
A Depth Learning-Based Approach for Vision Prevention 

and Detection Utilized on Mobile Devices 

Yichuan Huang 

School of Information Technology, Beijing Normal University, Zhuhai, China 

Abstract. Vision, one of humanity's paramount senses, plays a pivotal role in our 

lives and learning. Maintaining a pair of healthy eyes is of utmost significance. 

Conventional vision assessments typically necessitate the expertise of ophthal-

mologists or optometrists to diagnose myopia. Unfortunately, this approach is 

fraught with substantial delays. Once myopia is confirmed post-refraction, the 

removal of eyeglasses becomes a formidable challenge. In recent years, the prev-

alence of myopia, especially among school-age children, has surged, resulting in 

a widespread reliance on corrective lenses.The imperative for vision preservation 

and safeguarding has never been more apparent. In light of the rapid advance-

ments in computer vision and artificial intelligence technologies, this paper in-

troduces an AI-based method, designed for deployment on mobile devices, for 

vision prevention and assessment. Integrating artificial intelligence image pro-

cessing and pattern recognition techniques, this approach enables expeditious and 

precise evaluation of visual acuity through analysis of the subject's ocular images. 

It presents a novel solution for ocular health maintenance and disease diagnosis. 
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Vision holds paramount significance in the realm of our daily existence and scholastic
pursuits. Nevertheless, recent years have witnessed an escalating prevalence of
myopia, notably within the demographic of children and adolescents, evincing a
conspicuous surge in the number of myopic individuals. Impairments in visual acuity
not only encumber personal learning and work efficacy but also have the potential to
instigate ancillary health maladies, such as headaches, ocular fatigue, and myopic
retinopathy. Thus, the timely detection and amelioration of visual impairments are
pivotal to the preservation of ocular health and the augmentation of life quality.
Traditional methods for the assessment of visual acuity typically entail the

involvement of specialized medical practitioners or optometrists, employing
techniques such as subjective refraction with phoropters and computerized optometry.
Despite their widespread application in medical institutions and a variety of optical
establishments, these methods are confronted with certain challenges when applied to
large-scale vision screenings and the dissemination of ocular healthcare. These issues
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arise from the necessity for specialized personnel, time-intensive procedures, and
susceptibility to subjective factors attributable to the examinees.
In tandem with the expeditious evolution of computer vision and artificial

intelligence technologies, AI-driven image processing methods have burgeoned as a
focal point of investigation. Computer vision technologies proffer intelligent image
manipulation and analysis, whereas deep learning algorithms facilitate the extraction
of salient information from images, thereby enabling the assessment of visual acuity.
Through the confluence of these technologies, the prospect of realizing automated,
rapid, and precision-driven visual acuity assessments beckons. This augments the
repertoire of solutions available for vision assessment and ocular healthcare.
This exposition proffers a deep learning-based methodology for the prevention and

assessment of visual acuity, synergizing computer vision and pattern recognition
techniques to facilitate the rapid self-assessment of visual acuity in examinees. The
proposed approach holds the promise of ushering in innovative solutions for the
assessment of visual acuity and ocular healthcare, thereby assisting a wider spectrum
of individuals in the early detection and mitigation of visual impairments, thereby
enhancing the ocular health quotient of society at large.

2 Visual Acuity Detection Method

This chapter provides an in-depth exploration of contemporary techniques employed
in the assessment of visual acuity. Traditional methodologies encompass
comprehensive optometry [1] and computerized optometry tests [2]. Despite their
extensive application in clinical settings, these methods, owing to their dependence on
skilled personnel, susceptibility to subject cooperation and subjectivity, and
constraints in large-scale screenings, continue to pose certain challenges.

