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ABSTRACT
The site-site Ornstein-Zernike equation combined with the Verlet-modified bridge function has been applied to the binary hard
sphere mixtures and pressure consistency has been tested. An equa tion of state has been computed for the case where a packing
fraction is η = 0.49, diameter ratios are σ2/σ1 = 0.3 and 0.6, and the mole fractions are x1 = 0.125, 0.5, 0.75, and 1. An excess
chemical potential for each component has been obtained as well. Our findings for thermodynamic properties are in good agreement
with available data in literature.
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1. INTRODUCTION
Nowadays, an integral equation (IE) theory which

was first introduced by Ornstein and Zernike [1]
for a simple one-component system has expanded
to more complex systems of soft matter, including
atomic/molecular liquids, plasma, polymers and liquid
crystals and so on [2] . In IE theory an integral equation,
such as the Ornstein-Zernike (OZ) equation which is
basically a relation between total correlation function
and direct correlation function describing physical sys-
tems can be solved self-consistently with an additionally
introduced equation. A solution of the IE gives directly
the correlation functions which can be used to obtain
thermodynamic properties.

In classical statistical physics, a soft matter–liquid
and its constituent particles interaction can be described
as the model potentials, such as, a hard-sphere and
Lennard-Jones potentials [4], [3]. For hard-sphere sys-
tem, a solution of the IE can be found in a closed-form
within a Percus-Yevick bridge approximation [5] and a
pressure from both virial and compressibilty routes can
be computed via analytical expressions as well. How-
ever, the former approach gives a high value of it, and
the latter one underestimates it [6], [7]. Based on values
obtained from these two routes, the Boublik-Mansoori-
Carnahan-Starling-Leland (BMCSL) technique [8] can
correct the value [7]. Along with this technique, there
can be a more direct way to get rid of this ambiguous
result in which one would obtain unambiguous value
by performing thermodynamically consistent calculation

that can be done in terms of the free-parameterized
bridge approximations, such as the Verlet-modified [9],
[11], [10] or Tsednee-Luchko [12] approximations.

Therefore, in this work our goal is to carry out a
pressure consistent calculation using the Verlet-modified
(VM) [10] bridge function for a binary hard-sphere
mixture for which the site-site Orsntein-Zernike equa-
tion is solved [6], [7]. We will then compute a virial
equation of state for the system at equilibrium and
obtain an excess chemical potential for each component
using approximate analytical expression. We note that a
pressure consistent calculation for this system had been
previously performed with the VM-type bridge function
with nine free-parameters [13], which in turn may make
a computation a large. However, in our calculation
we attempt to employ the VM bridge function with
three free-parameters only and use a rather different
expression in evaluating the excess chemical potential
as well. Note that to our knowledge, so far this type
of implementation has not been tested for this system,
yet. We will compare our findings for thermodynamic
properties with those obtained in Ref. [13] and other
available BMCSL [7] and Monte-Carlo (MC) [14] data.

In Section 2 we will discuss about theoretical for-
mulations for the site-site Ornstein-Zernike equation and
pressure consistency. In Section 3 we present numerical
results and their discussions. In Section 4 the conclusion
is given.
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2. THEORY

2.1. The site-site Ornstein-Zernike equation

A relation between the total and direction correlation
functions for a multicomponent atomic fluid can be de-
fined as the site-site Orsntein-Zernike equation (SSOZ),
which should be written for a binary system in the matrix
form in the momentum-space as:

Ĥ(k) = Ĉ(k) + Ĉ(k)RĤ(k). (1)

Here Ĥ(k), Ĉ(k) and R are the matrices based on the
site-site total correlation functions, the direct correlation
functions and densities of the components, namely, their
forms are

Ĥ(k) =

[
ĥ11(k) ĥ12(k)

ĥ21(k) ĥ22(k)

]
, (2)

Ĉ(k) =

[
ĉ11(k) ĉ12(k)
ĉ21(k) ĉ22(k)

]
, R =

[
ρ1 0
0 ρ2

]
.

The total number density of the system is ρ =
∑
i

xiρi,

where
∑
i

xi = 1, (i = 1, 2) is a mole fraction defined

as component i. In above expressions a caveat defines
the Fourier transform of the function.

