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Abstract. A cloud computing platform has higher failure rates because of its 

highly dynamic nature and running of concurrent applications. However, the out-

comes of running concurrent applications won't be accurate without VM syn-

chronization. The issue of coordination between many virtual machines (VMs) 

is their synchronization in working is rarely considered by existing solutions. 

Moreover, fault tolerance constitutes one of the most crucial components for 

cloud computing architecture to ensure high reliability. In this research, Reserved 

Fault Tolerance and Ranked Task Scheduling (RFRTS) is proposed. Initially, the 

proposed ranked based scheduling approach is used for task allocation, and later 

reservation-based reactive fault tolerance method is suggested for a cloud system. 

To achieve the highest level of cloud computing infrastructure reliability, the 

suggested technique considers CPU faults and the VM reservation will ensure the 

assignment of alternative VM to the affected task. The proposed fault-tolerant 

approach has been compared with three existing reliable fault-tolerant ap-

proaches namely multi-objective scheduling algorithm with Fuzzy Resource uti-

lization (FR-MOS), Cost-effective Workflow Scheduling Algorithm (CWS), and 

Fault-tolerant Cost-effective Workflow Scheduling Algorithm (FCWS) based on 

reliability. The outcomes unequivocally show that our suggested RFRTS algo-

rithm surpasses the current FR-MOS, CWS, and FCWS considering the reliabil-

ity in all the states. 
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1 Introduction 

Cloud computing have become a well-liked and frequently utilised technology in recent 

years, offering computing amenities to end users as well as businesses [1][2][3]. These 

computing models' primary benefits are virtualization, quick flexibility, pay-per-use, 

immediate access, and furthermore. Because of these features, cloud computing plat-

forms are well suited to managing diverse needs and computationally intensive scien-

tific process applications [1]–[4]. 

Distributed collaborative computing, however, necessitates the use of several cloud 

computing services due to the variety and scope of the needs for these scientific appli-

cations. This cloud computing platform is referred to as a "multi-cloud system," where  
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distinct commercial cloud Infrastructure as a Service (IaaS), such as the IBM Cloud 

and AWS S3, is managed by a third party in several countries [5], [6], and [7]. Each 

IaaS provider may provide a collection of VMs having various configurations and com-

putational power [8]. By making VMs available with their own billing systems, the 

multi-cloud systems will share the resources of cloud providers [7]. For instance, the 

cloud service provider Amazon EC2 has a coarse-grained invoicing system that treats 

each half hour as a full hour [9]. Microsoft Azure, a cloud service provider, charges 

customers per minute [10]. As a result, for multi-cloud systems with different billing 

processes, determining how to acquire the best reliability has emerged as a significant 

difficulty. 

Contrarily, multi-cloud computing systems are made up of a collection of diverse 

virtual resources connected by both an external commercial network and an internal 

high-speed communication network. These virtual computers contain their own soft-

ware, hardware, and administration systems and are owned by several organisations. 

However, in these systems, cloud resources are vulnerable to a variety of problems, 

including network failure, hardware malfunction, delay failure, resource lacking fail-

ure, and so forth [11]. As a result, multi-cloud systems' dependability always decreases. 

Numerous methods, such as checkpoint/recovery, failure prevention, fault projec-

tions, fault tolerance, and task scheduling, have been researched [12]–[13] in order to 

increase the reliability of scientific application execution. Among these technologies, 

coordinated scheduling and fault tolerance are likely the most alluring methods to in-

crease the dependability of workflow execution. Fault-tolerant systems use backups to 

try to endure any cloud computing VM failure [13], [14]. The most popular method is 

replication, which offers a main VM and a number of redundant VMs from several 

cloud providers for tasks. As a consequence, the results of the backup jobs can be 

promptly available if the main task's execution fails due to VM failure. Regardless of 

the reliability of the main VM, the replication-based v-fault tolerance approaches gen-

erally need v-backup VMs [13]. However, In this paper, a method known as VM res-

ervation has been used where the alternative VM is reserved for the task based on the 

pre-estimated reservation window. This reservation window makes the approach effec-

tive for reliability. Besides, tasks are initially allocated based on the proposed Response 

Ratio. The rest of the paper is organised as Section 2 presents the existing literature 

related to the work. The proposed model with problem formulation and pseudocode of 

the allocation and fault tolerance is presented in Section 3. Section 4 discusses the out-

comes of the model concerning reliability and Section 5 concludes the paper with some 

future directions. 

