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Abstract 

The garment industry holds a paramount position within the Vietnamese economy. However, global industries, due to 
the aftermath of economic recessions and the impacts of epidemics, have faced imperatives to curtail expenses and 
optimize operational processes to bolster competitiveness. In this context, a novel trend gaining prominence is the 
adoption of chain management through the Vendor-Managed Inventory (VMI) method. This advancement has been 
facilitated by digital technology platforms and the rapid progress of science and technology. Consequently, suppliers 
can now efficiently oversee the inventory levels of retail units. To address cost-related issues within the supply chain, 
such as transportation and inventory costs, significant attention has been directed towards the Inventory Routing 
Problem (IRP), both in terms of research and practical application. The IRP aims to minimize the overall costs within 
the supply chain by selecting optimal delivery routes for each customer point, while simultaneously satisfying criteria 
encompassing demand, inventory levels, delivery times, distance considerations, and the number of vehicles deployed. 
Presently, global research efforts have yielded an array of methodologies for tackling the IRP, encompassing exact 
algorithms and approximate algorithms. Nevertheless, approximate algorithms, including heuristics and metaheuristics, 
have gained increasing traction in solving the IRP. These approaches are particularly prized for their ability to address 
highly complex problems and generate near-optimal solutions within prescribed time constraints. Hence, this research 
undertakes a focused examination of the application of Ant Colony Optimization (ACO) to resolve the IRP within the 
context of the garment distribution chain in Vietnam. 
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1. INTRODUCTION 

In Vietnam, textile and garment industry emerged as a pivotal export sector, playing a crucial role in the country's 
economic growth. It accounted for a substantial share, about 41 billion USD  of the nation's total export turnover, as 
reported by the Ministry of Industry and Trade of the Socialist Republic of Vietnam. Nevertheless, this industry is 
grappling with economic crises stemming from factors such as the Covid-19 pandemic and heightened geopolitical 
tensions. To navigate these challenges, numerous companies have devised and implemented cost-cutting strategies aimed 
at preserving market shares, reducing operational expenditures, and either increasing or maintaining profitability. Besides, 
there is a form of chain competition where participants often reliant on one another for survival, instead of competing 
between companies. However, among the various components contributing to supply chain expenses, logistics costs loom 
large in the budgets of many companies. In Vietnam logistics report 2022, inventory costs typically constitute 25-30% of 
the total supply chain expenditure, while transportation costs generally account for 10-12%. Consequently, effective 
management of both inventory and transportation holds significant importance for companies seeking to minimize their 
overall supply chain expenses and remain competitive. To address this issue, many organizations have embraced a 
strategy known as Vendor-Managed Inventory (VMI). VMI represents a significant departure from traditional business 
models, embodying a critical paradigm shift wherein the vendor (supplier) assumes full responsibility for overseeing the 
retailer's inventory based on data provided by the retailer. In contrast to conventional inventory management practices 
where retailers independently determine order size and timing, VMI entrusts the vendor with monitoring the retailer's 
inventory and making decisions on its behalf. Within this distribution model, determining inventory levels for both the 
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supplier and retailer hinges on the timing and quantity of deliveries required by the retailer, which, in turn, is influenced 
by the capacity of the delivery vehicles used. Simultaneous decision-making is a pivotal element for achieving cost-
effectiveness in these systems. The primary advantage of implementing a VMI system is that it enables vendors to enhance 
service levels while concurrently reducing distribution costs through efficient vehicle utilization. On the retailer's side, 
resources typically allocated to inventory management can be reallocated for other purposes. In the process of 
implementing VMI, vendors face the challenge of solving an Inventory Routing Problem (IRP) to formulate a distribution 
plan aimed at minimizing long-term average distribution and inventory expenses throughout the supply chain, all while 
preventing shortages. 

The Inventory Routing Problem (IRP) constitutes an extension of the well-established Vehicle Routing Problem (VRP) 
as described by Faulin and Juan in 2008. The IRP is a combinatorial optimization conundrum, holds prominence within 
the domain of logistics and supply chain management. It entails the determination of optimal delivery schedules and 
routes for a fleet of vehicles serving a diverse clientele with varying demands for a specific product. The overarching 
objective is the minimization of total transportation and inventory holding costs. Within the purview of the IRP, the supply 
chain structure encompasses a supplier and an array of geographically dispersed retailers, each characterized by distinct 
demand levels. Over a stipulated time window, products traverse from the supplier to retailers employing a fleet of 
vehicles. Any vehicle may satisfy the demand of each customer within a designated time frame. Within the context of a 
Vendor-Managed Inventory (VMI) system, the supplier assumes the mantle of formulating the replenishment policy for 
each retailer, alongside devising vehicle routes to effectuate product delivery while precluding any instances of inventory 
shortage. The core aspiration of the IRP is the minimization of comprehensive logistics expenses while meeting the 
demands of retailers within a specified planning horizon. Under this structural framework, three pivotal decisions 
necessitate resolution: (1) the determination of when to fulfill a retailer's demand, (2) the specification of the quantity of 
products to dispatch to a retailer, and (3) the optimization of vehicle routes. The historical lineage of the IRP traces its 
roots back to the 1960s when companies commenced harnessing the computational capabilities of computers to optimize 
their transportation and inventory management endeavors. The early IRP models exhibited simplicity and operated under 
the assumptions of static demand and fixed delivery schedules. However, in tandem with the escalating intricacies of 
contemporary supply chains, IRP models have undergone a transformation to encompass dynamic demand, capacity 
constraints, multiple products, and the incorporation of variables surrounding uncertain delivery times. Diverse 
optimization techniques and algorithms have been devised to tackle the IRP conundrum, encompassing methodologies 
such as linear programming, dynamic programming, and metaheuristic approaches, including genetic algorithms, 
simulated annealing, and tabu search. The selection of an appropriate optimization technique hinges upon considerations 
including problem dimensions, complexity, and the availability of data. 

