™

Check for
updates

Optimization Model Performance through Pruning
Techniques

Hanzhang Tang

I American International School, HongKong, 999077, China

Abstract. Due to their ability to automatically extract features, Deep Neural Net-
works (DNNS) have demonstrated performance never before seen. Due to this
high degree of performance during the past ten years, a considerable number of
DNN models have been combined with various Internet of Things (IoT) applica-
tions. However, deploying DNN models on resource-constrained IoT devices is
impractical because of the high computing, energy, and storage needs of these
models. Because of this, several pruning approaches have been put out recently
to lessen the storage and processing needs of DNN models. These DNN pruning
methods take a new approach to condense the DNN while lowering accuracy. It
motivates us to present a thorough analysis of deep neural network compression
methods. In order to decrease storage and computing requirements, A thorough
analysis of the current literature pruning techniques will be given. The currently
used strategies are into three groups are categorized as layer, channel, filter, and
connection pruning. The difficulties that come with each class of DNN pruning
strategies are also covered in the study. Finally, a brief summary of the ongoing
work in each classification is provided, along with a projection of network prun-
ing's future evolution.

Keywords: Pruning, Machine Learning, Optimization Method.

1. Introduction

Machine learning is widely used in today’s society consisting of data prediction, image
recognition, machine translation, speech recognition, recommendation systems, etc..
One of the sustainable models is the Deep Neural Network (DNN). This model is used
in different parts of people’s lives, such as home automation, agriculture, and motion
pattern recognition. This is because DNN contains a high ability to extract data from
huge amounts of parameters. DNN is a combination of Convolutional Neural Networks
(CNN) extracted spatial features and Recurrent Neural Networks (RNN) identified tem-
poral features from the datasets [1]. Even with all the advantages of DNN, it needs
resources, including energy, processing capacity, and storage, which will cause the time
usage and workload to increase to a huge number.

© The Author(s) 2024

B. H. Ahmad (ed.), Proceedings of the 2023 International Conference on Data Science, Advanced Algorithm and
Intelligent Computing (DAI 2023), Advances in Intelligent Systems Research 180,
https://doi.org/10.2991/978-94-6463-370-2_6

https://doi.org/10.2991/978-94-6463-370-2_6
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-370-2_6&domain=pdf

44 H. Tang

Since access to the small computational device was easy and convenient, the work-
load of machine learning increased. In the past decades, the use of the internet has be-
come easy, the meantime, the data increased at a huge rate. Just in the time of reading
one sentence, 10"18 bytes of data have just been added to the word’s store [2], and
modern neural networks have grown to reach billions of parameters. In such a high
parameter quantity, the memory, hardware, and inference time are getting increasingly
high to be able to compress. At this stage, optimization plays an inconvenient role in
solving the problem. Network Pruning is one of the methods widely used. There are
two main types of pruning, structured pruning and unstructured pruning. Just like the
name, structural pruning is eliminating a group of parameters or a whole structure for
example neurons, channels, or filters [3]. Structure pruning is suitable for structural
networks such as convolutional neural networks because it helps to retain the concealed
structure of the network. This is usually easier to do because the structure of the model
is perverse. Unstructured pruning is on the opposite side of structured pruning, in which
unstructured pruning only cuts single parameters and doesn’t need to consider the struc-
ture of the network. The benefit of using unstructured pruning is that it is usually more
effective because it allows more fine-grained pruning, on the other hand, it is more
complex.

Optimization methods include thousands of different techniques, this essay aims to
research pruning techniques’ usage to optimize machine learning models' performance
through pruning techniques. In the following parts, there are several different categories
that this essay will reach. In the next part, there will be literature reviews to understand
background information and previous research done on the criteria. The third part of
the essay will be methodology, which is what is the algorithm of different pruning
methods, visualization of the method, and important techniques. The fourth part will
include some practical applications and cases.

2. Literature Review

Currently, in the area of optimization methods, the main type includes sparse represen-
tation, knowledge distillation, and network pruning.

