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Abstract. Continuous systems are physical systems that can be stimulated by
continuous and analog variables. The parameters or variables are within a range
of values. An excellent continuous controlling policy enables the system to act
appropriately and smoothly without much intervention, which can be useful in
robotics, self-driving, industries, etc. The DRL algorithm has extensive applica-
tions in continuous systems control. This essay will explore the performance of
four DRL algorithms, that is the Deep Deterministic Policy Gradient (DDPG),
Twin Delayed DDPG (TD3), Soft Actor-Critic (SAC), and Proximal Policy Op-
timization (PPO) by using environment from the four of environments in Mujoco
in Gym. Comparative experiments are done, and the highest rewards and the re-
quired number of iterations to converge are compared. The result of comparative
experiments illustrates that these DRL algorithms can learn relatively appropriate
policies in continuous controlling tasks. In particular, TD3 and SAC were found
to be able to learn the controlling policy more effectively. Further research is
needed to find better ways to adjust hyperparameters.

Keywords: Reinforcement Learning, Deep Learning, Continuous System Con-
trolling.

1 Introduction

Deep Reinforcement Learning (DRL) is a powerful tool for training agents to
implement complex tasks. It can be applied in many robotic systems. Deep
reinforcement learning allows robotic systems to adapt to different environmental
changes as well as learn the best behavior to take in different situations, enhancing its
independence and reducing human interventions. DRL has been proven to be able to
solve challenges such as noise, and variability in tasks [1].

Robotic hardware is becoming more and more complex nowadays, which is calling
for better stimulation tools. Multi-Joint dynamics with Contact (Mujoco) as a physics
engine that can successfully imitate contacts and illustrate the state in joint
coordinates was developed [2]. Fast and precise imitation can be achieved through
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Mujoco. In the Mujoco part of the Gym documentation, several high-dimensional
continuous robotic systems are included, such as an ant-like robot, Half-Cheetah
(cat-like robot), and humanoid robot [3]. Gaussian Noise was added to improve the
stochasticity. Thus, these environments enable us to better stimulate real robotic
scenarios and test the robustness of the DRL algorithms [3].

This paper explores how the different Mujoco environments have an impact on the
performance of Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG
(TD3), Soft Actor Critic (SAC), and Proximal Policy Optimization (PPO). How these
four algorithms perform in specific environments will be discussed. What’s more,
potential drawback that may affect the performance of PPO is also speculated.
Half-Cheetah-v4, Swimmer-v4, Ant-v4, Hopper-v3 are selected. Table 1 shows the
details of these four environments.

Table 1. Descriptions of the four environments.

Size of Size of
: - Rewards
observation Space  action Space

Half- 17 6 Forward reward,;
Cheetah Too large action penalty

. Forward reward;

Swimmer 8 2 .

Too large action penalty
Hopper 1 3 Healthy reward, forward;

Too large action penalty
Healthy reward, forward
Ant 27 8 reward, too large action
penalty, contact cost

2 Literature Review

The action space of many tasks especially those physical control tasks are high
dimensional as well as continuous [3]. By absorbing advantages from the Actor-Critic
[4] and Deterministic Policy Gradient (DPG) as well as the DQN, the authors created
the Deep Deterministic Policy Gradient (DDPG) [3, 5]. The DDPG shows a good
performance in dealing with continuous controlling. However, DDPG suffers from
the overestimation of Q values [6]. Therefore, Fujimoto, etc. use the clipped double Q
learning methods so that minimum Q value can be adopted and so that it tends to
underestimate [7]. Another algorithm that is similar to the TD3 is the Soft
Actor-Critic. It adopts a maximum entropy framework, which can encourage
exploration and improve robustness [8]. The objective of maximum entropy
reinforcement learning is to achieve the highest possible cumulative reward while also
ensuring that the policy’s entropy is maximized. The aforementioned algorithms are
all off-policy algorithms. As for on-policy algorithms, PPO is also suitable for
continuous system-controlling tasks. As an on-policy algorithm, it is aimed at finding
the best improvement step without stepping back so previously which may cause the
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performance collapse. It avoids the over-complicated implementation in TRPO while
can perform not worse than it [9].