In conclusion, the IRP is a critical problem in logistics and supply chain management that has significant potential to 
improve supply chain performance and reduce costs. This paper proposes an Ant colony optimization for the IRP in a two 
– echelon supply chain comprised of a single manufacturer and multiple retailers in Vietnamese garment company. 

2. LITERATURE REVIEW  

2.1 Inventory Routing Problem 

In the past researches, many different varieties of IRP have been developed and solved. Bell et al. (1983) first investigated 
the integration between inventory management and vehicle scheduling. There are many industries which benefit from 
these studies, as these should present as real-life applications as it is possible, but many of these proposed solutions are 
often relaxed preventing its applications. There are various versions of IRP that have been studied extensively. IRP indeed 
can be modelled in different ways depending on its characteristic. In fact, there is no standard version of the problem. In 
paper by Coelho et al. (2013a), the authors cited that most of the research efforts have been concentrated on ‘basic 
versions’ while the study on extended models, denoted as ‘extension of the basic version’ are relatively new. Generally, 
the basic version can be classified into seven different criteria including: time horizon, structure, routing, inventory policy, 
inventory decisions, fleet composition and fleet size. 

According to Fig. 1, the time horizon criteria can be categorized into two groups: finite and infinite. The majority of 
earlier studies have primarily focused on an infinite planning horizon (Anily and Bramel, 2004). The number of customers 
and suppliers involved can vary, leading to different structural supply chain. One-to-one structuring occurs when a single 
supplier serves a single customer, while the most prevalent scenario is one-to-many, where one supplier serves multiple 
customers. Additionally, many-to-many situations arise when several suppliers serve several customers. Notably, recent 
literature has introduced the many-to-one structure, where several suppliers cater to a single customer. The routing 
component can be further classified into three categories. "Direct" routing permits only one customer per route. On the 
other hand, "multiple" routing refers to cases in which several customers share the same route. Lastly, "continuous" 
routing describes situations without a central depot, akin to certain maritime applications such as ship routing and 
inventory management problems. 

Inventory policies are responsible for defining the guidelines for replenishing customers, and two widely employed 
policies can be found throughout the literature: Maximum Level (ML) and Order-up-to-level (OU). Under the Maximum 
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Level (ML) policy, the replenishment level is adaptable but restricted to the available capacity at the customer's location. 
Conversely, the Order-up-to-level (OU) policy initiates replenishment when the on-hand inventory level drops below a 
predefined minimum level, and the quantity delivered is precisely what's needed to reach the inventory's full capacity. 
Meanwhile, inventory decisions determine the specific approach to modeling inventory management. When inventory is 
allowed to go negative, this results in backorders, with the corresponding demand being fulfilled at a later time. However, 
if backorders are prohibited, any unmet demand is considered as lost sales. In both cases, penalties may be imposed for 
stockouts. It's important to note that in most instances, especially in deterministic models, inventory going negative is not 
permitted. 

In addition to the previously mentioned criteria, fleet composition and fleet size are two additional factors that are taken 
into account. Fleet composition can be categorized into two main types: homogeneous and heterogeneous. In the case of 
a homogeneous composition, all vehicles in the fleet are of the same type or have similar characteristics. On the other 
hand, in a heterogeneous composition, the fleet consists of vehicles with varying types or characteristics. Furthermore, 
the number of vehicles available in the fleet can be classified as either fixed or unconstrained. In scenarios with a fixed 
number of vehicles, there is a predetermined and unchangeable quantity of vehicles at the disposal of the operation. In 
contrast, in scenarios with unconstrained fleet size, the number of vehicles available is not limited or predetermined, 
allowing for flexibility in adjusting the fleet size as needed.  