2 Related Work 

Users of the cloud frequently grapple with the issue of fault tolerance. In accordance 

with both the non-stabilization of links to networks and the virtualization theory, all of 

these problems, along with others, have a negative impact on the performance, effi-

ciency, and availability of cloud computing. Because of this, fault tolerance in cloud 

computing has been the subject of much research and investigation. Besides, 
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[15] presented a checkpoint system for virtual machines. The suggested VM-

Checkpoint approach makes use of a check-pointing framework for executing the VM 

application and recovers an identical snapshot of the VM at a certain point in time using 

in-memory incremental checkpoints. The primary goals of the proposed approach are 

conducting in-place recovery and storing the checkpoints in memory. In [16], the sys-

tem maintains the reliability of the working nodes in real-time systems. The virtual ma-

chine's dependability varies with each computing cycle and is correlated with the accu-

racy of findings to ensure the adaptability of the system. To tolerate failures in distrib-

uted systems, [17,18] presented a replication-based Low Latency Fault Tolerance Sys-

tem (LLFT). It protects the program from multiple faults and copies the application 

using several replication techniques. Another, Fault Tolerance Management (FTM) ap-

proach uses checkpoint and replication strategies to offer reactive fault tolerance, which 

is presented in [19]. Furthermore, [20] utilises the Nave Bayes predictive classifier to 

implement proactive fault tolerance. With the Nave Bayes classifier, it forecasts the 

nodes that are most likely to encounter a defect, and then it employs fault tolerance 

strategies to increase the system's dependability. In this chain, [21] provided an inte-

grated fault tolerance technique that incorporates the benefits of replication strategy and 

checkpoint that are targeted at virtual machine failure. Additionally, Ranking and fault 

handling are the two operational phases of this architecture. The ranking-based frame-

work and proactive FT-Cloud model that automatically finds defects were proposed in 

[22]. To increase the security of scientific process execution, an attack-defense game 

model based on Nash Equilibrium and dynamic Heterogeneous Earliest Finish Time 

(HEFT) has been developed [23]. To address the issue of system resource management, 

several workflow scheduling techniques that consider system dependability have been 

developed [24-26]. [24] introduced an RDLS method that included reliability ex-

penses into the dynamic level of the DAG model. [25] suggested a reliability-conscious 

scheduling technique with duplication for cluster systems.  

An ant colony system-based workflow scheduling method (CWS) was suggested by 

[26] in an effort to increase the dependability of applications executed under time and 

financial limitations. The publication [27] that suggested a multi-objective scheduling 

algorithm with fuzzy resource utilisation (FR-MOS) based on a particle swarm optimi-

sation approach is the one that is most similar to our study. The objectives are to reduce 

costs, shorten lead times, and balance resource usage. However, the fuzzy logic ap-

proach and resource use limit the FR-MOS algorithm's capacity to optimise system 

reliability. There is therefore plenty of potential to raise the reliability of application 

execution. Similarly, a fault-tolerant cost-efficient workflow scheduling algorithm 

(FCWS) is presented in [28] to reduce application execution cost, time, and execution 

reliability by considering multi-cloud execution reliability and cloud provider billing 

mechanisms.  

After studying and analysing the existing reliable models in the literature, it was 

found that there is enough room for working on the reliability of the system by guaran-

teeing the complete execution of every task. In this study, we introduced Response Ra-

tio based allocation and put forth a reservation-based fault tolerance mechanism that 

calculates the task-specific reservation window and offers a suitable replacement VM 

for tasks that cannot be completed because of faults in corresponding VMs. Table 1 
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indicates the brief comparative analysis between the top-cited fault tolerance ap-

proaches in the literature and the proposed approach. 

