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Abstract. To study the nonlinear vibration response of a bridge panel, a mechan-

ical model based on Von Karman theory was established. This model led to the 

formulation of the vibration equation for a large deformation plate, resulting in 

the Duffing equation through Galerkin integration. Subsequently, a multi-scale 

analytical solution was employed to analyze the system's dynamic response and 

investigate the impact of material nonlinearity and external excitation parameters 

on the system response. Finally, the accuracy of the analytical solution was con-

firmed using the incremental harmonic balance method and the Runge-Kutta 

method. 
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1 Introduction 

1.1 Nonlinear vibration phenomena 

For a Duffing system, in addition to the main resonance, secondary resonances occur 

when the excitation frequency is far away from the natural frequency of the derived 

system, including 3 superharmonic resonances and 1/3 subharmonic resonances[1]. 

When there are different modes, the two modes will interact to form an internal reso-

nance, which will affect the complexity of the system[2]. 

1.2 Numerical solution of nonlinear vibration 

At present, there are many kinds of nonlinear vibration solving algorithms at home and 

abroad. For example, the generalized average method adopted by Seth R. Sanders and 

J. Mark Noworolski[3] can find applications in simulation and design, and may be ap-

plicable to a wider range of circuits and systems. Wang and Zu[4] used the harmonic 

balance method to study the large amplitude vibration of material thin plate and ob-

tained the nonlinear vibration response of the structure. Ji and Wu[5] used the multi-

scale method to demonstrate the influence of nonlinearity on the free vibration and  
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forced vibration of a nonlinear rotor-bearing system by numerical simulation. H Am-

briz-Perez et al. [7] discussed the Newton-Raphson method and the Newtonian optimal 

power flow SVC model. Liu et al. [8] proposed a new semi-analytic method, namely 

the time-domain minimum residual method. Different from the existing approximate 

analytic methods, this method does not rely on small parameters and can quickly con-

verge to an exact analytic solution. JHE Cartwright and O Piro[9] used Runge-Kutta 

method to apply dynamical system theory techniques to numerical analysis. AR Nara-

yanan[6] used the incremental harmonic balance method to study the periodic motion 

of a nonlinear gear-bearing system. 

1.3 The research idea of this paper 

This paper establishes the vibration equation of plates with large deformation based on 

Von Karman theory and derives the Duffing equation through Galerkin integration. It 

analyzes the dynamic response using a multi-scale analytical solution and assesses the 

impact of nonlinear and external excitation parameters of various materials on the sys-

tem's response. The accuracy of the analytical solution is verified using the harmonic 

balance method and the Runge-Kutta method. 

2 Nonlinear solution example 

2.1 Method of multiple scales 

Set the external load cos( )P F =  as simple harmonic excitation and adopt dimen-

sionless: 
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Then the dimensionless equation of the system is: 
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When the external excitation frequency is close to the natural frequency, the reso-

nance phenomenon is the main resonance, and the dimensionless small parameters   

are introduced, we get: 

 
3

1 3( ) ( ) cos ( ) ( )u u f u u    −    + = −  (4) 
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Let the first order approximate solution of (4) be: 

 0 0 1 1 0 1( , ) ( , ) ( , )u u u      = +  (5) 

Where, 
n

n  = is the time variable of different scales: 
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The coefficients of the same   on both sides of the equation are equal, we get: 
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Substituting into the two equations and combining with Euler's formula, we get: 

0 0 0 0 0 032 2 3

0 1 1 1 32 3
2

i i i i i if
D u u iAe i Ae A Ae A Ae e e cc

      + = − − − − + +  

  (8) 

Let the duration term to equal nothing, then we have: 

 12
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Substituting 

1

2

iA e =
in yields:  
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Separate the real and imaginary parts and combine Euler's formula, 

1

1 1cos( ) sin( )i ie i     − = − + − , 1 ,     = − = − , to have: 
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For the steady-state response, 0, 0 = = , the sum of squares of the two equa-

tions of  , is eliminated, and the amplitude-frequency response equation of the main 

resonance is obtained: 
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Phase-frequency response equation: 
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Multiply both sides of 2  , then the original system parameters can be expressed as:  
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In the amplitude-frequency response diagram obtained using the multi-scale method, 

damping and external excitation amplitude impact the peak of the response curve such 

as Figure 1 and Figure 3, and nonlinear stiffness affects its shape such as Figure 2. 

When 0  , different excitation amplitudes f correspond to unique response ampli-

tudes; When 0  , the value of f is small, the response amplitude appears multiple 

solutions and jumps, and with the increase off, the response amplitude returns to the 

single solution, seeing Figure 4. 

 

Fig. 1. The amplitude-frequency response curve of the steady-state main resonance with damp-

ing variation. 
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Fig. 2. Amplitude-frequency response curve of steady-state main resonance with nonlinear 

stiffness change. 

 

Fig. 3. Amplitude-frequency response curve of steady-state main resonance with external exci-

tation amplitude change. 

 

Fig. 4. Relation between excitation amplitude and steady-state response amplitude. 
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2.2 Strong nonlinear vibration (harmonic balance method) 

The Duffin equation with the same parameters as the multi-scale method is: 

 ( ) ( ) ( ) ( )3

1 3 cosu t u t u t u t f t  + + + =  (15) 

When the external excitation frequency is close to the natural frequency, the reso-

nance phenomenon is the main resonance. The dimensionless small parameter is intro-

duced. The equation (16) can be rewritten as the corresponding value of the harmonic 

balance method formula:  

 ( ) ( ) ( ) ( )2 3

0 1 3cosu t u t f t u t u t     + = − −   (16) 

Where 0 1 =   

Let the first order approximate solution of (25) be: 

 ( ) 0 0cos sinu t A t B t = +  (17) 

Substituting formula (26) into (25) gives: 
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 (18) 

Harmonic balance method obtains the same harmonic coefficient, ignores the third 

harmonic term, makes the coefficient of the first harmonic term 0, and only considers 

the main resonance case, is 0  = +  
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Let 0  = + , 0 0cos , sinA a B a = = −  and ignore 2   to get: 
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Add the squares of the two formulas at the same time and eliminate : 
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3 Conclusions 

In this work, the vibration equation of plates with large deformation based on Von Kar-

man theory and derives the Duffing equation through Galerkin integration. It analyzes 

the dynamic response using a multi-scale analytical solution and assesses the impact of 

nonlinear and external excitation parameters of various materials on the system's re-

sponse. Through the harmonic balance method and the Runge-Kutta method analysis, 

several major remarks can be summarized as follows: 

• It is the same as the principal common amplitude frequency response equation of the 

multi-scale method, which verifies the accuracy of the harmonic balance method. 

• In the amplitude-frequency response diagram obtained using the multi-scale method, 

damping and external excitation amplitude impact the peak of the response curve, 

and nonlinear stiffness affects its shape. 
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