 

 
Fig. 1. IRP variants 

Source: Adapted from Andersson et al. (2010)   

The Inventory Routing Problem (IRP) is widely recognized as NP-hard, mainly due to its close relationship with other 
well-known NP-hard problems. For instance, the Vehicle Routing Problem (VRP) can be reduced to the Traveling 
Salesman Problem (TSP) when certain simplifying assumptions are made. These assumptions include a time horizon of 
one, zero inventory costs, infinite vehicle capacity, and the requirement to serve all retailers. Consequently, it is 
improbable that a polynomial time algorithm will emerge for its optimal solution. Numerous researchers have proposed 
various approaches to tackle this complex problem. Archetti et al. (2007) were among the first to introduce branch-and-
cut algorithms specifically designed for the Single-Product, Single-Vehicle IRP. They introduced a specialized 
formulation tailored for maximum order policies and successfully solved instances involving 30 customers with a 6-
period horizon and 50 customers with a 3-period horizon. Coelho and Laporte (2013c) expanded the formulation to 
encompass the Multi-Vehicle IRP (MIRP). They developed a branch-and-cut algorithm capable of providing exact 
solutions for various IRP subclasses. Their computational experiments covered a range of scenarios, including MIRP 
solutions under the maximum level (ML) replenishment policy, MIRP solutions with homogeneous and heterogeneous 
vehicle fleets, IRP incorporating transshipment options, and MIRP with additional consistency features. The 
computational results from benchmark instances confirmed the effectiveness of their algorithm. Desaulniers et al. (2015) 
focused on a scenario involving a single supplier producing a single product over a finite horizon to meet the demands of 
a set of customers. This task was accomplished using a fleet of homogeneous capacitated vehicles. Each customer had 
distinct inventory capacity and initial inventory levels. The authors introduced an innovative formulation for the IRP and 
developed an advanced branch-price-and-cut algorithm tailored to solve their proposed IRP model effectively.  

The largest instance that can be solved by exact algorithms consist of 50 customers with 7 periods (see Coelho and Laporte 
(2013b) and most researchers resort to heuristic or metaheuristic algorithm to solve large instances, which represents the 
real world problems. There are several heuristic / metaheuristic algorithms such as Tabu Search, Genetic Algorithm, 
Variable Neighborhood Search, Ant Colony Optimization (ACO) et cetera that have been developed widely to solve IRP. 
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Park et al. (2016) proposes a GA to solve the IRP with lost sales, while Qin et al. (2014) proposes a LS with TS to optimize 
this problem. Onggo et al. (2019) proposed simheuristic approach which is combined heuristics with simulation to solve 
the single-period IRP with stochastic demands, finite time horizon, one supplier to many customers, homogeneous vehicle 
and stock-outs. Their has shown that our proposed method produces results that are better than the best-known solutions 
published in scientific literature. They have also demonstrated that when making planning decisions for supply chain 
operations, ignoring stochasticity in the supply chain can significantly underestimate the total cost. Maghfiroh et al. (2022) 
developed the hybridization of tabu search (TS) and variable neighbourhood descent (VND) for solving the Inventory 
Routing Problems with Stochastic Demand and Time Windows (IRPSDTW). They minimise total costs from trans- 
portation, vehicle failure, stock out cost and penalty cost. Suppliers are liable to meet the demands so that a recourse plan 
may cut overall costs, including travel, stock out, and failure costs. According to their analysis, adopting large time frames 
may assist develop a more flexible delivery path. Salim et al. (2017) employed in the resolution of a hybrid metaheuristic 
that combines between GA and VNS for solving a Multi-Period Inventory Routing Problem which is finite time horizon, 
single vehicle and order – up – to – level policy They have used to show the effectiveness of their algorithm, most of the 
results of our hybrid algorithm can provide optimal solutions for small- instances and improving the quality solutions for 
large-instances. 

There have been many different approaches seeking to solve large amount of problems found in operational research. 
Among these are metaheuristics which start by in a first phase defining an initial solution leading to a second stage of 
improvement of that same initial solution using the most various methods. In order to find an initial solution one can use 
many different methods like branch-and-bound method, or its adaptation branch-and-cut, which have been found to be 
the most used ones in problems as IRP. In a second stage there is a need to improve the initial solution and just like in the 
first stage, many are the methods used, it is on the second stage that most authors diverge as it represents the most 
important component of the optimization problems. Exact algorithms, metaheuristics, heuristics and many others can be 
used to improve this initial solution. This paper will focus on developing ant colony opimization (metaheuristic), even 
though it does not guarantee to find a global optimal solution it may present a good feasible solution in a shorter time 
then when compared with other methods. 

2.2 Ant Colony Optimization Algorithm 

ACO is a metaheuristic method which implements artificial ants to find the solutions to combinatorial optimization. ACO 
is based on the behavior of ants and possesses enhanced abilities such as storing the memory regarding the past actions 
and passing the information to other ants. In fact, ants cannot hunt for food effectively if they work individually but in a 
group, ants possess the ability to solve complex problems and successfully obtain the food for their colony.  

