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Abstract. This study explored the development and application of a random 

number generator following the Bernoulli distribution, emphasizing its signifi-

cance in various fields such as simulation experiments, probability analysis, op-

timization algorithms, and machine learning. The generator's versatility in gen-

erating random outcomes aligning with specific probability distributions makes 

it a valuable tool in computer programming. Through the simulation of 10,000 

games, the study confirmed the generator's accuracy in producing results con-

sistent with the expected Bernoulli distribution parameter. The sample mean and 

sample variance closely matched theoretical expectations, highlighting the gen-

erator's reliability. The results demonstrated that the generated random variable 

adhered to the Bernoulli distribution properties, with outcomes mainly concen-

trated around 0 and 1. This aligns with the two possible values and equal proba-

bilities inherent to the Bernoulli distribution. Looking ahead, the study suggests 

potential enhancements for the generator, including parameter tuning for differ-

ent distributions, encapsulation as a versatile function or class, performance op-

timization for large-scale simulations, and statistical analysis of generated data 

using libraries like NumPy and SciPy. In conclusion, this research underscores 

the foundational role of random number generators in computer programming 

and their adaptability to meet evolving needs and complex scenarios in random 

number generation and analysis. 
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The random number generator stands as a frequently employed tool in computer
programming, enabling the creation of random numbers that adhere to designated
probability distributions [1-4]. In this example, a random number generator was
written to generate random variables that conform to the Bernoulli distribution of
parameter p. This generator can be used in multiple application fields such as
simulation experiments, probability analysis, and statistical inference.
This random number generator has a wide range of uses. For instance, there are

some possible applications: 1) Simulation experiments: In many experiments,
generating random experimental results are needed. For example, in sports
competitions, gambling games, or financial market simulations, this random number
generator is able to simulate different experimental results and analyze their
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probability distribution in order to make corresponding decisions. 2) Probability
analysis: Random number generators can be used for probability analysis. It could
used to generate a large number of random samples and calculate their mean,
variance, standard deviation, and other statistics to understand the properties of the
distribution. This is very useful for understanding the characteristics of random
variables and conducting probability inference. 3) Optimization algorithms: In many
optimization algorithms, requires randomly generate initial solutions or perform
random perturbations to explore the solution space. This random number generator
can provide randomness and help us better explore the solution space during the
search process, thereby finding better solutions. 4) Machine learning and deep
learning: When training machine learning models or deep learning models, randomize
the data to avoid the model's dependence on a specific order is usually needed. This
random number generator can help to generate random training, validation, and
testing sets, as well as optimize algorithms such as random batch gradient descent.

In short, random number generators are one of the most important tools in
computer programming. It can facilitate simulating experiments, conduct probability
analysis, optimize algorithms, and machine learning in multiple application fields.
The random number generator in this example can generate random variables that
conform to the Bernoulli distribution of parameter p, providing a method for
generating random numbers that conform to a specific probability distribution. By
using this random number generator, individuals can better understand the
characteristics of random variables, conduct probability inference, and conduct
simulation experiments and optimize algorithm design in various applications.

Based on the effectiveness of it, this study defines a game function that takes the
names of two teams and their corresponding level p as parameters, and determines the
winning team based on their level. Then, this study defined sequence function takes
team name, number of games, and level parameters, and uses game function generates
a series of random games. The function returns the number of games, winners of the
series, and game records.

2 Method

This study used the random module to generate the results of 10, 000 games and
draws a histogram of the total number of championships won by the Golden State
Warriors. This study started by importing the random module, which provides various
functions for generating random numbers. The code starts by importing the random
module, which provides various functions for generating random numbers. A function
named simulate_game is defined with two parameters, teamA and teamB. This
function simulates a game between the two teams and returns the number of games
played, the list of winners, and the list of game results. Inside the simulate_game
function, two empty lists are initialized: winners and game_results. These lists will
store the winners of each game and the results of each game, respectively. A for loop
is used to simulate a series of games. The loop iterates n times, representing the
number of game series to simulate. In each iteration, a single game is simulated.
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Within the loop, the random.choices function is used to randomly choose a winner for
each game. The two teams, teamA and teamB, are passed as choices, with equal
weights of 0.5 assigned to each team. The function returns a list of choices, and the
first element is selected and assigned to the result variable. The result is appended to
the game_results list to keep track of the outcome of each game. The result is also
appended to the winners list to keep track of the winners of each game. After the loop
finishes, the function returns the number of games played (n), the list of winners
(winners), and the list of game results (game_results). Outside the function, the value
of n is set to 10000, representing the number of game series to simulate. The team
names teamA and teamB are defined as strings. Finally, the simulate_game function
is called with the teamA and teamB parameters, and the returned values are assigned
to n, winners, and game_results variables. This code snippet sets up a simulation of a
series of games between two teams (teamA and teamB), simulates the games using
the simulate_game function, and stores the results in the n, winners, and game_results
variables. When writing code for a random number generator, it is important to be
aware of common mistakes that can occur. Here are some common errors to watch
out for:

Incorrect probability parameters: When using the random.choices function to
generate random outcomes, it is crucial to ensure that the probability parameters sum
up to 1. In the provided example, the probabilities for both teams are 0.5, resulting in
a total sum of 1. Forgetting to normalize the probabilities can lead to unexpected
results.