There are several efforts to compare the performance of algorithms in continuous
system-controlling tasks. Existing work compares the performance of DDPG, SAC,
TRPO, PPO, and TD3 by using the vl version of Mujoco in Gym, such as
Walker2d-vl1, and Ant-v1 [8]. The author experimented to show the outperformance
of SAC compared to other algorithms. Besides, experiments are conducted involving
the DDPG, TD3, and TAD3 without clarifying which specific environments were
used [6]. Previous work compares DDPG, SAC, TD3, and DARC in OpenAl Gym
and PyBullet Gym [10].

Overall, this research shows that the DDPG, TD3, SAC, and PPO have a strong
ability to learn policy to control the continuous system. However, there are still
several challenges in this area. For example, it is not clear which algorithm is best
suited for which task and how different environments can affect the performances of
different algorithms. Further research is needed to tackle these issues and enable us to
obtain a better understanding of RL in controlling continuous systems in Mujoco.

3 Method

The continuous controlling task in the Mujoco is a Markov Decision Process. That is
both stochasticity and determinism are contained in continuous controlling tasks in
Mujoco. The observation of states, transition after actions, and rewards include
randomness due to the noise and other settings of the environments but is partly
controllable since the actions can be selected by agent itself [11]. The interaction
between agents and the environment can be denoted as a Markov chain, which
contains the state, action, transition, and rewards. The Markov chain is the experience
that enables the deep reinforcement learning algorithms to learn the optimal policy.
Deep reinforcement learning algorithms automatically extract the best policy from
Markov chain to maximize the accumulated rewards [12]. Details of four deep
reinforcement learning algorithms used in this paper will be included below.

3.1 Deep Deterministic Policy Gradient (DDPG)

DDPG has an actor-critic architecture that includes a Q-function (critic) and a policy
(actor). The actor’s role is to choose actions based on the current policy, while the
critic assesses the actions taken by the actor and provides feedback to update the
policy. The reward is the feedback from the environment to evaluate how well the
agent performs in a specific task according to the specific action and state, while the
critic network calculates the Q value based on the action selected by the policy. As an
oft-policy algorithm, DDPG can sample the data and learn from its experiences from
its replay buffer.

The Bellman equation can describe the best Q function, which is written as Q*(s,

a).
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where r(s,a) means the reward obtained after implementing action a in state s, y
represents the discount factor to determine the weight of future reward. The higher
value of y, the more emphasis that future reward is given. Vice versa. s and « is the
current state and action, s’ is obtained from the distribution P("|s, a) predicted by the
policy which shows the probability of entering s’ if execute a in 5. a’ is the action
chosen in state s’. To determine how close the current Q-function is to the best
Q-function, the TD error is calculated. TD error is to compute the difference between
the target Q value and the current Q value.

TDerror = R+vyQ(s,a) — Q(s,a) ()

The target Q value here is R + yQ(s, a) and current Q value denote as Q(s, a).
And the loss function will be defined as the square of TD error: Mean Squared
Bellman Error (MSBE).

The above is similar to DQN. However, tricks are applied. Target Q value can be
denoted as:

r +y(1 — d) max (Qq,(s', a')) 3)

The d here denotes whether the agent arrives at the end state. If it does, d will be
1, otherwise, it will be 0. Thus a is selected by the target policy network and Q here
should be the target Q function.

The target network is updated to follow the current network, which is called a soft
update.

¢ < pdp+ (1 —p)d (critic) or 8 « pb + (1 — p)6'(actor) 4)

where ¢ or 6 is the parameter of the target network and ¢ or 6 is the parameter
of the current network. Besides, p is a hyperparameter that controls how fast the
target network updates. The smaller p is, the slower it updates. If there’s no target
network, that is a current network used when computing Q values, the minimization
of MSBE will be erratic. During training, the aim is to make the target Q neural
network closer to the current network with delay to improve the stability.

In addition, the a’ is not from the replay buffer but is predicted by the target policy
network instead, which can be denoted as g (s) Therefore, the MSBE for DDPG is

]Q(q)) — E(s,a,r,s',d)~D [(Qd)(s, a)— (T‘ +vy(1 - d)Q¢ (S',T['e(s'))>2>] 3)

The D is the dataset of transition and ¢ is the parameters of Q function, d is a
Boolean value that describes whether this episode is ended.