2.1. Spare Representation

Sparse representation takes advantage of the sparsity present in the weight matrices of
a deep neural network (DNN) model [4]. This approach involves removing the weights
that are zero or close to zero from the weight matrix, reducing the storage and compu-
tational requirements of the DNN model. In other words, it combines the network's
links with similar weights into multiplexed links, where a single weight replaces mul-
tiple weights on a single link [1]. Sparse representation encompasses techniques such
as low-rank estimations, quantization, and multiplexing. The primary objective of
sparse representation is to compact the weight matrix while maintaining the perfor-
mance of the DNN model [5].

Optimization Model Performance through Pruning Techniques 45

2.2. Knowledge Distillation

Knowledge distillation is the term used to describe the procedure of transferring the
ability to generalize from a complex model (referred to as the "teacher") to a simpler
model (known as the "student") within the framework of a deep neural network (DNN)
model [6]. This technique provides a solution to mitigate the loss of accuracy that oc-
curs during DNN compression. By employing knowledge distillation during the train-
ing of the student model, it becomes possible to mimic the behavior exhibited by the
teacher model in predicting the probabilities of class labels [5].

2.3. Network Pruning

Deep network pruning is a widely adopted technique for reducing the size of a deep
learning model by eliminating ineffective channels, filters, neurons, or layers, resulting
in a lightweight model [7]. The resulting lightweight model has reduced memory re-
quirements, lower power consumption, and enables faster inference while minimizing
the loss of accuracy. The extent of the accuracy loss when a component is removed
determines its suitability. Pruning is often seen as a binary criterion for deciding
whether to keep or discard a component in a deep neural network (DNN). The pruning
process involves iteratively removing underperforming components from a pre-trained
model. The network pruning methods can be categorized into four groups: layer prun-
ing, connection pruning, filter pruning, and channel pruning. These methods contribute
to reducing the storage and computational demands of the DNN model [5].

3. Methodology

The network pruning strategies for DNN compression are covered in this section. The
main concept is to strip the original DNN model of unnecessary elements like layers,
filters, channels, etc. A compressed DNN model is created from the remaining ele-
ments. In comparison to the original DNN model, the compressed model uses less
processing power and less storage. Additionally, the compressed model is tuned by
training it on the existing dataset for an enormous number of epochs. Reducing the
time required for DNN model fine-tuning and limiting the accuracy compromise caused
by network compression are the two main research problems related to network prun-
ing.

3.1. Channel Pruning

The basis of channel pruning is to reduce the number of channels in the input supplied
to DNN’s intermediate layer [8]. The data provided to the DNN model are first chan-
nelized to create the proper input, for example, a picture has three channels (RGB). The
channels improve the performance of DNN, and every layer contains different chan-
nels. However, these channels will increase calculation and memory, whereas reducing

46 H. Tang

channels could help to decrease the calculation and memory needed [5]. Fig 1 repre-
sents the process of Channel Pruning, by deleting channel data will go through, the
model could be optimized.

o [Channel]
Original Intermediate
Data [Channel | Layer
[Channel |

Channel Pruning

[Pruned Channel |
. Intermediate

[PrunedChannel | Layer

[Channel |

Original Data

Fig 1. This is a graph of how the channel pruning works (Picture: Original).

3.2. Filter Pruning

A large number of filters are involved in the convolutional operation of CNN in order
to improve the performance of the model in different processes (regression, classifica-
tion, and prediction). The filter could help the model divide data into different groups.
According to the presumption, increasing the number of filters enhances the distin-
guishing qualities of the spatial information produced by the CNN model [9]. However,
this increase in convolutional filters causes the DNN model to perform a significantly
greater amount of floating-point calculations. Therefore, removing the unnecessary fil-
ters is crucial to lowering the processing demands of the DNN model [5]. As shown in
Fig 2, sets of data will be divided into different groups by going through different filters.
By decreasing the number of filters, the model could be optimized.

Optimization Model Performance through Pruning Techniques 47

Filter

Filter Pruned Filter

Fig 2. This is a graph of how the filter pruning works. (Picture: Original)

3.3. Connection Pruning

The number of input and output connections to that layer determines the number of
parameters for a layer of a DNN model. These variables can be used to calculate the
DNN model's storage and computation needs [10]. Due to the fact that the DNN model
needs a lot of parameters to function, it is practical to cut out unnecessary connections
between the various levels of the DNN model[11]. Fig 3 is a picture visualizing the
process of connection pruning. Connections that are unnecessary will be cut off.