Table 1. Previous fault tolerance models comparison. 

FT model Resource 

awareness 

Policies Reliability Imple-

mented en-

vironment 

Fault tolerance in the 

cloud using reactive 

and proactive tech-

niques [13] 

No Reactive N/A Cloud sim-

ulator 

AFTRC [14] No Proactive/re-

active 

Yes Amazon 

EC2 

LLFT [15] No Reactive N/A Cloud 

FTM [17] Yes Reactive N/A Cloud sim-

ulator 

An approach for fault 

tolerance in cloud com-

puting using machine 

learning technique [20] 

No Proactive Yes Cloud sim-

ulator 

FT-Cloud [21] Yes Reactive Yes Amazon 

EC2 

Hybrid FT [25] No Reactive Yes Cloud sim-

ulator 

Proposed RFRTS Yes Reactive Yes Self-simu-

lation in 

Python 

3 Proposed Work 

This section presents an effective allocation to map the incoming tasks and available 

VMs. After the mapping of task and VM sets, we propose a framework that would 

estimate the reservation window based on the size of the task and the VM’s capacities. 

This will move the affected tasks from unstable VMs to reserved and trustworthy ones 

based on the reservation window. The suggested model's primary goal is to increase 

system reliability through assured task execution using advance resource reservations. 

3.1 Problem Formulation 

The VMs are assigned in set V={v1, v2, v3… vk}. while the tasks being taken as set 

T= {t1, t2, t3… tm}. Every VM has VM capacity, i.e., (C(vk)), and every incoming 

task is having task length, i.e., (L(tm)). Moreover, every task (tm) has its task id (t_id) 

which is assigned to the task on FCFS (First Come First Serve) basis. Initially, the 

incoming tasks have been ranked based on the parameters of task, t_id, and L(tm). The 

response rank value (r) is calculated for every incoming task. Further, the ranked tasks 
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are taken as separate task set, i.e., Tr. The tasks are distributed in order of rank value to 

the corresponding VMs. The r value for the task is calculated by adding the t_id and 

processing time of the task and dividing the obtained value by the processing time of 

the task. The ranked allocation considers both the wait time and processing time of the 

task. It also minimizes the wait time for large tasks and simultaneously encourages the 

small tasks to get the higher rank thereby it gives an optimized response time than that 

of Shortest Job First allocation. Besides, the model also includes fault tolerance by uti-

lizing resource reservation techniques, where the VM is reserved for the task for a spe-

cific pre-estimated window known as a reservation window (R). 

Table 2. Notions used. 

T Task set PT(tm) Processing time of tm 

V VM set Tr Ranked task set 

r Response Rank Value t_id Task id 

CT(tm,vk) Completion Time of 

tm on vk 

L(tm) Length of tm 

RT(vk) Ready Time of vk R(tm,vk) Reservation window of tm on 

vk 

ST(tm,vk) Start Time of tm on vk Tp Prematurely Terminated Task 

set 

Further, the various assumptions of the proposed allocation strategy are: 

• The lower task heterogeneity metric is used by the model. 

• Task sizes range from one to one hundred million instructions. 

• The benchmark for low machine heterogeneity is used by the model. 

• The speed of the machine varies between one to ten Million Instructions Per Second 

(MIPS). 

The task allocation problem is mathematically represented as a mapping of each in-

coming task to the VM as shown in eq. (1). The bipartite graph between the task set 

and the VM set may be used to describe the suggested ranking approach. The set Tr 

contains the ranked tasks in descending order of r-value rather than the t_id, hence the 

tasks in Tr  may be arranged randomly concerning to t_id as indicated in Fig. 1. 
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Fig. 1. Ranked task mapping. 

