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Abstract. This article is based on time series and applies support vector ma-

chine to establish a nonlinear dynamic model of rock mass evolution. The long-

est predictable time is given based on the Lyapunov index, and a nonlinear dy-

namic model prediction model based on support vector machine is proposed 

through function fitting. The nonlinear dynamic model is combined with non-

linear catastrophe theory to timely reflect the evolution direction of rock mass 

and make predictions and judgments on its stability, Use mutation theory to an-

alyze its stability. The results indicate that the model has ideal prediction per-

formance and good generalization ability. 
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1 Introduction 

Displacement is one of the important information feedback from rock mass structures 

during excavation or deformation[1]. The monitored historical displacement values 

can be used to model and predict its future evolution and development trends, and 

timely grasp the changes in the rock mass is of great significance in engineering[2]. 

The slope rock mass system is a nonlinear dynamic system, and its failure does not 

come from strict periodicity or uniform distribution of randomness, but from the in-

herent randomness during the landslide incubation process. Therefore, the determinis-

tic models established by classical theory, or the stochastic models (probability mod-

els) established assuming that landslides are random events, cannot fully and truly 

reflect the essence of landslides[3-4]. 

The study of rock mass stability is a complex and significant topic, and it is also 

one of the difficulties in rock mechanics research. Many scholars have started to en-

gage in nonlinear theoretical research in rock mechanics, and have proposed overall 

research objectives and specific technical ideas[5]. In some rock mass engineering, 

whether artificial or natural, the deformation is dynamic, and the mechanical parame-

ters inside the system are also variable. Therefore, the rock mass system can be re-
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garded as a nonlinear dynamic system. The macroscopic stability and unstable behav-

ior of a system are the stability issues of system equilibrium. 

Support vector machine (SVM) is a small sample learning method based on statis-

tical learning theory, which adopts the principle of structural risk minimization and 

has good generalization ability[6]. By changing the number of support vectors, the 

model structure can be easily continuously changed, and the upper bound of the mod-

el generalization error can be obtained and controlled, independent of the distribution 

of the training and testing sets. 

Therefore, this study adopts a chaotic time series prediction method based on sup-

port vector machine to establish a nonlinear dynamic model of rock mass, and based 

on this, conducts stability mutation analysis. The method proposed in this study can 

timely reflect the evolution direction of rock mass and make predictions and judg-

ments on its stability, which is of great practical significance for establishing monitor-

ing and warning systems for rock mass engineering systems such as slopes or dam 

foundations. 

2 Methodology 

2.1 Support Vector Machine 

SVM are used to solve regression problems. Firstly, we consider using a linear func-

tion factory ( )f x wx b= + to fit data { , }, 1,2,...,i ix y i k= . Assuming that all 

training data is fitted with a linear function without error under e accuracy, i.e.: 
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the degree of punishment for samples exceeding the error. By defining the Lagrange 

function and using optimization methods, the following quadratic problems can be 

obtained: 
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Thus, the support vector machine fitting function can be obtained as: 

 

1
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=
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The sample data corresponding to 'i ia a− not zero is the support vector. 

Kernel functions can be implemented using functions in the original space, without 

the need to know the specific form of nonlinear mapping, thus cleverly solving the 

problem of w being unable to be explicitly expressed due to unknowns. Commonly 

used kernel functions include polynomial kernel functions, radial basis functions 

(RBF), sigmoid functions, etc. 

2.2 Nonlinear Dynamic Model of Rock Mass Evolution 

Generally, the longest forecasting duration is defined as

1

1
Tm


= , 1 is Lyapuno 

index. The Lyapunov exponent is calculated using a small data volume method based 

on reconstructed phase space. For the nonlinear displacement time series of rock mass 

evolution, a time series of displacement changes over time can be obtained through 

monitoring{ }ix .By using support vector machine to learn the measured displace-

ment, the nonlinear relationship of the time series can be obtained. Based on the 

learned support vector machine, equation (4) can be used to predict the displacement 

of rock mass evolution. 