Original DNN Model Pruned DNN Model

Fig 3. This is an example of the connection pruning structure (Picture: Original).

48 H. Tang

3.4. Layer Pruning

Layer pruning is the final group of network pruning approaches, in which some DNN
model layers are compressed by removing a few selected layers from the network.
When deploying a DNN model on a small computational device, when ultra-high DNN
model compression is required, layer pruning is heavily used[12]. The loss of the se-
mantic structure of the DNN model, which produces low-quality features, is the main
problem with layer pruning. The performance is inefficient as a result of these poor
features. Fig 4 shows the overall process of layer pruning. When there are three layers,
the parameters are super big. After selecting inefficient or less useful layers, these
layers will be pruned in order to reduce the size of the parameters.

/ Boyers /
= /A
/ Layers /

Layer Pruning
/ Layers / v

Pruned Layers
s —F ;
/ Layers /

Fig 4. This picture shows the process of Layer Pruning (Picture: Original).

3.5. Application Fields

Model pruning is a technique for optimizing deep learning models by removing redun-
dant parameters and connections, thereby reducing model size, accelerating inference,
and lowering energy consumption [13]. It has found widespread applications in various
domains, including computer vision, natural language processing, and recommendation
systems. The following presents cases of utilizing model pruning in these domains.

Computer Vision:

Image Classification: In image classification tasks, model pruning can be applied to
reduce the size of convolutional neural networks by eliminating redundant neurons and
channels [14]. For instance, channel pruning methods can be employed to remove un-
important channels, thereby reducing computational overhead and parameter count,
and consequently speeding up inference.

Object Detection: In object detection, model pruning can be applied to the detection
head, encompassing classifiers and regressors in architectures like Faster R-CNN or
YOLO [15]. Pruning can decrease detection model latency, making it suitable for real-
time applications.

Natural Language Processing:

Text Classification: In text classification tasks such as sentiment analysis, model
pruning techniques can downsize recurrent neural networks (RNNs) or Transformer

Optimization Model Performance through Pruning Techniques 49

models [16]. Pruning can involve the removal of non-essential vocabulary and attention
heads, thereby mitigating computational costs.

Machine Translation: In machine translation tasks, Transformer models often con-
sist of numerous self-attention heads and parameters [17]. Pruning can involve the re-
moval of unnecessary self-attention heads, reducing model size, and enhancing infer-
ence speed.

Recommendation Systems:

Recommendation Models: Models in recommendation systems are typically com-
plex neural networks used to predict user preferences for items. Model pruning can
involve eliminating features related to less popular items, reducing model complexity
while retaining features crucial for predicting user preferences to expedite the recom-
mendation process [18].

In conclusion, model pruning holds promise across various application domains,
with the potential to optimize model performance by decreasing size, accelerating in-
ference speed, and lowering energy consumption. However, it is important to strike a
balance between model size and performance during pruning to ensure that accuracy
degradation remains minimal.

4. Application and Case Study

This section uses a case study to showcase the effects of different pruning methods on
accuracy, model size, and inference speed. We utilize Table xxx to report the perfor-
mance of various pruning algorithms. For the purpose of comparison, we employ Res-
Net-50 as the base network and present the pruning outcomes of different algorithms
on the ILSVRC-2012 dataset. ILSVRC-2012, also known as ImageNet 2012, is a com-
petition dataset consisting of a total of 1000 categories. The training set of ILSVRC-
2012 comprises 1,281,167 images, with the number of training images per category
ranging from 732 to 1300. Additionally, its validation set consists of 50,000 images,
where each category is evenly represented with 50 validation images. Due to the utili-
zation of distinct deep learning frameworks among the diverse algorithms, the baseline
results of the models may vary. Hence, we compare their changes relative to the base-
line results. We present our experimental results comparing importance-based pruning
methods and gradient-based pruning methods in Table 1.