  : T → V        (1) 

In the event of any fault happening to any of the VMs under processing, it may have an 

impact on the overall processing of the tasks. The tasks might be terminated prior to 

completion as a result of this issue; therefore, we reserve the VMs. In this method, the 

execution time window for each task on an appropriate VM, known as the R window, 

is determined and reserved beforehand. By offering such an appropriate alternative 

VM, the system will continue the completion of the affected task even in case of failure. 

The R window for every task must be calculated using two major times, i.e., start time 

(ST) and completion time (CT). The ST is the point at which a certain task on the des-

ignated VM starts its execution. Besides, each VM has its load history of processing 

termed as Ready Time of vk (RT(vk)) which represents the point when the specific VM 

is set to process the new task. Once any tm will start running on any vk, the RT(vk) will 

become the ST(tm, vk) as shown in eq. (2) 

 ST (tm, vk) = RT(vk) (2) 

The CT is the time when the task on the allotted VM has completed its execution. To 

calculate the CT(tm, vk), the tm’s processing time on vk (PT(tm, vk)) is added to its ST(tm, 

vk) as in eq. (3) 

 CT(tm, vk) = ST(tm, vk) + PT(tm, vk) (3) 

Where, PT(tm, vk)  is calculated by dividing the capacity of vk with the length of tm as 

shown in eq. (4) 

 PT(tm, vk) = 
C(𝑣𝑘)

L(𝑡𝑚)
 (4) 

Now, suppose “q” VMs are malfunctioning which results in premature termination of 

“p” associated tasks. These 'q' virtual machines are handled as a separate set of VMs in 

Vm as shown: 
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 Vm = {vm : vm ∈ V and n(Vm) = q & q< 
𝐧(𝐕)

𝟐
} (5) 

Similarly, the “p” prematurely terminated associated task is taken as a separate set of 

tasks in Tp as shown: 

 Tp = {tp : tp ∈ T and n(Tp) = p & p<= n(T)} (6) 

Without any fault-tolerant approach, the whole task set (Tp) will not be executed. How-

ever, if Tp will be migrated to some other VMs, the execution will be continued. For 

enabling reservation, the R window is calculated by taking the difference of CT(tm, vk) 

and ST(tm, vk) as shown in eq. (5) 

 R(tm,vk) = CT(tm, vk) - ST(tm, vk) (7) 

Now, in order to finish the execution of tps, they must be reassigned to a different VM, 

which is performed via the reservation approach. For the estimated R window, all tasks 

in Tp are transferred from Vm to a different virtual machine in V. The reassignment of 

Tp is shown mathematically as: 

 Tp → vk | vk ∈ V && vk ∉ Vm (8) 

Additionally, |𝑇𝑝| = Fault (%age) * |T| 

 Reliability = 
|𝑻| − | 𝑻𝒑|

|𝑻|
 (9) 

In the event that one or more of the VM has a failure, the suggested reservation ap-

proach would ensure that all impacted tasks will complete their execution successfully 

by providing the reserved VM as an alternative VM, hence ensuring maximum system 

reliability in case of 50% of VMs will fail. 

Proposed Pseudocode for the model: 

Using the proposed ranked scheduling approach, the system effectively maps the in-

coming tasks with appropriate VMs. Further, the reliable fault-tolerant strategy that 

reserves the VMs for the pre-calculated R window that is estimated as the difference 

between the ST and CT also tracks the standards. The model makes sure that the tasks 

are completed successfully and achieves flexibility in the event any of the running VMs 

fail. The suggested algorithm for creating fault-tolerant scheduling is presented as fol-

lows. 

The system's input parameters, including the Number and Length of tasks i.e., n(T) 

and L(tn), the Number and Capacity of VMs i.e., n(V) and C(vk) .and the available time 

of each VM were first set. Furthermore, the algorithm manages the matrix namely the 

Reservation matrix which denotes the reservation of the tasks. 

 

 

i.e., Input: n(T), L(tn), n(V), C(vk), RT(vk), RM[ ] 
          Output (Mapping (tn, vk), Reliability)  
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1. Above all, the RT of all VMs is taken as zero indicating the VM is no load history. 