In terms of policy learning, the Q-function is used to evaluate the action chosen by
the policy. As a result, the objective function can be expressed as follows:
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Gradient descent will be applied on the policy network and Q function network
while two target networks only apply the soft update, no gradient descent.

3.2 Twin Delayed DDPG (TD3)

TD3 can solve several disadvantages of DDPG. The first is the problem that the
policy is very likely to exploit a wrongly approximated sharp peak for some actions
by the Q function. A target policy smoothing can address it. Its formula is given by:

a(s) = clip (uemg(s') + clip(e, — ¢, ¢), arow, aHl-gh) ,e ~ N (0,0) (5)

A limited amount of noise € which satisfies the normal distribution is added to each
dimension of action predicted by the target policy. And the whole action is limited to
Aow and Apigp.

Another issue of DDPG is the overestimation of the target Q value. Therefore,
clipped double Q learning is adopted. Two different target Q functions and Q
functions are defined. When computing the target Q values, the minimum result is
used. The MSBE for two Q functions both use the minimum target Q values. As for
the policy learning side, one Q function is randomly selected from two Q functions.
And similar to DDPG, Q function is used to evaluate the policy. The soft update is
also applied to update two target Q functions and target policy, which have the same
principle as DDPG.

3.3  Soft Actor-Critic (SAC)

SAC has a similar structure compared to the TD3. But there are some differences. The
first is that TD3 uses a deterministic policy. The output of the policy network will be
a certain vector which is the action. SAC uses a stochastic policy. Standard deviation
and the mean of a distribution (often a normal distribution) can be obtained from the
output of the policy network. Then the action can be taken by sampling from the
distribution.

The most important characteristic of SAC is its entropy regularization. The entropy
can encourage exploration. The agent will consider not only the accumulated future
reward but also the entropy. Thus, the policy can be written as:

™ = argmax.E., [ :;0 \a (r(st' Ay Sey1) O‘H("T('|5t)))] (6)

Here the entropy H(n(-lst)) =—logm (a;|s;), t is the time step, which means
how many actions does the agents take. T represents the trajectory, which records the
sequence of states, actions, rewards and it is also sampled from the policy. a can
control how the entropy is emphasized. Therefore, the Bellman equation will be
changed to
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Where s’ is sampled from the transition probability P, that is probability of
transitioning from one state to another. And a’ is sampled from the policy. SAC also
has two different target Q function, which has a similar structure to TD3. Thus, the
MSBE loss is

2
L(8;,D) = E(sa)~p [(Qei(s, a)—(r+y(1-d) (IIE{I% Qegarget (s', a') — alogmy (a'|s'))> ] ()

The a here is the selected by the policy network. There’s no target policy network
in SAC. As for the policy learning side, entropy also needs to be considered. It is
given that V'(s) = E,..[Q"(s,a) — alogm (a|s)].

3.4  Proximal Policy Optimization (PPO)

PPO has an advantage actor-critic structure (A2C). The objective function of policy
learning sides is as below:

_ o [ me@IS) . [ me(als)
L(s,a, 6y, 0) = min <—ﬂek(a|5) A(s,a),clip (—nek(als)'

1—-¢1+ e) A(s, a)) ©)

mp(als) and the 7y, (als)is the probability of choosing action a in state s in
current policy and the old policy. This fraction is to evaluate the disparity of the old
and new policy. When the value of the advantage function is positive, the objective
function will increase if the probability of selecting an action increases. But if the
fraction is bigger than 1 + €, the objective function can only use 1 + €. The objective
function won’t increase because of the higher my(als) which is over 1+ €. Vice
versa. This can control the differences between old policies and new policies.

The advantage function is defined to be:

A= 7y (YA*8yyy, where 8, = R(s,a,5") + yvy(s) — v(s) (10)