Incorrect parameter naming: Make sure to use the same parameter names in both
the function definition and function call. In the provided code, the parameter names in
the function definition are teamA and teamB, and these names should be used
consistently when calling the function.

Incorrect loop count: When generating a series of games within a loop, ensure that
the correct loop count is used. In the provided code, this study used range(n) to
generate a loop for n game series, so make sure to pass the correct number of game
series when calling the function.

Incorrect order of return values: Ensure that the order of return values matches the
order specified in the function definition. In the provided code, the return values are
defined as n, winners, game_results, so make sure to return these values in the same
order.

Incorrect variable naming: Use meaningful variable names and avoid using names
that conflict with existing variables or functions. In the provided code, game_results
and winners are used as variable names to store the game results and winners' lists.

By being mindful of these common errors, you can minimize potential issues when
writing a random number generator.

3 Results and Discussion

After running the simulator 10,000 times with a given parameter p=0.6, this study has
obtained the sample mean and sample variance.
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The sample mean is an estimate of the central tendency of the random variable. In
the experiment, the sample mean is 0.6002, which is very close to the expected value
of the parameter p=0.6. This indicates that in the simulation, the sample mean of the
random variable is quite close to the expected value of the parameter p. This is
consistent with the properties of the Bernoulli distribution, where the probability of
success of the random variable is equal to the parameter p.

The sample variance is an estimate of the dispersion of the random variable. In the
experiment, the sample variance is 0.2402. This suggests that the simulated results
have relatively low variability, and the values of the random variable are concentrated
around the parameter p. This is also in line with the properties of the Bernoulli
distribution, where the random variable only has two possible values, resulting in
relatively low variability.

By plotting a histogram, it can be visually observed the distribution of the random
variable. From the shape of the histogram, it can be observed that the values of the
random variable are mainly concentrated around 0 and 1, with relatively similar
frequencies for both values. This is consistent with the properties of the Bernoulli
distribution, where the random variable only has two possible values with equal
probabilities.

In conclusion, through the analysis of the code results, it can be concluded that the
generated random variable follows the Bernoulli distribution with the given parameter
p. The simulation results are consistent with the theoretical expectations. This
suggests that the random number generator exhibits a certain level of accuracy and
reliability in generating random variables that meet the specified requirements.

4 Suggestion

In the process of further utilizing this random number generator in the future, the
following aspects can be considered:

Parameter tuning: According to specific needs, random variables with different
distributions can be generated by adjusting the value of parameter p. For example,
different probability values can be attempted to generate random variables that are
closer to a normal or uniform distribution.

Extension function: The random number generator can be encapsulated as a
function or class, and additional functions can be added, such as generating multiple
random variables, generating random numbers within a specific range, and generating
fixed length random sequences.

Performance optimization: When dealing with large-scale simulations or
generating large numbers of random numbers, it is possible to consider optimizing the
performance of the code to improve computational efficiency. For example, the
random number generation function provided by the NumPy library can be used to
accelerate the calculation process through its vectorization operation.

Statistical analysis: After generating random numbers, statistical analysis can be
performed on the generated sample data, such as calculating sample mean, sample
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variance, frequency distribution, etc. You can use libraries such as NumPy and SciPy
for statistical analysis.

All in all, writing a random number generator is just the beginning and can be
further explored and expanded according to specific needs and application scenarios
to meet more complex random number generation and analysis needs. In addition,
artificial intelligence methods may be also considered in this case due to their
excellent performance [5-10].

5 Conclusion

In conclusion, this study delved into the development and application of a Bernoulli
distribution-based random number generator. The generator's versatility and utility
were highlighted across various fields, including simulation experiments, probability
analysis, optimization algorithms, and machine learning applications. Through the
simulation of 10,000 games, this study demonstrated the generator's effectiveness in
producing random outcomes that closely align with the expected Bernoulli
distribution parameter.

The study's results showcased that the sample mean and sample variance closely
matched the theoretical expectations, reaffirming the generator's accuracy and
reliability. Furthermore, this study provided insights into potential future directions
for improving and extending the generator's capabilities. These include parameter
tuning for different distributions, encapsulation as a function or class with additional
features, performance optimization, and statistical analysis of generated data.

In essence, this research underscores the foundational role of random number
generators in computer programming and their widespread applicability in diverse
domains. It emphasizes the potential for further exploration and adaptation to meet
evolving needs and complex scenarios in the realm of random number generation and
analysis.
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