2. The initialization of the RM matrix with the State flag includes the initialization of 

the chosen tasks, Start time, and Completion time with the computed Reservation 

window. 

3. The task lengths range between 1 MI to 100 MI, and the machine capacity runs from 

1 MIPS to 10 MIPS, in accordance with the model's low task and low machine het-

erogeneity assumptions. 

Rank tasks on the basis of Task_id, Task_size//task rank-

ing algorithms. 

Do 

Map the ranked tasks to the VMs. //allocation algorithm 

While ∀ v ks, (RT(vk) =  0)) 

Map task to VM having least RT. 
Determine start time and completion time of task. 

Adjust the revised RT for vks after each allocation. 

Subtract the ST from the CT to determine the R window. 

In order to continue processing the job in the event of 

failure, reserve VM in accordance with the computed R 

window. 

Update RM[] with the most latest task data and set State 

= 1 to indicate that the computed AR window is reserved 

for the task. 

For each allocation, repeat steps 4 through 14. 

Verify the model's reliability once the task set has been 

finished. 

4 Results and Discussions 

The proposed model was evaluated on reliability by comparing it with other reliable 

existing models namely, FCWS, FR-MOS, and CWS. We selected five distinct states 

of task numbers with varying lengths for the simulation we created: Small(S)[n = 50 

approx], Medium(M)[n=100 approx], Medium large(M-L)[n=200 approx], Large(L)[n 

= 400 approx], Extra large(E-L)[n=600 approx]. 
It can be seen from the depicted graph that the proposed model shows high reliability 

than all the considered models in all states afterward FCWS performs better. Further-

more, it is evident from the Fig. 2 that as the amount of tasks increases, the reliability 

of the considered approach decreases. However, as can be seen in the Improvement 

Percentage Table (Table 2), the suggested model exhibits a rise in the percentage of 

reliability improvement as the task count increases. This is because the suggested 

Model can efficiently handle various invoicing fault scenarios as the model is reserving 

the VMs for the dedicated window. 

In S, the minimum improvement by the model was seen to be 0.30% while the max-

imum improvement was seen to be at 2.25%. In M, the minimum improvement by the 

model was seen to be 1.32% while the maximum improvement was seen to be 2.36%. 
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In M-L, the minimum improvement by the model was seen to be 1.53% while the max-

imum improvement was seen to be at 2.37%. In L, the minimum improvement by the 

model was seen to be 1.65% while the maximum improvement was seen to be at 2.18%. 

In E-L, the minimum improvement by the model was seen to be 1.26% while the max-

imum improvement was seen to be 2.45%. 

 

Fig. 2. Depiction of reliability in five considered task states. 

Table 3. Comparative analysis of improvements in the proposed RFRTS. 

 

FCWS FR-MOS CWS Five states 

0.30% 2.25% 2.04% S 

1.32% 2.36% 1.84% M 

1.53% 2.37% 1.84% M-L 

1.65% 2.18% 1.97% L 

1.26% 2.45% 2.56% E-L 

5 Conclusion and Future Directions 

Since system reliability is one of the major issues in cloud systems, focusing on "exe-

cution till completion" is a crucial factor in enhancing reliability, therefore fault toler-

ance is necessary to achieve. The research suggests a method for task ranking by con-

sidering task lengths and task wait times. Besides, the algorithm implies an allocation 

strategy based on the determined rank value. Also, we provide a fault-tolerance strategy 
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in which VM reservations are made based on a pre-calculated reservation window. The 

paper's main focus is on the system’s reliability. Moreover, it will unquestionably im-

prove the task response times by focusing on the wait time of the tasks. The study's 

future plans demand for working with the suggested ranked scheduling technique, 

where the VMs will also be ranked to work over further optimizations of makespan and 

resource utilisation. The model will be extended by accompanying with load balancing 

technique for further optimization of the environment. The major drawback of the sug-

gested allocation is that it could not minimize the makespan and there may be load 

imbalances over the VMs. 
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