A can adjust the variance and bias in the advantage estimate. The smaller the 4,
the lower the variance but the higher bias. Vise versa. t is the time step at that
moment, and k represents the number of steps to be taken. &, is the Temporal
Differences (TD) error, which shows the differences between the approximated value
of taking an action and the value of current states. The advantage function enables the
advantage of action to be estimated, that is, how good an action is compared to the
average value of taking all kinds of action. Besides, to update the value function, the
squared of disparity between estimated state value and accumulated discounted future
reward ( 1;.0:0 Y*Reyis1) is defined as the loss function and gradient descent will be

applied.
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4 Result

All the algorithms use a similar or the same neural network, with 256 hidden nodes in
both the first layer and second layer, and the same activation function to make the
comparison as fair as possible. The same random seeds are used. One episode of
training refers to from start to terminate in one round. There’s a difference when
training between the PPO and the other three algorithms. When training the other
three algorithms, the one-time loss backward follows one action, while the PPO trains
one time in one episode. If the number of training of PPO agents equals the number of
actions taken, the performance of it is somehow much worse. If only train once in one
episode in the other three algorithms, it will take a very long time but the rewards may
still not increase significantly. Therefore, the number of episodes needed to achieve
relatively high rewards between PPO and the other three algorithms can have a big
gap. The plot of rewards for each episode for PPO is separated from the others. The
value of the y-axis is the average of rewards in ten episodes. The results are shown
below.
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Fig. 1. Results on Ant-v4 (Figure credit: Original).
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Fig. 4. Results on Swimmer-v4 (Figure credit: Original).

In Ant-v4 (Fig. 1), The PPO can achieve the highest reward finally but seems more
unstable. The SAC and TD3 can achieve rewards that are over 2000, but SAC will
take more time, which may as a result of the SAC explored for a long time. This may
be attributed to its entropy bonus mechanism. The DDPG performs the worst. This
may be because of the overestimation of the target Q value.

As for the Half-cheetah (Fig. 2), TD3 performs best again, SAC next, then DDPG,
and PPO worst. And in Hopper v3 (Fig. 3), SAC performs best, TD3 next then PPO
and DDPG worst. In this task, the TD3 takes a long time to achieve a result which is
more than 1000. The DDPG somehow only increased a little at the beginning but
converges very fast. In the swimmer-v4 (Fig. 4), the descending rank of the highest
reward when converging is TD3, SAC, PPO, and DDPG. The number of iterations
needed to converge is smaller than the previous task.

One of the potential drawbacks of the implementation of PPO is the influence of
batch size. According to previous work, the stability of PPO can be affected by batch
size [13]. But in many environments, such as Ant, Hopper, and Swimmer, the number
of iterations needed to finish a game in one episode can vary, sometimes it can reach
1000, while sometimes it is smaller than 10. Thus, if the batch size is too high, data
from some episodes may not be trained, if the batch size is low, the stability will be
negatively impacted. But the other 3 algorithms are off-policy algorithms, the batch
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size can be larger because data could be directly sampled from the replay buffer.
This situation may cause potential instability of training or worse performance in
PPO.

In previous research, the Soft Actor Critic can achieve the highest rewards at last in
most environments, while PPO can achieve the best reward in this paper [8]. Besides,
DDPG in result in this paper and result in previous research is similar, it doesn’t
perform very well.

In previous work, in the Half Cheetah, the DDPG can perform better than the SAC
[10]. And the DDPG performs much better in Hopper compared to the results in this
paper. Besides, the overall result in Ant and the performance of TD3 and SAC in
Hopper are similar.

Overall, the results from this paper and other papers have some similarities and
differences. But it can be concluded that in most cases, the TD3 or SAC performs best
in Ant, Hopper, Half Cheetah, and Swimmer. The DDPG didn’t perform well in most
tasks, but whether the PPO can do well is still debatable. This difference may be
caused by different hyperparameters.

5 Conclusion

This paper gave a basic introduction to applying deep reinforcement learning in
controlling continuous systems. Also, this paper introduces the significance of DRL in
the continuous system controlling, Mujoco, and include a literature review of DDPG,
SAC, TD3, and PPO as well as some related comparative experiment that has already
been done. The key principles of these four algorithms are also discussed. Then
comparative experiments of these four algorithms are also conducted in Ant-v4, Half
Cheetah-v4, Swimmer-v4, and Hopper-v3. Finally, a comparison between the results
and results from another research is illustrated. A conclusion can be drawn from these
results that SAC or TD3 is the most likely to perform best in Mujoco environments
tried in this paper, while the performance of PPO is still unsure and the DDPG cannot
perform as well as TD3 and SAC in most tasks. To improve, more environments can
be tried. Besides, the hyperparameters should be adjusted to enhance the performance
of models. Also, some methods should be applied to solve the issues in PPO related to
the batch size and its potential threat to its stability.
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