In the SSOZ Equation (1), the total and direct
correlation functions, ĥij and ĉij are both unknown,
therefore it cannot be solved directly. In order to solve
it, an another equation is required, with which the SSOZ
equation can be solved in self consistent way. This
additional equation is called a closure equation, which
is usually given in the form

hij(r) = exp[−βuij(r) + γij(r) +Bij(r)]− 1 (3)

where uij(r), (i, j = 1, 2) is a pair potential defining
an interaction of interparticles in the system; γij(r) =
hij(r)−cij(r) is an indirect correlation function; Bij(r)
is a bridge function; β = 1/kBT , where kB is the
Boltzmann’s constant and T is a temperature of the
system.

An interaction potential for the binary hard-sphere
system is defined as

uij =

{
0, r ≤ σij

∞, r > σij , (i, j = 1, 2)
(4)

where σij ≡ (σi + σj)/2 and σii = σi is given as σi,
the diameter of the hard-sphere component i.

The Verlet-modified [10], [13] bridge function in our
calculation has a form

Bij(r) = −
ϕγ2

ij

2
− φ

2

γ2
ij

(1 + αγij)
, (i, j = 1, 2) (5)

where (ϕ, φ, α) are free parameters to be determined by
an imposed condition.

2.2. Pressure consistency

For the hard-sphere mixture the virial (v) pressure,
pv can be obtained with an analytical expression

βpv

ρ
= 1 +

2π

3
ρ
∑
i,j

σ3
ijxixjgij(σij), (i, j = 1, 2), (6)

where gij(σij) are the contact values of the radial
distribution function, defined as gij = hij + 1, at σij .

The isothermal compressibility (c) for the mixture is
defined as
∂βpc

∂ρ
= 1− 1

ρ

∑
ij

ρiρj

∫
cij(r)dr, (i, j = 1, 2). (7)

In the pressure consistency, the pressure obtained
from the virial route would be equal to that obtained
from the compressibility route [11], [13], [12]. In this
work we use dpv − dpc consistency discussed in Refs.
[11], [13], [12] in which, we need to compute the
density derivative of the virial pressure (Equation (6))
and make it be equal to the isothermal compressibility
dpc (Equation (7)) with a help of an optimized free
parameters given in the bridge function [11], [13], [12],
that is, we will check ∂βpv/∂ρ = ∂βpc/∂ρ relation.

2.3. An excess chemical potential

For a hard-sphere system, an excess chemical poten-
tial is another essential thermodynamic quantity along
with a pressure since the system has no internal energy.
In this work we compute an excess chemical potential
for a component i using a closed-form expression [6],
[12]

βµi ≈
2∑

i=1

ρj

∫
dr
[(1

2
h2
ij − cij −

1

2
hijcij

)
+

(
Bij +

2hij

3
Bij

)]
. (8)

3. RESULTS AND DISCUSSION
In our calculation we choose a component 1 as a

reference particle which is a larger component (σ1 >
σ2), and all calculations can be done with respect to
this component. In this work in all calculations the
diameter ratios of hard spheres are σ2/σ1 = 0.3 and
0.6; the mole fractions are x1 = 0.125, 0.5, 0.75 and
1; and the packing fraction (volume density) defined as
η = (π/6)

∑
i

ρiσ
3
i is η = 0.49 at which the hard-sphere

system may exist in a fluid-like state [3].
We used the Picard iterative method in the calcula-

tion in which the SSOZ Equation (1) is solved in the
Fourier space, while a closure Equation (3) is computed
in a coordinate space and an in-house MATLAB [15]
code is employed. The numerical tolerance for the
root mean squared residual of the indirect correlation
functions during a successive iterations was set 10−8.
A number of grid points for all calculations 214 and a
length interval L = 16σ1. In pressure consistency test
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calculation a density derivative is computed with a finite
difference with ∆ρ = 10−3. Note that our all results are
independent on these numerical parameters. In our all
calculations we set φ = 1, so that we have only two
parameters (ϕ, α) to be found.

Table 1 presents an optimal values of free parameters
(ϕ, α) in the VM bridge function (5) at which dpv−dpc

consistency condition is satisfied. An optimization cal-
culation with a criterion of |dpv − dpc|2 has been done
using the ‘fminsearch’ multidimensional unconstrained
nonlinear minimization routine of the MATLAB [15].
Last two columns of Table 1 show the pressure consis-
tency checks.