Since pruning algorithms are essentially validated through experiments conducted
on the same dataset and model, comparing different pruning algorithms is straightfor-
ward. As shown in Table 1 [19], regardless of the specific pruning algorithm, the pruned
models can be regarded as sub-models of the original model. These sub-models inherit
certain parameters from the original model, followed by a certain degree of fine-tuning
training. This approach achieves comparable or even superior classification results to
the original model while utilizing fewer parameters and computational resources.

50 H. Tang

Table 1. Performance of different pruning algorithms on ResNet-50 [19]

Gradi- Methods Model Pruning Per- Top 1 Submodel Accuracy
ent- FLOPs centage(%) Accuracy Rate(%) Changes (%)
Based
Pruning SFP 8.17 0 76.15 +0.00
Method 475 42 74.61 -1.54
FPGM 8.17 0 76.15 +0.00
4.74 42 75.59 -0.54
3.80 53 74.83 -1.32
HRank 8.17 0 76.15 +0.00
4.60 44 74.98 -0.17
3.10 62 71.01 -4.17
1.96 76 69.10 -7.05
ThiNet 7.72 0 72.88 +0.00
4.88 37 72.04 -0.84
341 56 71.01 -1.87
2.20 76 68.42 -4.46
Entropy 7.72 0 72.88 +0.00
7.16 7 73.56 +0.68
6.38 17 72.89 +0.01
5.04 35 70.84 -2.04
CURL 8.17 9 76.15 +0.00
222 73 73.39 -2.76
EagleEye 8.17 0 76.60 +0.00
6.00 27 77.10 +0.50
4.00 51 76.40 -0.20
2.00 76 74.20 -2.40
LFPC 8.17 0 76.15 +0.00
3.20 61 74.46 -1.69
ABCPruner 8.17 0 76.01 +0.00
5.12 37 74.84 -1.72
2.60 68 72.58 -3.42
1.88 77 70.29 -5.72
Meta Prun- 8.17 0 76.60 +0.00
ing 6.00 27 76.20 -0.40
4.00 51 75.40 -1.20
2.00 76 73.40 -3.20
TAS 8.17 0 77.46 +0.00
2.31 72 76.20 -1.26
AutoSlim 8.17 0 76.15 +0.00
6.99 27 76.10 -0.15
4.00 51 75.60 -0.55

2.00 76 74.00 -2.15

Optimization Model Performance through Pruning Techniques 51

DMCP 8.17 0 76.60 +0.00
5.60 31 77.00 +0.40
4.40 46 76.20 -0.40
2.20 73 74.40 -2.20

4.1. Benefits and Negatives

The use of reinforcement learning-based neural network structure search in place of
manual design was originally introduced by Zoph and Le, despite the fact that the
search process consumes a lot of processing power [20]. Gradient-based search tech-
niques started to gain popularity after DARTS was developed because of their speed
advantages [21]. At this point, researchers started to characterize structured pruning as
a search process based on prototype networks, where the sub-models discovered
through searches on prototype networks serve as the representation of the trimmed
small models. We will give a succinct description of a few search-based pruning tech-
niques in this section.

AMC began using reinforcement learning techniques in 2018 to look for pruning
structures [22]. AMC uses states to encode data like input feature dimensions, convo-
lution kernel sizes, and strides for each layer. Actions are predicted by the DDPG agent,
with classification errors and FLOPs being rewarded [23].

The artificial bee colony algorithm is used by ABCPruner to identify the best prun-
ing structure [24]. Instead of picking comparably essential channels for pruning,
ABCPruner searches for the number of channels in each layer. A feasible solution is
defined specifically as the number of channels corresponding to each layer, and the
target population is made up of all feasible solutions. The artificial bee colony algo-
rithm is utilized to conduct the search, and the sub-model's performance on the dataset
is directly used to determine its fitness. On the ILSVRC-2012 dataset, ABCPruner can
keep ResNet-152's accuracy while reducing 62.87% FLOPs and 60% parameter count.