ACO algorithms have found applications in numerous combinatorial optimization problems. The initial ACO algorithm, 
known as the ant system (Dorigo et al. (1996)), was created to tackle the Travelling Salesman Problem (TSP), aiming to 
find the shortest round-trip connecting a series of cities. ACO has also been employed in solving the Vehicle Routing 
Problem (VRP), which involves designing routes for a fleet of vehicles to deliver products to a set of customers 
(Bullnheimer et al. (1999), Bell and McMullen (2004), Chen and Ting (2006), and Yu et al. (2009)). However, more 
recently, several researchers have adapted ACO to address their proposed Inventory Routing Problem (IRP) models. In 
fact, these papers served as inspiration for us to modify the traditional ACO approach to address our integrated IRP model, 
which encompasses both transportation and inventory management. This paper's modification of ACO not only focuses 
on solving routing challenges but also provides valuable insights to enhance the inventory updating mechanism, ultimately 
leading to the construction of a more optimal inventory set. 

In a study by Huang and Lin (2010), they introduced a modified ACO method for solving multi-item inventory routing 
problems characterized by stochastic demand. They aimed to minimize total costs by selecting a delivery policy. This 
algorithm was developed for replenishing vending machines, and the authors adjusted the ACO algorithm to incorporate 
stock-out costs into the calculation of pheromone values, a feature absent in traditional ACO. Nodes with higher stock-
out costs were given greater priority, even when their transportation costs were higher than those of other nodes. The 
results demonstrated that the modified ACO algorithm yielded significant improvements compared to the conventional 
ACO approach. 

Wong et al. (2014) proposed modified ACO to solve one to many inventory routing problem with a finite horizon where 
a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, transport products from the warehouse to meet 
the demand specified by the customers in each period. They determined the amount on inventory and to construct a 
delivery schedule that minimizes both the total transportation and inventory holding costs while ensuring each customer's 
demand is met over the planning horizon. They employed the CPLEX 12.4 optimization software to find both lower 
bounds and upper bounds (best integer solutions) for each instance of the problem considered. Notably, the results 
indicated that the ACO algorithm outperformed the upper bounds, particularly on larger instances of the problem. This 
suggests that their modified ACO approach is effective in solving this specific inventory routing problem with a finite 
planning horizon. 

Lan Teng et al. (2019) modeled a two-echelon model to formulate the integrated inventory-transportation optimization 
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problem under VMI system with soft time window. It is a solution to inventory controlling and transportation scheduling 
integrated optimization from the perspective of the supplier. The supplier’s aim is to explore a best distribution quantity, 
time, frequency and routing to minimize the total cost in the logistics system. As the problem of vehicle routing is NP-
hard problem, we design combining methodologies to solve the two-echelon model. They combined a simulated annealing 
algorithm and ACO to solve the upper and lower echelon in the two-echelon problem, respectively. Resulting in the model 
and methodology proposed could help make the whole logistics system operate more effectively and efficiency compared 
to independent optimization of inventory and transportation.  

3. METHODOLOGY 

This consider a one to many network where a fleet of hetergeneous vehicle transports, single product from a distribution 
depot to a set of geographically retailers in a finite planning horizon. The following assumptions are made in this model. 

- The fleet of hetergeneous vehicles with limited capacity is available at the warehouse 
- Customers can be served by only one vehicle in each period 
- Each customer requests the known demand and not vary between different periods. The customers could receive 

a lot size of ist demand per period, it is not nessessary for customer to receive good each period. 
- The holding cost per unit product per unit time is incurrred at the depot and retailers. The holding cost does not 

vary throughout the planning horizon. Each retailers and supplier (depot) has limitation inventory holding. 
- The demand each period must be met on time and backordering and backlogging is not allowed. 

 
The IRP problem is modeled as mixed integer programming and the following notation is used in the model: 

The IRP is usually defined as a graph G = (V,A), where V = {0,…, n} is the vertex set, A = {(i,j) : I, j ∈ V, i ≠ j } the arc 
set and the node {0} represents the supplier 

Table 1.  Indexes and sets 

Parameters Description 
n Number of vertex in V 

i,j = {1,…n} Retailers 
(i,j) Arc ∈	A 

t Subdivided time periods of T 
k Vehicle ∈	K 

V {n} Vertex set 
A {(i,j)} Arc set 

T = {1,…,t} Set of t time periods of the planning horizon T 
K = {1,…,k} Set of k vehicles of K 

 
Table 2. Parameters 

Parameters Description 
ℎ! Inventory holding cost incurred by keeping one unit of product at retailer i 
ℎ" Inventory holding cost incurred by keeping one unit of product at supplier 
𝑐!# Cost incurred when travelling from node i to node j (distance) 
𝐶$ Capacity of vehicle k 
𝑀𝑎𝑥! Maximum capacity of retailer i 
𝑑!% Demand of customer i in period t 
𝑟&% Quantity of product made available at the supplier in period t 
𝐼&& Initial inventory at supplier 
𝐼!& Initial inventory at retailer i 
𝐼&% Inventory level at supplier in period t 
𝐼!% Inventory level at retailer in period t 