Table 1. An optimal values of free parameters
(ϕ, α) and pressure dpv − dpc consistency checks
for the binary hard sphere mixtures.

σ2/σ1 x1 ϕopt αopt
∂βpv

∂ρ
∂βpc

∂ρ

0.3 0.125 0.01030 0.7760 25.20 25.20

0.5 0.00999 0.7800 36.36 36.36

0.75 0.01050 0.7855 42.00 42.00

1.0 0.01024 0.7860 50.67 50.67

0.6 0.125 0.01000 0.7847 45.33 45.33

0.5 0.00998 0.7830 44.75 44.75

0.75 0.00985 0.7832 47.36 47.36

1.0 0.00986 0.7843 50.67 50.67

Table 2 shows the numerically obtained values of
equation of state (Z ≡ βpv/ρ) and an excess chemical
potential for each components at fixed σ2/σ1 = 0.3
which indicates a system is totally asymmetric, and the
comparisons of our values with those from the VM [13],
MC [14] and BMCSL [7] calculations.

Table 3 displays our results obtained for σ2/σ1 = 0.6
and their comparisons with those of the VM [13],
MC [14] and BMCSL [7] calculations. From the com-
parisons shown in two tables, it has been seen that
our pressure values have been slightly underestimated,
however, values for excess chemical potential are mostly
better than those from the similarly implemented VM
bridge calculations [13] and close to the accurate MC
[14] and BMCSL [7] values. We note that the first
term with free parameter ϕ in the bridge function (5)
can enable us to obtain comparable value of the excess
chemical potential. When ϕ = 0, the bridge function (5)
becomes the commonly used VM bridge forms [10], [12]
and in this case the excess chemical potential for each
component is usually high (such as, (βµ1 = 23.4, βµ2 =
2.7) at σ2/σ1 = 0.3 and x1 = 0.5), however, values of
the compressibility factor are comparable (Z = 8.69 at
σ2/σ10.3 and x1 = 0.5) with accurate ones. Therefore,
we note that the ϕ-free parameter term in the VM bridge
function (5) is essential in the calculation. We also note
that the excess chemical potential obtained in Ref. [13]
had been computed with an analytical-type expression,

Table 2. Thermodynamic properties for the binary
hard sphere mixtures and η = 0.49.

Method σ2/σ1 x1 Z βµ1 βµ2

0.3 0.125

This work 6.58 39.8 3.93

MC [14] 6.77 41.22 3.77

BMCSL [7] 6.70 39.28 3.76

0.5

This work 8.44 20.3 2.62

VM [13] 8.72 18.00 2.50

MC [14] 8.69 19.67 2.52

BMCSL [7] 8.67 19.17 2.55

0.75

This work 10.1 17.9 2.47

MC [14] 10.42 17.20 2.37

BMCSL [7] 10.41 17.12 2.41

1.0

This work 11.8 16.7 2.40

BMCSL [7] 12.19 15.70 2.32

Table 3. The same as shown in table 2, however, for
σ2/σ1 = 0.6.

Method σ2/σ1 x1 Z βµ1 βµ2

0.6 0.125

This work 10.7 35.7 12.1

VM [13] 11.16 33.00 11.10

MC [14] 11.10 34.97 11.53

BMCSL [7] 11.04 33.93 11.33

0.5

This work 10.6 21.7 7.93

MC [14] 10.93 20.95 7.51

BMCSL [7] 10.91 20.47 7.45

0.75

This work 11.1 18.5 6.94

MC [14] 11.48 17.81 6.58

BMCSL [7] 11.47 17.45 6.54

1.0

This work 11.8 16.7 6.38

BMCSL [7] 12.19 15.70 6.02

which is different from what is given in (8), however,
results from them show a reasonable agreements.

4. CONCLUSION
In this we have applied the free-parameterized Verlet-

modified bridge function for the binary hard-sphere mix-
ture in terms of the site-site Orsntein-Zernike integral
equation method. The pressure consistency test for the
system at a high density has been performed, by which a
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pressure have been obtained unambiguously. It has been
shown that the Verlet-modified bridge function with less
free parameters than that was used in Ref. [13] could
have worked and given comparable values for a pressure.
An excess chemical potential for each component has
been computed with an closed form expression. In
general, the numerically obtained findings for pressure
and excess chemical potential present good agreements
with available accurate data.
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