2.1 Comprehensive Optometry Examination

Comprehensive optometry, a widely embraced modality in ophthalmic diagnosis and
visual acuity assessment, seamlessly integrates diverse optical techniques to
holistically evaluate ocular health and visual status. Typically, the procedural
workflow of comprehensive optometry entails the following steps: firstly, the
apparatus autonomously conducts diopter measurements to identify refractive
anomalies such as myopia, hyperopia, and astigmatism. Subsequently, by gauging
corneal curvature, the comprehensive optometry instrument can assess corneal health
and detect irregularities such as corneal distortion. Following this, measurements of
the anterior and posterior axial lengths of the eye enable precise assessment of axial
length, a pivotal parameter for myopia evaluation. Moreover, the instrument can
determine the degree and orientation of astigmatism, providing essential data for
corrective lens prescriptions. In the visual acuity assessment phase, the instrument is
typically equipped with various visual acuity test patterns, such as Snellen charts or E
charts, where subjects report the smallest line they can read with clarity, thus yielding
their visual acuity levels. Furthermore, comprehensive optometry encompasses
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contrast sensitivity tests, evaluating subjects' perceptual capabilities regarding varying
levels of contrast, further elucidating their visual status. Additionally, eye position
and eye movement tests are integral to the examination process, particularly for
assessing ocular alignment issues like strabismus. Comprehensive optometry
automatically analyzes acquired data and generates a comprehensive visual acuity
report, encompassing diopter values, visual acuity levels, corneal curvature, among
other information. This array of procedures empowers ophthalmologists with a
comprehensive understanding of ocular health and visual status, furnishing a reliable
foundation for precise visual correction and early detection of ocular issues. This
methodology plays an indispensable role in ophthalmic clinical diagnostics and visual
health management.

2.2 Astigmatism Assessment

Astigmatism assessment serves as a diagnostic modality to ascertain the presence of
irregular ocular shapes leading to inaccurate light focusing. Astigmatism, a common
visual anomaly, if left uncorrected, may result in visual blurriness and discomfort.
The advantage of astigmatism assessment resides in its paramount role in the early
detection and correction of astigmatism. During the examination, specialized
ophthalmologists employ specific devices for precise measurement of astigmatism
degree and orientation, facilitating tailored corrective interventions. Nonetheless, it's
worth noting that astigmatism assessment necessitates the expertise of specialized
ophthalmologists, specific examination equipment, and is relatively intricate,
rendering it unsuitable for routine visual screenings. Furthermore, astigmatism
assessment primarily addresses irregularities in eye shape, thereby necessitating a
comprehensive consideration of other visual parameters and real-world application
scenarios when conducting visual acuity evaluations.

2.3 Computerized Optometry

Ophthalmic optical biometry, as a specialized apparatus, is employed for the
measurement and analysis of various optical parameters of the eye. These parameters
encompass diopter values, astigmatism degrees, corneal curvature, and pupil
diameter, among others. Below is an elucidation of the operational principles of
ophthalmic optical biometry:
Automatic Diopter Measurement. Ophthalmic optical biometry facilitates

automatic diopter measurement, also referred to as automatic refractometry or
automatic refractometry. In this functionality, the examinee maintains a stable head
position by resting their chin and forehead on the instrument's support. Subsequently,
the examinee fixates on an internal target or pattern within the instrument, as
illustrated in Figure 1.
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Fig. 1. Eye focus state diagram [1]

The instrument emits a beam of light through the examinee's eye while
simultaneously capturing and analyzing the refraction of light as it passes through the
eye. Utilizing optical principles and computations, the instrument can quantify the
diopter values of the eye, as depicted in Figure 2, which corresponds to the eye's
refractive power. This process is automated, requiring examinees only to gaze at the
target; the instrument autonomously conducts optical measurements and data analysis,
thereby accurately determining diopter values.

Fig. 2. Schematic diagram of diopter measurement of computer refractometer [2]

Within a variable-focus system composed of three lenses, including a movable
concave lens, a fixed convex lens, and a concave lens with absolute focal lengths
equal, the second principal point of the system remains stationary with respect to the
eye position. Thus, as the focal power of the first lens system within the movable
system changes, the variation Δf is linearly related to the displacement x. This linear
relationship, i.e.

f=kx (1)

where f denotes focal length, is inherent to diopter measurements. According to the
definition of diopter, the reciprocal of focal length is diopter or refractive power,
which varies linearly with the adjustment of the far point, i.e.,

D = 1/f. (2)

Substituting (1) into (2) yields

D = 1 /kx (3)
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Hence, the measurement of the displacement x of the first lens system allows for
the determination of an individual's diopter value.

The fixation visual pathway serves the purpose of achieving focus alignment by
moving the lens to produce displacement x once focus alignment has been achieved.
Consequently, the examinee obtains a clear visual target within their field of view,
and this displacement signal is converted into a voltage signal. Subsequently, the
electronic computer system processes the acquired data, digitally displays the
measurements, and can print the data using a thermal printer. The correspondence
between the fixation target and diopter value is illustrated in Figure 3.