 
Table 3. Decision Variables 

Variable Description 
𝑞!$% Quantity of product is delivered to customer i by vehicle k in period t 
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𝑥!#$% 
Binary variables 
Equal to the number of times edge (i,j) is usede on the route of vehicle k in period t 

𝑦!$% 
Binary variables 
Equal to one if and only if vertex i (supplier and retailers) is visited by vehicle k in 
period t 

 
Mathematical formulation 
The IRP can be formulated as a mixed integer programming model as follow: 
 MIN ( ∑ ∑ ℎ!%∈(!∈) .𝐼!%  +  ∑ ℎ"%∈( .𝐼&%  +  ∑ ∑ ∑ ∑ 𝑐!#$∈*%∈(#∈),!,#!∈) .𝑥!#$%)  (1) 
Subject to: 
Inventory constraints: 

 𝐼&% = 𝐼&%-. + 𝑟&% - ∑ ∑ 𝑞!$%!∈)∖{&}$∈* , ∀𝑡 ∈ 	𝑇, supplier  (2) 
 𝐼!% = 𝐼!%-. + ∑ 𝑞!$%$∈*  -  𝑑!%,	∀𝑖 ∈ 𝑉 ∖ {0}, ∀𝑡 ∈ 	𝑇, retailers  (3) 

Capacity constraints: 
 0 ≤ 𝐼!% ≤ 𝑀𝑎𝑥!,	∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 	𝑇, retailers  (4) 
 ∑ 𝑞!$%$∈*  ≤ 𝑀𝑎𝑥! - 𝐼!%,	∀𝑖 ∈ 𝑉 ∖ {0}, ∀𝑡 ∈ 	𝑇, retailers  (5) 
 𝑞!$% ≤ 𝑀𝑎𝑥!.𝑦!$%, ∀𝑖 ∈ 𝑉 ∖ {0}, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇, retailers  (6) 
 ∑ 𝑞!$%!∈)∖{&}  ≤  𝐶$. 𝑦&$%, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇, vehicle capacity  (7) 
 𝑞!$%/ 𝑑!%= 𝛼, 𝛼 ∈ {0,1,2,3, … 	𝑁} (8) 

Routing constraints: 
 ∑ 𝑥!#$%#∈),!,#  +  ∑ 𝑥#!$%#∈),#,!  = 2𝑦!$%, ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇  (9)
 ∑ ∑ 𝑥!#$%#∈2,!,#!∈2  ≤  ∑ 𝑦!$%!∈2  - 𝑦3$%, S ⊆ 𝑉 ∖ {0} ,	∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇, m ⊆ S  (10) 
 ∑ 𝑦!$%$∈*  ≤ 1,	∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 	𝑇  (11) 

Variable constraints: 
 𝐼!%, 𝑞!$%  ≥ 0, ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉 ∖ {0}, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇  (12) 
 𝑥!&$%  ∈ {0,1,2}, ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇  (13) 
 𝑥!#$%  ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑉 ∖ {0}, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇  (14) 
 𝑦!$%  ∈ {0,1}, ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 	𝑇  (15) 
 𝐼!% ≥ 0,∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 	𝑇  (16) 
 𝑀𝑎𝑥! = 	𝑀 , ∀𝑖 ∈ 𝑉  (17) 
 𝐶! ≥ 0, ∀𝑖 ∈ 𝑉  (18) 

Objective function (1) minimize total cost in the supply chain including holding cost at retailers, holding cost at 
manufacuture and transportation cost. Constraints (2) and (3) define the inventory constraint at the retailers and 
manufacture. Constraint (4) represents inventory in each retailers which are not exceeded the maximum capacity. 
Constraint (5) and (6) illustrate the quantities delivered to retailer i are not exceeded the empty space inventory and the 
maximum inventory respectively. Constraint (7) ensure the total quantities delivered to retailer by vehicle k are not 
exceeded the capacity of this vehicle. Constraint (8) show that the amount of goods received at each retailer must be a 
multiple of its demand each period. Constraint (9) ensure that if a vertex i is visted by vehicle k in period t, then this 
vehicle k must leave this vertex to go to other vertex. Constraint (10) are subtour elimation. Constraint (11)  ensure that 
the retailers i is visited by vehicle k in period t only 1 time. Constraint (12) – (18) ensure that the parameters are non 
negative. 

* Ant Colony Optimization: 

Ant Colony Optimization (ACO) is inspired by the nature behavior of ants finding the shortest path between their colony 
and a source of food. The information collected by ants during the searching process is stored in pheromone trails. The 
higher density of pheromones on an arc leads to attract more ants to the arc. Therefore, an appropriate formulation 
associated to the model for updating pheromones trail is very crucial. 

