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Abstract. A stock trading strategy refers to a structured approach used to make 

informed decisions in buying, selling, or holding stocks in financial markets. 

These strategies play a crucial role in maximizing returns while managing risk. 

Over the years, trading strategies have transitioned from being expert-driven, 

time-intensive approaches to incorporating machine learning algorithms that pro-

cess vast amounts of historical data. Stock trading strategies have evolved from 

expert-driven approaches to incorporating machine learning algorithms and, 

more recently, artificial intelligence and deep learning techniques. This paper 

delves into the utilization of deep reinforcement learning in trade. It presents an 

overview of Deep Reinforcement Learning (DRL) principles and their relevance 

to trading, followed by an exploration of five specific machine-learning models 

employed in trading strategies. Each model is detailed in terms of its characteris-

tics, principles, advantages, and limitations. Additionally, this paper discusses 

evaluation metrics and provides a brief insight into potential result disparities 

within the same stock. The discussion section analyzes the strengths and weak-

nesses of the presented models and highlights their potential. The conclusion 

summarizes the methods employed and the results observed and suggests ave-

nues for future research and development in utilizing DRL for trading strategies. 
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Due to its potential to improve trading tactics in dynamic and complicated market con-

ditions, using DRL in the trading space has attracted a lot of interest. Historically, ex-

perts with a deep understanding of market dynamics often developed trading strategies. 

These strategies were characterized by their time-intensive nature and reliance on hu-

man decision-making. As technology advanced, machine learning algorithms emerged 

as tools to process vast amounts of historical market data and identify patterns that 

might be imperceptible to human traders. Algorithms like Moving Averages, Support 

Vector Machines (SVMs), and Decision Trees were used to create rule-based strategies 

that adapt to historical trends [1].  

The integration of machine learning techniques into trading strategies marked a sig-

nificant shift in the field. These techniques include linear regression, time series 
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analysis, and clustering methods. SVMs have been utilized to predict price movements 

and identify trading signals. However, these techniques often face challenges in adapt-

ing to changing market conditions and capturing intricate patterns in highly complex 

environments. The limitations of traditional machine learning algorithms paved the way 

for the adoption of DRL in trading. DRL combines the principles of reinforcement 

learning with deep neural networks, enabling algorithms to learn from experience and 

make adaptive decisions. DRL’s ability to process high-dimensional data, capture tem-

poral dependencies, and learn complex non-linear relationships aligns well with the 

dynamic nature of financial markets.  

Recent literature has explored various aspects of DRL applications in trading, in-

cluding algorithmic trading, portfolio optimization, and risk management. Notable 

works include the application of Deep Q-Networks (DQN) for building autonomous 

trading agents that learn optimal strategies through trial and error. Proximal Policy Op-

timization (PPO) algorithms have been used to optimize trading policies by directly 

interacting with the market environment [2].  

Incorporating technical indicators like Long, Short, Sign (R), and Moving Average 

Convergence Divergence (MACD) into DRL-based trading strategies has also gained 

attention. Long and Short indicators are used to capture long-term and short-term trends 

in market statistics. Sign (R) indicator reflects the direction of price changes, aiding in 

identifying potential buy or sell signals. MACD, a popular momentum indicator, has 

been integrated into DRL frameworks to improve decision-making based on the con-

vergence and divergence of moving averages [3]. 

While DRL holds promise, researchers have also identified challenges, including the 

need for reliable and high-quality data, the trade-off between exploration and exploita-

tion, the risk of overfitting, and the interpretability of DRL models. Researchers are 

actively working on addressing these challenges to ensure the practical applicability of 

DRL in trading.  

Current trends in the literature point towards hybrid approaches that combine DRL 

techniques with traditional trading strategies to mitigate risks and enhance perfor-

mance. Transfer learning, where knowledge gained from one market is transferred to 

another, is also gaining attention. Furthermore, the development of explainable DRL 

models aims to enhance 2 transparency and regulatory compliance.  

In summary, this review introduces the transition of trading strategies from tradi-

tional approaches to machine learning-based methods, with a focus on the emerging 

role of DRL. By combining reinforcement learning with deep neural networks, DRL 

presents a potent approach for adapting to the dynamic nature of financial markets. 

Notable DRL techniques like DQN and PPO have demonstrated their efficacy in trad-

ing applications. Despite challenges related to data quality and interpretability, the po-

tential of DRL in trading is evident. This paper will explore specific DRL models, their 

evaluation metrics, potential result variations, as well as their strengths and limitations, 

thereby providing comprehensive insights into their contributions to enhancing trading 

strategies in the following section. 
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2 Methodology 

DRL stands at the intersection of reinforcement learning and deep neural networks, 

offering a powerful framework for developing intelligent agents capable of learning 

optimal strategies in complex and dynamic environments. In the context of trading, 

DRL has emerged as a promising approach to creating adaptive trading algorithms that 

can dynamically adjust to changing market conditions [4]. 

An agent interacts with its environment to learn a set of behaviors that maximize 

cumulative rewards over time under the reinforcement learning (RL) paradigm of ma-

chine learning.  DRL extends RL by leveraging deep neural networks to approximate 

value functions or policy functions, enabling agents to handle high-dimensional and 

continuous state spaces often encountered in financial markets [5]. 