Fig. 3. Correspondence between fixation icon and diopter [3]

Automatic Astigmatism Testing. Ophthalmic optical biometry also facilitates
automatic astigmatism testing, also known as automatic corneal curvature
measurement. Examinees similarly maintain a stable head position by resting their
chin and forehead on the instrument's support while fixating on an internal target
within the instrument. The instrument measures corneal curvature by emitting light
and analyzing the refraction of light as it traverses the cornea, quantifying the
curvature of the cornea. Corneal curvature significantly influences the eye's refractive
power and is associated with astigmatism. By measuring corneal curvature,
ophthalmologists can ascertain irregular ocular shapes, as depicted in Figure 4,
thereby determining the degree and orientation of astigmatism.

Fig. 4. Simulated eye ring image (Photo/Picture credit :Original)
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2.4 Summary and Limitations

However, comprehensive optometry, computerized optometry, and astigmatism
testing all exhibit certain limitations in the realm of vision assessment. These
limitations encompass the impact of examinee cooperation, subjectivity in test results,
and constraints imposed by testing equipment and specialized personnel. To mitigate
these shortcomings, this paper proposes a contemporary image processing-based
vision assessment method. Leveraging computer vision and artificial intelligence
technologies, this method conducts automated, rapid, and precise vision assessment
by capturing real-time images of the eye through cameras on smart devices such as
smartphones and tablets. This approach offers a more convenient solution for vision
health, augmenting ocular healthcare accessibility.

3 Deep Learning-Based Vision Prevention and Detection
Methods

Traditional methods of vision assessment are constrained by location and equipment,
limiting their ability to provide real-time monitoring of eye health. This paper
introduces a novel vision assessment method utilizing the cameras of devices such as
smartphones and tablets. By employing deep learning algorithms for image
enhancement, clear eye images are obtained, allowing for real-time monitoring of
individuals' eye conditions. This system serves as a preventive measure, issuing alerts
when individuals overstrain their eyes.

3.1 System Structure

This paper proposes a straightforward eye vision assessment system. Pupil images are
captured using a camera, and deep learning techniques are applied for image
recognition. Threshold segmentation is then utilized to segment the image, ultimately
calculating the refractive power of the eye. The system comprises hardware for image
acquisition and software for digital image processing and refractive power
calculation. The overall structure consists of both hardware and software systems, as
depicted in Figure 5.

Fig. 5. Vision detection system structure (Photo/Picture credit: Original)
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3.2 Eccentric Photography Refraction Technique

The fundamental principle behind screening for myopia and strabismus eye diseases
using iris images is based on the Eccentric Photography Refraction Technique [3].
Light enters the eye and reflects from the retina, with the degree of deviation of the
corneal reflection point varying with the eye's refractive state. Characteristic
parameters of refractive power are exhibited in the pupil area and recorded. The
captured iris images are shown in Figure 6.

Fig. 6. Emmetropia and myopia images [4]

Emmetropic Eye: In images of emmetropic eyes, the corneal reflection point lies in
the center of the pupil, with no crescent-shaped bright area beneath the pupil.
Myopic Eye: For patients with myopia, crescent-shaped bright areas appear in the
lower or left portion of the pupil images (as shown in the figure). The ratio of the
bright area's size to the pupil area indicates the degree of myopia.
Eccentric Photography Refraction (EPR) Figure 7 is a fundamental technique for
assessing refractive errors like myopia and hyperopia based on the crescent-shaped
images formed in the pupil. The refractive error can be quantified using the following
formula:

D = E / (2·A·R·DF) (4)

Where:
D represents the refractive error (diopters).
A is the distance from the eye's principal plane to the camera lens's principal plane.
R is the radius of the eye's pupil.
DF signifies the ratio of the height of the bright area formed by the highest reflected
light ray to the diameter of the entire pupil.
E denotes the eccentric distance from the center of the point light source to the edge
of the camera's aperture.
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Fig. 7. The eccentric photography optometry system structure (Photo/Picture credit:
Original)

3.3 Image Capture and Localization

The contraction of the pupil in response to light stimulation is a pupillary nerve reflex
[4]. Electronic devices such as smartphones and tablets can locate and capture the
pupil based on the reflection of light by the pupil. Images are taken from various
angles, as shown in the Figure 8.
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Fig. 8. Light reflection photography [5]