For automatic channel pruning, MetaPruning makes use of meta-learning [25]. In
order to find effective pruning models, MetaPruning first trains a meta-network and
then uses an evolutionary process. Instead of identifying each individual channel, Met-
aPruning looks for the aggregate number of channels for each layer, considerably con-
densing the search field. On ILSVRC-2012, the Top-1 accuracy of MetaPruning is only
0.4% less accurate than the original model after eliminating 25% FLOPs of the ResNet-
50 model.

NetworkAdjustment calculates the FLOPs utilization rate for each layer by using
model correctness as an equation relating to computational complexity (FLOPs) [26].
Then, based on this utilization rate, the channel numbers are automatically changed for
each layer. Although searches using evolutionary algorithms have improved the search
process, they still take a lot of time. In DMCP, pruning is modeled as a differentiable
Markov process that is then directly optimized on the network via gradient descent [27].
A separate Markov process is created by the pruning construction for each layer's chan-

52 H. Tang

nels, where changes in the channel count represent state transitions in the Markov pro-
cess. On the ILSVRC-2012 dataset, DMCP can cut ResNet-50's FLOPs by around 46%
while still producing a pruned model with a 0.4% drop in accuracy.

5. Future Improvements and Challenges

The current structured pruning algorithms are primarily studied in the context of image
classification tasks. However, due to the versatility of neural network architectures,
pruning algorithms that have proven effective in classification tasks can be conven-
iently transferred to other visual tasks.

With the rise of the Internet of Things (IoT) and the development of smartphones,
an increasing number of mobile devices are equipped with deep learning models to
provide smarter services. However, these mobile devices often have limited computa-
tional power and storage space, making lightweight models increasingly important.
Structured pruning is an important and effective method for model compression, often
used in conjunction with other methods such as parameter quantization and low-rank
approximation to maximize model compression. Unstructured pruning disrupts the
original structure of the model, leading to significant reductions in parameter count and
theoretical computational load. However, the actual runtime speed might not be opti-
mistic. In contrast to unstructured pruning, structured pruning algorithms can run on
general platforms and, since they preserve the original model structure, can perform
low-rank approximation on top of pruning, which is not achievable with unstructured
pruning.

Nevertheless, structured pruning also comes with certain challenges. Typically, it
involves a three-step process of evaluation, selection, and fine-tuning to obtain a com-
pact model. In some cases, layer-wise selection and fine-tuning are performed, resulting
in a significant time investment in obtaining a pruned model. Additionally, the majority
of research in this area has focused on image classification, and there is relatively lim-
ited progress in more challenging visual tasks such as object detection and semantic
segmentation.

6. Conclusion

In recent years, while deep learning models have achieved significant accomplish-
ments, they have also brought about substantial computational and storage overhead.
Model pruning, as an optimization method, aims to enhance the efficiency and infer-
ence speed of models by reducing redundant and unnecessary parameters.

According to numerous research in the literature, pruning has advanced significantly
in the area of network acceleration. The two main categories of mainstream pruning
techniques are structural pruning and unstructured pruning. By physically removing a
group of parameters, structural pruning seeks to condense neural networks. Unstruc-
tured pruning, in contrast, zeros out particular weights without changing the network's
structure. Unstructured pruning in particular is simple to use in practice and naturally
adaptive to different networks. Model acceleration frequently requires specialized Al

Optimization Model Performance through Pruning Techniques 53

accelerators or software. On the other hand, structural pruning finds a larger range of
applications by reducing the inference overhead by physically deleting parameters from
networks. In the literature, The design space of pruning algorithms encompasses a
range of aspects, including pruning schemes, parameter selection, layer sparsity, and
training techniques. Model pruning finds widespread applications across various do-
mains, including but not limited to model compression, acceleration of deep learning,
deployment on mobile devices, and edge computing.

This review comprehensively summarizes the developmental trajectory, different
techniques, and application domains of deep learning model pruning. The importance
of model pruning in optimizing deep learning models is emphasized, along with its
advantages in improving efficiency and reducing computational costs. Through this re-
view, researchers can gain an understanding of the evolution of model pruning tech-
niques, select appropriate pruning methods, and apply pruning techniques in specific
domains, thereby providing comprehensive guidance for the optimization of deep learn-
ing models.