At its core, DRL involves several key components. 1) State: This represents the cur-

rent market information observed by the agent. In trading, it includes factors like his-

torical price data, trading volume, and technical indicators. 2) Action: An action is a 

decision made by the agent, such as buying or selling a certain quantity of stocks, based 

on the observed state. 3) Reward: The reward reflects immediate feedback to the agent 

following an action. It quantifies the goodness or badness of the action and guides the 

learning process. 4) Policy: The policy is a mapping from states to actions, defining the 

behavior of agents. It encapsulates the strategy the agent uses to select actions in dif-

ferent states. 5) Value Function: This estimates a given state's expected cumulative fu-

ture rewards. It helps the agent assess the potential long-term benefits of being in a 

particular state. 6) Q-Function: The Q-function approximates the expected cumulative 

future rewards by taking a certain action in a given state. It aids in evaluating the po-

tential outcomes of different actions [6]. 

DRL algorithms, such as DQN and Proximal Policy Optimization (PPO), employ 

deep neural networks to estimate either the value function or policy. These networks 

are iteratively updated using interactions with the market environment to improve ac-

curacy. The incorporation of deep neural networks empowers DRL agents to capture 

intricate patterns in historical data and make informed trading decisions.  

2.1 Deep Q-learning Networks (DQN) 

A potent reinforcement learning technique called Deep Q-learning Networks (DQN) 

applies neural networks to estimate the Q function (state-action value function) [7]. Q 

function calculates the value of taking a certain action in a specific state, which reflects 

how beneficial the action is to the agent. DQN uses a neural network to learn and rep-

resent the Q values connected to various state-action combinations by parameterizing 

the Q function. 

The fundamental objective of DQN is to minimize the mean squared error between 

the target Q values calculated by the neural network [8]. The target Q values are derived 

from the Bellman equation, which describes the optimal value of a state-activity com-

bination based on the expected reward and the maximum Q value of the subsequent 

state and action: 
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 M(θ) = E[(Qθ(S, A)−Q′θ(S,A))2]  (1) 

 Q′θ(St,At) = x + γ argmaxA′Qθ(St+1,At+1) (2) 

M(θ) represents the objective function that minimizes during training phase. θ rep-

resents the parameters of the neural network, and the goal of this algorithm is to adjust 

these parameters to reduce the value of the objective function. Minimizing this objec-

tive function is the primary goal of training DQN. x in equation (2) represents for the 

immediate reward obtained after taking action At in state St. γ is the discount factor, 

representing the importance of future rewards. γ is in the range [0, 1], controlling how 

much we consider future rewards. A larger γ means more emphasis on future rewards, 

while a smaller γ means more emphasis on immediate rewards. However, training a 

standard DQN might be unpredictable and unstable. To address these issues, several 

strategies have been developed to stabilize the training process. 1) Fixed Q-targets in-

volve using a separate network, known as the target network, to generate the target Q 

values. This lessens "chasing tails," a phenomenon where the Q values change signifi-

cantly during training and lowers policy variances [9]. 2) Double DQN improves the 

estimation of target Q values by decoupling the action selection from value evaluation. 

It utilizes the target network to determine the action’s value in the next state and the 

online network to pick the action with the greatest Q value [10]. 3) Dueling DQN sep-

arates Q value into two components: the advantage of each action and state value. This 

separation allows value stream to receive more updates, resulting in a more accurate 

representation of state values [11].  

By incorporating these strategies, DQN becomes more stable, converges faster, and 

produces better trading strategies. In this work, the advancements in DQN methodolo-

gies are leveraged to enhance the training of the trading agents and improve their per-

formance in dynamic market environments. 

2.2 Policy Gradients (PG) 

Policy Gradient (PG) is an RL algorithm that optimizes the policy directly to maximize 

cumulative rewards. By representing the policy as a neural network parameterized by 

θ, denoted as πθ(A|S), PG learns to generate actions that yield the highest expected 

rewards in a given state. The PG algorithm operates by generating trajectories from the 

environment and computing the cumulative rewards obtained along each trajectory. A 

trajectory τ is a sequence of states, actions, and rewards τ = [S0, A0, R1, S1, ..., St, At]. 

PG intends to maximize the expected cumulative rewards τ (θ) by adjusting the neural 

network parameters θ using gradient ascent: 

 J(θ) = E [∑  𝑇−1
𝑡=0  Rt+1∣πθ] (3) 

 ∇θJ(θ) = ∑  𝑇−1
𝑡=0 ∇θlogπθ(At∣St)Gt (4) 

In the above equations, θ is the parameter of the neural network that represents the 

policy. πθ is the policy parameterized by θ, which represents the probability distribution 

over actions A given a state S. Gt represents the total expected cumulative reward. 
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Unlike Deep Q-Networks (DQN), which learns the action-value function, PG directly 

learns the policy. PG may provide a probability distribution over actions when working 

with random policies or continuous action spaces, which is especially effective [8]. The 

PG training procedure makes use of Monte Carlo algorithms to sample trajectories from 

the surrounding space. Additionally, updates are performed only at the end of each ep-

isode. This approach can lead to slow convergence during training and may result in 

the algorithm becoming stuck at suboptimal local maxima. To address this limitation, 

various enhancements and algorithms have been offered to increase the stability and 

speed of convergence of PG-based techniques. 