The procedure for ACO can be divided into three main steps: the route construction, a local pheromone-update rule and 
a global pheromone-update rule. These steps are described in detail in the following subsections and Figure 1 outlines the 
algorithm and the following definitions are required: 

N_GL: The routes can be further improved by adding route improvement strategies in the route construction procedure 
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MaxITER: Total iterations 

N_DEM: After predefined number of iterations, the inventory level is updated 

m: the number of ant 

iter: the iterations 

 
 
Step 1: Initial solution 
Step 2: Set the value of parameters Set initial pheromones for all arcs  
Step 3: Start with zero inventory and iteration with iter = 1 
Step 4: Set ant = 1  
Step 5: ACO- route construction: 
 While (ant <= m) 
 then 

Construct route by starting from depot each ant utilizes pheromones equation to select the next 
customer to be visited. 
ant+ = 1 

Step 6: Obtain best solution 
Step 7: Local pheromones updating  
Step 8: If (iter modulo N_GL = 0) 
 Then 
  Choose the best solution 
  Route improvement strategies 
  Global pheromones updating 
  iter+ = 1 
 Else 
  iter+ = 1 
Step 9: If (iter > MaxiITER) 
 Then 
  Break 
Step 10: If (iter modulo N_DEM = 0) 
 Then 
  Updating inventory level 
 Retrun to step 4 
	

4. EXPERIMENTS 

The data used in this research was collected based on a list of retail stores of the M10 fashion chain in Northern Vietnam. 
The list currently includes 16 retail stores, each with weekly demand for goods, current inventory levels, and storage costs 
per unit of goods per week, as shown in the table below... The names of each customer location are encoded as ABCDx 
(where x is a natural number from 1 to 16, and x = 0 represents the manufacturing plant's central warehouse). M10's 
clothing products are standardized into a single type, and demand is predetermined and fixed for each time cycle. Since 
the factory produces and distributes its own products, the central warehouse receives 500 units of goods in each period 
with holding cost 500 VND/unit, and initial inventory of central warehouse is 1500 units. In M10's distribution chain, 
there are three main types of transport vehicles with capacities of 100, 200, and 500 units, respectively. A total of 5 time 
periods are applied. 

The current distribution method in the M10 fashion retail chain will be based on the inventory levels and weekly demand 
at each location to place orders from suppliers. Each week, there will be transportation vehicles moving goods from the 
distribution warehouse with code ABCD0 to the retail points with code from ABCD1 to ABCD16 which have demand 
exceeding their current inventory levels. Multiple retail points with demand will be consolidated onto a single vehicle for 
transportation. By default, the vehicle will be delivered once a week to customers, each customer can only receive goods 
once from a single vehicle. 

Table 4. Input data 

Central 
warehouse Longitude Latitude 

Receiving 
good from 

factory 
Holding cost Initial inventory 
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ABCD0 105.91975919683962 21.028718702485918 500 500 1500 

      

Retailers Longitude Latitude Weekly 
demand Holding cost Initial inventory 

ABCD1 105.77767549540415 21.015229671814765 50 4000 80 

ABCD2 105.85031716589764 20.997059835970447 40 5000 100 

ABCD3 105.84224965307592 21.042735221129046 70 3000 120 

ABCD4 105.8563099223916 21.030378979280506 20 3000 70 

ABCD5 105.8495214242395 21.01122329730831 130 3000 90 

ABCD6 105.85555825122691 21.021971539574317 30 5000 150 

ABCD7 105.81320131711492 21.01725151823375 40 4000 200 

ABCD8 105.85740022423977 21.02279411584225 80 5000 50 

ABCD9 105.89348889697617 21.050413550857193 110 3000 100 

ABCD10 105.77772008606304 21.01524809944646 80 5000 150 

ABCD11 105.8495214242395 21.011193250871838 40 3000 100 

ABCD12 106.05887055526061 21.170549192153914 60 5000 120 

ABCD13 105.85010996287208 21.023600607319157 40 5000 90 

ABCD14 106.69169224937365 20.860874682822697 30 5000 80 

ABCD15 106.6737304647156 20.861577759118152 70 3000 60 

ABCD16 107.08117102238927 20.95126848059809 40 5000 120 

4.1 M10’s distribution supply chain by current method 

Based on the weekly demand and the initial inventory levels at each retail point, the table below illustrates the 
transportation method and the quantity of goods transported to each retail point each week. An empty cell indicates that 
the retail point will not receive any shipments that week. 

Table 5. Delivery matrix of current distribution method 

Customer Week 1 Week 2 Week 3 Week 4 Week 5 

ABCD1  50 50 50 50 

ABCD2   40 40 40 

ABCD3  70 70 70 70 

ABCD4    20 20 

ABCD5 130 130 130 130 130 

ABCD6      

ABCD7    60 60 

ABCD8 80 80 80 80 80 

ABCD9 110 110 110 110 110 
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ABCD10  80 80 80 80 

ABCD11   40 40 40 

ABCD12   60 60 60 

ABCD13   40 40 40 

ABCD14   30 30 30 

ABCD15 70 70 70 70 70 

ABCD16    40 40 

Total delivered demand 
(unit) 390 590 800 920 920 

From the table, we can observe the distribution plan for delivering goods to the retail points of the M10 fashion chain as 
follows: 

