphs of the solutions.

In the Lie symmetry analysis, the fractional differen-
tial operator under consideration is global in means of
the order of the derivative. So, the Lie transformations
of fractional differential equations were obtained fewer
than the corresponding transformations, which were
obtained in G. Bluman, S. Kumei [1]. As a result,
the reduced equations were fewer than those of wave
equations. On the other hand, when it comes to give
solutions to reduced equations, the fractional differential
equations are more complicated than the corresponding
wave equations. For example, the reduced equations of
wave equations have solutions expressed in terms of
hypergeometric functions. In our case, we give solutions
of reduced equations in terms of generalized Wright
functions and Fox H-functions, which can be considered
as generalizations of hypergeometric functions.
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