3.4 Faster R-CNN Image Detection

The complexity of object detection arises from two factors: the need to process a large
number of candidate bounding boxes, and the fact that the initial localization of these
bounding boxes is coarse and requires fine-tuning. In reference [5], a pupil center
localization method based on Unet was proposed, which could rapidly locate the pupil
but exhibited significant errors in the presence of occlusions. Reference [6], on the
other hand, introduced an approach that integrates the proposal network (RPN) and
detection network (Fast R-CNN) of Faster R-CNN into a unified network architecture
to address the aforementioned issues more effectively. The RPN generates region
proposals considered as potential object regions, and the Fast R-CNN detector
employs these proposed regions for classification and bounding box refinement.
In this study, after preprocessing the images captured by the pupil reflection

camera, a Faster R-CNN model is utilized for pupil recognition on facial images. The
recognized pupils are then segmented, and the segmentation results, as shown in
Figure 9, are provided for 19 different captured images corresponding to different
illumination conditions. For the sake of clarity, only the left eye is selected as an
example.

Fig. 9. Left eye test result (Photo/Picture credit :Original)

3.5 Image Processing and Segmentation

In the field of image processing, image recognition technology has been rapidly
evolving, achieving continuous breakthroughs. The most classical approach for rapid
localization primarily relies on the Hough transform, as discussed in references [7, 8].
However, this algorithm is computationally intensive, resulting in relatively long
processing times. Therefore, the current demand is to identify suitable algorithms that
can enhance the efficiency while maintaining the precision of pupil detection.
Consequently, this paper employs deep learning, specifically Faster R-CNN, to ensure
efficient and accurate pupil detection. Nonetheless, the acquired iris images cannot be
directly utilized. Therefore, in the image processing stage, the images need to be
enhanced. Traditional image denoising methods can be broadly categorized into two
classes: spatial domain denoising and frequency domain denoising. This paper adopts
the adaptive enhancement algorithm for uneven illumination images proposed by Li
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Haoran et al. [9]. This method is primarily utilized to address the issue of non-
uniform illumination in the acquired pupil images. Pupil images may be affected by
variations in lighting, resulting in some regions of the image being too dark or too
bright. Through this algorithm, pixel brightness and contrast are adaptively adjusted
based on the local characteristics of the image, thereby enhancing image clarity and
quality. This is crucial for subsequent image segmentation and vision testing, as clear
pupil images better reveal eye features, aiding in accurate diopter measurement, as
shown in Figure 10.
During the image segmentation stage, the paper applies the concept of the adaptive

threshold-based iris segmentation algorithm proposed by Li Peng et al. [10]. Although
this algorithm was originally designed for iris segmentation, this paper adapts it for
edge detection and segmentation of pupil images. By leveraging the edge information
of the pupil's distinct features in the image, the adaptive threshold algorithm separates
the pupil from the background, resulting in a binary Figure 11.

Fig. 10. Clear picture of eyes [9]

Fig. 11. Binarized image [10]

Combining these two steps with pupil images and myopia prevention allows for the
extraction of clear pupil images from the captured eye images and precise edge
segmentation. This provides a reliable data foundation for subsequent visual acuity
assessment and prevention. By calculating refractive error and applying the
theoretical formula of the eccentric photography refraction (EPR) method, it is
possible to accurately determine whether the test subject has myopia and,
furthermore, provide tailored recommendations for myopia prevention.
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3.6 Feature Parameter Extraction

In this paper, the key criterion for screening myopia and strabismus is the crescent-
shaped bright area and the eye deviation caused by corneal reflection points. When
myopia patients are exposed to the light source emitted by the pupil camera, the
incoming light converges in front of the retina, forming a crescent-shaped area within
the pupil image [11]. The position of the light source within the camera and the
aperture is illustrated in the diagram. In the reflected images obtained by the pupil
camera, a crescent-shaped area is formed inside the pupil, creating a clear boundary
line between the two sides. Based on clinical experiments, there exists a proportional
relationship within a certain range between the degree of myopia in eye disease
patients and the brightness boundary line produced by the crescent-shaped area within
the pupil. This relationship indicates that as the degree of myopia increases, the
proportion of the crescent-shaped area rises, resulting in an increase in the height of
the brightness boundary line. Conversely, as the degree of myopia decreases, the
proportion of the crescent-shaped area decreases, leading to a decrease in the height
of the brightness boundary line. The myopia eye model is depicted in the Figure 12
below.