Table 6. Distribution plan by current method 

Customers 
Week 1 Week 2 Week 3 Week 4 Week 5 

Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 Route 1 Route 2 

ABCD0 x x x x x x x x x x 

ABCD1   x  x  x  x  

ABCD2 
    

x 
 

x 
 

x 
 

ABCD3   x  x  x  x  

ABCD4 
      

x 
 

x 
 

ABCD5 x  x  x  x  x  

ABCD6 
          

ABCD7       x  x  

ABCD8 x 
 

x 
 

x 
 

x 
 

x 
 

ABCD9  x  x x   x  x 

ABCD10 
   

x 
 

x 
 

x 
 

x 

ABCD11      x  x  x 

ABCD12 
     

x 
 

x 
 

x 

ABCD13      x  x  x 

ABCD14 
     

x 
 

x 
 

x 

ABCD15  x  x  x  x  x 

ABCD16 
       

x 
 

x 

Type of vehicle 200 200 500 200 500 500 500 500 500 500 

Total distances 
(km) 87 77 204 176 394 317 541 474 541 474 

Total distance 
(km) 3285 
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Total 
transportation 
cost (VND) 

49,275,000 

In addition to transportation costs, the distribution network of the M10 fashion chain incurs inventory holding costs. The 
inventory level at each location is calculated as follows: Inventory Level = Initial Inventory - Demand + Incoming Goods. 
The table below will display the inventory levels and total inventory holding costs for each time period of the network: 

Table 7. Inventory matrix of current distribution method 

Customer Week 1 Week 2 Week 3 Week 4 Week 5 

ABCD0 1610 1520 1220 800 380 

ABCD1 30 30 30 30 30 

ABCD2 60 20 20 20 20 

ABCD3 50 50 50 50 50 

ABCD4 50 30 10 10 10 

ABCD5 90 90 90 90 90 

ABCD6 120 90 60 30 0 

ABCD7 140 80 20 20 20 

ABCD8 50 50 50 50 50 

ABCD9 100 100 100 100 100 

ABCD10 70 70 70 70 70 

ABCD11 60 20 20 20 20 

ABCD12 60 0 0 0 0 

ABCD13 50 10 10 10 10 

ABCD14 50 20 20 20 20 

ABCD15 60 60 60 60 60 

ABCD16 80 40 0 0 0 

Total inventory 2730 2280 1830 1380 930 

Total inventory cost 
(VND) 5,415,000 3,750,000 2,950,000 2,590,000 2,230,000 

Total inventory cost for 
5 weeks (VND) 16,935,000 

The total cost of M10’s distribution chain by current method (including transportation cost and inventory cost) is 
66,210,000 VND 

4.2 Using ACO to solve IRP in M10’s distribution supply chain. 

In the pursuit of attaining global optimization within the framework of the Inventory Routing Problem (IRP), this study 
leverages a dual-pronged approach. Firstly, it employs a local search methodology to allocate quantities to retailers 
effectively. Subsequently, the Ant Colony Optimization (ACO) method is employed to ascertain the optimal distribution 
routes. To exemplify the cost-efficiency implications within the fashion product distribution network, this paper 
demonstrates the application of an Ant Colony Algorithm for solving the inventory routing problem using the Python 
programming language. The results are presented in the table below: 
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Table 8. Delivery matrix by using ACO - IRP 

Customer Week 1 Week 2 Week 3 Week 4 Week 5 

ABCD1 
 

100 50 50 
 

ABCD2  80 40   

ABCD3 
 

140 70 70 
 

ABCD4  20 20   

ABCD5 260 130 
 

130 130 

ABCD6      

ABCD7 
   

60 60 

ABCD8 160 80  80 80 

ABCD9 330 110 
  

110 

ABCD10 80 80 80  80 

ABCD11 
 

40 40 
 

40 

ABCD12  60 60  60 

ABCD13 
 

40 80 
  

ABCD14 30 30 30   

ABCD15 140 70 
 

70 70 

ABCD16    40 40 

Total delivered demand 1000 980 470 500 670 

From the Table 8, we could generate the distribution plan for M10’s chain for each period by the following Table 9: 

Table 9. Distribution plan by ACO - IRP 

Customers 
Week 1 Week 2 Week 3 Week 4 Week 5 

Route 1 Route 2 Route 1 Route 2 Route 1 Route 1 Route 1 Route 2 

ABCD0 x x x x x x x x 

ABCD1   x  x x   

ABCD2 
   

x x 
   

ABCD3   x  x x   

ABCD4 
  

x 
 

x 
   

ABCD5 x  x   x x  

ABCD6 
        

ABCD7      x x  

ABCD8 x 
  

x 
 

x 
 

x 

ABCD9  x x     x 
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ABCD10 x 
  

x x 
  

x 

ABCD11    x x   x 

ABCD12 
   

x x 
  

x 

ABCD13    x x    

ABCD14 
 

x 
 

x x 
   

ABCD15  x  x  x  x 

ABCD16 
     

x 
 

x 

Type of vehicle 500 500 500 500 500 500 500 200 

Total distances (Km) 87 119 262 404 605 389 153 452 

Total distances (Km) 2471 

Total transportation 
cost (VND) 37,065,000 

Because the delivery method is different between the two methods, the amount of inventory at each point in each period 
is different, leading to a difference in total inventory costs. Inventory costs at each customer point per period will be 
shown in the table below: 