2.3 Catastrophic Analysis of Rock Mass Evolution 

Due to the variation of displacement observations over time, the displacement values 

of the studied rock mass system can be represented by a continuous func-

tion ( )S f t= , where t is the loading time scale and the function is expanded in Tay-

lor series. Therefore, when fitting the rock mass displacement time curve, the fourth 

order term is taken: 
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a standard potential function form with sharp point mutations: 

 
4 2( )V x x x vx= + +  (6) 

330             J. Wang



Where 
2 3

3 2 3 32

2 2 3

4 4 4 4

3 1
;

8 4 2 8

a a a aa a
v

a a a a a
 = − = − − .Equilibrium surface equation M: 

 3

0 04 2
v

x x v
x




= + +


 (7) 

According to the theory of sharp point bifurcation sets, the bifurcation set equation 

is obtained as: 

 
3 28 27v = +  (8) 

Obviously, only when 0  can the system undergo a mutation across the bifur-

cation set. 

The above equation is a necessary and sufficient criterion for sudden instability of 

the rock mass system. The magnitude of the mutation characteristic value  can be 

used as the distance between the rock mass evolution state and the critical state. When 

a landslide occurs, will suddenly drop to nearly zero. Therefore, the abrupt charac-

teristic value  can be used as a physical indicator to represent the stability of the 

rock mass system. 

3 Experiment test 

A certain landslide is a loess landslide on the edge of the plateau. Cracks were dis-

covered in 1980, and its deformation was observed from March 11 of that year until it 

experienced severe sliding on May 5. This article uses a support vector machine to 

predict it, with the last 10 data used to test the predictive ability of the support vector 

machine. Using a small amount of data, the Lyapunov exponent of the time series was 

calculated to be 0.0083 for the first 51 sets of data in the training set, indicating that 

the longest predictable time of the time series is 120 days. 

After determining the learning sample set, the establishment of displacement pre-

diction models mainly involves selecting the corresponding support vector machine 

parameters: kernel function and penalty parameter c. Many application experiences 

have shown that radial basis functions have good learning ability, and this article also 

chooses radial basis functions, i.e.: 
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Parameters are determined by cross-validation method, which selects different sets 

of ,c  , obtaining support vector values from training data and selecting set of 

,c  that make the error is minimum. After comparison, 0.9, 500c = = is deter-

mined. In the prediction process, in order to improve the accuracy of the prediction, 

the latest information should be fully utilized, that is, the latest observation data 
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should be added to the time series for the next step of prediction. Using this model to 

predict the next 10 data (see Table 1), the prediction results are shown in Fig.1, indi-

cating that the model has high prediction accuracy and good performance. 

Table 1. Displacement observation data for verification. 

Monitoring (mm) Prediction(mm) Absolute error(%) Relative error(%) 

26 27.1 1.1 4.2 

27 26.7 -0.3 -1.1 

28 28.4 0.2 0.7 

30 29.1 -0.9 -3.0 

31 29.4 -1.6 -5.3 

32 32.7 0.7 2.2 

33 34.1 1.1 3.3 

42 40.5 -1.5 -3.6 

47 45.4 -1.6 -3.4 

61 48.7 -12.3 -20.1 

 

Fig. 1. Relationship curve between displacement prediction value and monitoring value. 

From Table 1, it can be seen that the displacement prediction accuracy before the 

sudden instability of the slope is relatively high, but at the near mutation point, the 

prediction accuracy is significantly low. This indicates that the displacement change 

during the landslide instability no longer conforms to the displacement change law 

determined by previous displacement observation data. 

 

Fig. 2. Mutation characteristic value change curve. 
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Substitute time series data into the mutation equation to calculate the mutation 

characteristic value , and its variation curve is shown in Fig.2. We can see that the 

pre landslide mutation characteristic value  significantly decreases and approaches 

zero. That is, during the slope evolution process, as the control variable changes, the 

state variable (displacement value) undergoes a sudden change when the slope crosses 

the bifurcation set, leading to the landslide. This is relatively consistent with the actu-

al situation on site. 

4 Conclusions 

This article utilizes the relevant research results of modern artificial intelligence to 

propose a nonlinear dynamic model prediction model based on support vector ma-

chine, and combines this nonlinear dynamic model with nonlinear catastrophe theory 

to timely reflect the evolution direction of rock masses and make predictions and 

judgments on their stability. The research results indicate that the proposed model has 

high prediction accuracy, with a relative error of less than 20%; In the process of 

slope evolution, with the change of control variables, when the slope crosses the bi-

furcation set, the state variable (displacement value) undergoes a sudden change, lead-

ing to landslides. 

The prediction accuracy of displacement before sudden instability of the slope is 

relatively high, but at the near mutation point, the prediction accuracy is significantly 

low. Therefore, further research is needed to predict the displacement at the mutation 

point. 
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