Fig. 12.Myopia model (Photo/Picture credit: Original)

This paper employs a method of feature extraction for the pupil area in eye images by
calculating the area of its connected components. The procedure for feature extraction
of the pupil region in the eye images is outlined as follows:
The eye images, pre-processed in advance, are binarized by adjusting the threshold

parameters. Subsequently, a threshold segmentation is applied to these binarized eye
images, and the pupil region is subjected to feature extraction. The pupil region is
then labeled as the largest connected component.
The largest connected component within the eye image is identified and marked,

while all other regions outside this component are set to 0. Based on the extracted
pupil region in the eye image, the area of this connected component is calculated, as
illustrated in the Figure 13.
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Fig. 13. Extraction of pupil area (Photo/Picture credit: Original)

Regarding the feature extraction method for the crescent-shaped bright area in the
pupil images, the steps are as follows: Enhancement techniques, such as adjustments
to brightness and contrast, are individually applied to the pre-processed the pupil
image. The enhanced images are then subjected to binarization to initially extract the
crescent-shaped regions within the pupils.
The sizes of connected components are extracted from the images obtained in step

1). Let S denote the area of the pupil region, and all connected regions with an area
greater than S/100 are marked as the smallest connected component.
The smallest connected component is identified, and all regions outside this
component are set to 0, facilitating the extraction of corneal reflection points, as
shown in the Figure 14.
Connected component size extraction is again applied to the images obtained in

step 1), with the largest connected component in the image being marked while the
other connected components are set to 0. The crescent-shaped regions corresponding
to the pupil images are separately extracted, and the area of this connected component
is determined, as illustrated in the Figure 15.

A Depth Learning-Based Approach for Vision Prevention             365



Fig. 14. Corneal reflection point region extraction (Photo/Picture credit: Original)

Fig. 15. Crescent region extraction (Photo/Picture credit: Original)

3.7 Results

A test case with an actual refractive power of 250° in the left eye is selected, and the
measurement results are presented in the Table 1. The test values closely align with
the actual values.

Table 1. This method measures the degree of myopia in the left eye

Count 1 2 3 4 5 6

Detection value 220 309 233 239 224 242

Error value 30 59 17 11 26 8

Through these steps, a smartphone-based method for myopia prevention and
detection can be realized. The validity of the prediction relies on the efficiency and
accuracy of deep learning techniques, combined with the advantages of multiple
algorithms. However, considering individual differences and lighting conditions,
further validation and verification may be required in clinical experiments.
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4 Conclusion

In the current era of widespread adoption of mobile smart devices, the application of
deep learning-based methods for myopia prevention and detection to portable
electronic devices such as smartphones and tablets presents a range of unique
advantages. Firstly, the convenience of this approach is noteworthy. Nowadays,
people carry smartphones and similar devices with them wherever they go, enabling
on-the-spot vision assessment. Users can easily conduct vision tests at home, school,
or work by simply capturing facial photos with their devices, eliminating the need for
cumbersome visits to medical facilities. Secondly, the use of deep learning technology
allows for rapid processing of image data, ensuring real-time results. Users can obtain
accurate test results in a short time, facilitating the early detection of vision issues and
the implementation of corresponding preventive measures. Furthermore, conducting
vision tests through devices like smartphones reduces the costs associated with
traditional healthcare facilities, alleviating the economic burden. The method's
widespread accessibility is also a significant advantage, as nearly everyone possesses
a mobile device, making it possible to promote awareness of visual health.
Personalized analysis further enhances the value of this method by providing
customized vision data and healthcare recommendations based on individual pupil
images and characteristics. Most importantly, this approach encourages the formation
of a prevention mindset. With real-time data acquisition, users can make targeted
adjustments to their eye usage habits, effectively preventing the deterioration of
myopia issues.
Looking ahead, the research directions in the field of myopia prevention and

control using artificial intelligence and visual technology are extensive. As
technology continues to advance, developers can further improve algorithms to
enhance detection accuracy and even achieve real-time remote vision monitoring
through mobile applications. While this method has some limitations, it offers a new
perspective on promoting visual health and provides valuable insights for future
research.
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