 

Table 10. Inventory matrix by using ACO - IRP 

Customers Week 1 Week 2 Week 3 Week 4 Week 5 

ABCD0 1000 520 550 550 380 

ABCD1 30 80 80 80 30 

ABCD2 60 100 100 60 20 

ABCD3 50 120 120 120 50 

ABCD4 50 50 50 30 10 

ABCD5 220 220 90 90 90 

ABCD6 120 90 60 30 0 

ABCD7 140 80 20 20 20 

ABCD8 130 130 50 50 50 

ABCD9 320 320 210 100 100 

ABCD10 150 150 150 70 70 

ABCD11 60 60 60 20 20 

ABCD12 60 60 60 0 0 

ABCD13 50 50 90 50 10 

ABCD14 80 80 80 50 20 

ABCD15 130 130 60 60 60 
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ABCD16 80 40 0 0 0 

Total inventory 2730 2280 1830 1380 930 

Total inventory cost 7320000 7100000 5395000 3485000 223000 

Total inventory cost for 
5 weeks 25,530,000 

The total cost of M10’s distribution chain by ACO – IRP (including transportation cost and inventory cost): 62,595,000 
VND 

With the above bases, the research team compares the efficiency of the traditional shipping method that M10’s fashion is 
applying with the research team's algorithm. Average transportation cost: 15,000 VND/km including fuel costs, labor 
costs, road and bridge costs, vehicle depreciation costs (Source: ALS aviation logistics company). 

Table 11. Comparison results 

Criteria Before After 

Total distance (km) 3285 2471 

Total transportation cost (VND) 49,275,000 37,065,000 

Total inventory cost (VND) 16,935,000 25,530,000 

Total cost (VND) 66,210,000 62,595,000 

From the above results, this research proved that the algorithm is efficient in distribution problem for the M10 fashion 
group. The application of the Ant Colony Algorithm to the Inventory Routing Problem (IRP) yielded notable 
improvements in cost efficiency. Prior to implementing the algorithm, the total cost for the inventory routing in 
Vietnamese Dong (VND) stood at 66,210,000. This represented the expenditure associated with distribution activities 
within the fashion product network. However, following the application of the Ant Colony Algorithm, a remarkable 
reduction in total cost was observed. The post-implementation evaluation revealed that the total cost had significantly 
decreased to 62,595,000 VND. It leads to reduce the total transportation cost and total logistics cost about 5.5 percent. 
This substantial reduction in cost is indicative of the algorithm's effectiveness in optimizing the routing and distribution 
process. The algorithm's ability to discover more efficient distribution routes and allocation strategies played a pivotal 
role in achieving this cost reduction. The optimization resulted in streamlined routes, reduced fuel consumption, and 
improved resource allocation, all contributing to the cost savings. Furthermore, the reduction in total cost is reflective of 
the algorithm's ability to find near-optimal solutions to the inventory routing problem, aligning with the primary objective 
of the research—to enhance cost-efficiency within the distribution network. These results underscore the potential of Ant 
Colony Algorithms as valuable tools in addressing complex logistical challenges, with tangible benefits in terms of cost 
reduction and resource optimization. This cost reduction is particularly significant as it can directly impact the bottom 
line of the company, leading to increased profitability and operational efficiency and reduce environmental impact.  

5. CONCLUSION 

The study provides a comprehensive overview of the theoretical foundation underlying the Inventory Routing Problem 
(IRP) and presents an application of Ant Colony Optimization (ACO) to address this problem. The research highlights 
the efficacy of ACO in optimizing complex problems, demonstrating its ability to yield solutions with improved accuracy 
and efficiency when compared to alternative algorithms. Moreover, the research team offers compelling evidence 
supporting the practical application of the IRP within distribution chains. Leveraging Vendor Managed Inventory (VMI) 
practices, the study illustrates the potential for substantial logistics cost savings by employing a flexible approach to 
product delivery from suppliers to retailers, thereby minimizing total costs. Notwithstanding these positive contributions, 
it is imperative to acknowledge several limitations. Firstly, the utilization of inventory routing software is essential for 
facilitating the implementation of ACO, necessitating software that is user-friendly and easily manipulated. Secondly, the 
practical effectiveness of the IRP is contingent upon various real-world parameters and constraints. Notably, this paper 
does not account for a range of actual requirements, including stochastic demand patterns, time window considerations, 
and the management of multiple products. Thirdly, the computational time required to solve the IRP is inherently linked 
to the complexity and size of the initial dataset, underscoring the significance of these factors in the practical application 
of the model. 
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