Reference

1. Y. Zhao, et al, "Low-rank plus diagonal adaptation for deep neural networks," in 2016 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5005-
5009, (2016).

2. 1.V. Guttag, "Introduction to Computation and Programming Using Python, third edition:
With Application to Computational Modeling and Understanding Data, " MIT Press, (2021).

3. C. Wang, et al, "EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis,"
ArXiv, (2019).

4. Y. Guo, et al, "Sparse DNNs with Improved Adversarial Robustness," in Advances in Neu-
ral Information Processing Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, vol. 31, Curran Associates, Inc., (2018).

5. R. Mishra, et al, "A Survey on Deep Neural Network Compression: Challenges, Overview,
and Solutions," ArXiv, October (2020).

6. X. Liu, et al, "Improving the Interpretability of Deep Neural Networks with Knowledge
Distillation," in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 905-912, (2018).

7. S. Anwar, et al, "Structured Pruning of Deep Convolutional Neural Networks," CoRR, vol.
abs/1512.08571, (2015).

8. H. Peng, et al, "Collaborative Channel Pruning for Deep Networks." In Proceedings of the
36th International Conference on Machine Learning, pp. 5113-5122, (2019).

9. P.Singh, etal, "Stability Based Filter Pruning for Accelerating Deep CNNs." In 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 1166-1174, (2019).

10. R.Mishra, etal, "A Road Health Monitoring System Using Sensors in Optimal Deep Neural
Network," in IEEE Sensors Journal, vol. 21, no. 14, pp. 15527-15534, (2021).

11. N.T. Siebel, et al, "Efficient neural network pruning during neuro-evolution." In 2009 In-
ternational Joint Conference on Neural Networks, pp. 2920-2927, (2009).

12. N.Liu, etal, "AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-
High Compression Rates." In Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 04, pp. 4876-4883, Apr. (2020).

54

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

H. Tang

T. Liang, et al, "Pruning and quantization for deep neural network acceleration: A survey."
Neurocomputing, vol. 461, pp. 370-403, (2021).

Z. Liu, et al, "Rethinking the Value of Network Pruning," CoRR, vol. abs/1810.05270,
(2018).

Y. Cai, et al., “Yolobile: Real-time Object Detection on Mobile Devices via Compression-
Compilation Co-design.” In Proceedings of the AAAI conference on artificial intelli-
gence, Vol. 35, No. 2, pp. 955-963 (2021).

M. Gupta, et al, "Compression of Deep Learning Models for NLP." In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pages
3507-3508, (2020).

M. Behnke, et al, “Losing heads in the lottery: Pruning transformer attention in neural ma-
chine translation.” In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 2664-2674 (2020).

Y. Sun, et al., “FM2: Field-matrixed factorization machines for recommender systems.”
In Proceedings of the Web Conference, pp. 2828-2837 (2021).

J. Luo, et al, "AutoPruner: An end-to-end trainable filter pruning method for efficient deep
model inference." Pattern Recognition, 107:107461, (2020).

B. Zoph, et al, "Neural Architecture Search with Reinforcement Learning." arXiv preprint
arXiv:1611.01578 (2017).

H. Liu, et al, "DARTS: Differentiable Architecture Search." arXiv preprint
arXiv:1806.09055 (2019).

Y. He, et al, "AMC: AutoML for Model Compression and Acceleration on Mobile Devices."
In Proceedings of the Computer Vision -- ECCV 2018, pp. 815-832, Springer International
Publishing, (2018).

T. P. Lillicrap, et al, "Continuous control with deep reinforcement learning." arXiv preprint
arXiv:1509.02971 (2019).

M. Lin, et al. "Channel pruning via automatic structure search." arXiv preprint
arXiv:2001.08565 (2020).

Z. Liu, et al., “MetaPruning: Meta-learning for automatic neural network channel pruning.”
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
3296-3305 (2019).

Z. Chen, et al., “Network adjustment: Channel search guided by FLOPs utilization ratio.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp.10658-10667 (2020).

S. Guo, et al., “DMCP: Differentiable Markov channel pruning for neural networks.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp.1539- 1547 (2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