2.3 Advantage Actor-Critic (A2C) 

A2C is an advancement over Policy Gradient (PG) methods, addressing the slow train-

ing convergence and suboptimal local maxima issues. It introduces real-time policy 

updates and combines both actor and critic networks to improve the learning process. 

A critic network and an actor network make up the two main parts of the A2C. 

Through the output of action probabilities depending on the present state, the actor-

network creates the policy. On the other side, the critic network assesses the effective-

ness of the selected action within a certain condition. The interaction between these two 

networks forms the foundation of the A2C algorithm. 

A2C seeks to maximise the objective function to renew the policy network π(A|S, 

θ): 

 J(θ) = E [logπ(A|S,θ) Aadv(S,A)] (5) 

The advantage function denoted as Aadv(S, A), determines the advantage of taking 

action A in state S compared to the average action value. It is computed as: 

 Aadv(St,At) = Rt+γ V(St+1∣w) − V(St∣w) (6) 

In this formular, Rt represents for the immediate reward obtained at time step t. The 

advantage function quantifies the difference between the immediate reward Rt and the 

expected value of the next state St+1 minus the value of the current state St. 

Along with updating the policy network, A2C also employs a critical network to 

estimate the state value function V(s|w) with parameters w. To reduce the temporal 

difference (TD) error, the critic network, which contributes to the calculation of the 

advantage function, can be updated as: 

 J(w) = (Rt + γ V(St+1∣w) − V(St∣w))2                             (7) 

A2C offers several advantages, particularly when handling continuous action spaces. 

The inclusion of the advantage function helps reduce policy variance, contributing to 

more stable learning. Moreover, the policy is updated in real-time, leading to faster 

convergence [8].  

A2C training can be carried out synchronously or asynchronously, as seen in the 

Asynchronous Advantage Actor-Critic (A3C) algorithm. This work adopts a synchro-

nous approach, where multiple agents operate in parallel in distinct environments. This 
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parallel execution facilitates faster training and enhances the exploration of diverse 

market scenarios. 

2.4 Proximal Policy Optimization (PPO) 

PPO, a sophisticated actor-critic deep reinforcement learning algorithm which has 

gained prominence for addressing challenges associated with training RL agents in 

complex environments. PPO operates on the foundation of the actor-critic architecture, 

aiming to concurrently train the actor and the critic models. 

The actor in PPO learns the policy, determining the agent's response in specified 

states. The critic evaluates the effectiveness of a selected action in a particular state. 

PPO improves upon traditional policy gradient methods by introducing a clipped sur-

rogate objective that limits the policy update to a certain threshold. This limitation pre-

vents drastic policy changes that can lead to instability during training. 

PPO's core contribution is its proximal optimization approach, which maintains pol-

icy updates within a "trusted region" around the current policy. This region restricts 

policy updates to prevent the agent from diverging too far from the existing policy, 

addressing the instability issues associated with RL training. 

PPO has been applied successfully to complex environments, such as trading, as 

evidenced by its effective use in ensemble strategies [12]. It provides a balanced com-

promise between policy stability and exploration, making it a robust choice for training 

trading agents. 

2.5 Generalized Distributional Policy Gradient (GDPG) 

Generalized Distributional Policy Gradient (GDPG) is another notable algorithm that 

extends the actor-critic framework to achieve enhanced performance in trading scenar-

ios. GDPG aims to strike a balance between risk-adjusted returns and stability, an es-

sential characteristic for successful trading agents. 

The foundation of GDPG lies in the combination of the Q-Network from the Gener-

alized Distributional Q-Learning (GDQN) system and a policy network. The ad-

vantages of both the policy gradient approach and Q-learning are combined in this spe-

cial integration. The primary novelty of GDPG is its capacity to beat benchmarks like 

the Turtle trading technique by generating more steady risk-adjusted returns. 

In comparison to Turtle trading strategy, which is a renowned trend-following ap-

proach, GDPG demonstrates its superiority by achieving enhanced performance while 

maintaining stability. The strategy's ability to combine the Q-Network with a policy 

network highlights the potential synergy between value-based and policy-based ap-

proaches [13].  

GDPG serves as an important reference for researchers and traders seeking to ex-

plore advanced trading strategies that leverage both value estimation and policy opti-

mization. Its performance demonstrates the efficacy of combining these approaches to 

navigate the complexities of financial markets. 
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2.6 Assessment Criteria 

The evaluation of the various deep reinforcement learning models introduced in the 

preceding sections requires a comprehensive set of metrics to gauge their performance. 

These metrics encompass both the models' ability to generate returns and their capacity 

to manage risk. Key evaluation metrics include: 

Cumulative Return: Cumulative return measures the total profit or loss generated by 

the trading strategy over a specific period. It provides a quantitative assessment of the 

model's overall profit-generating ability [14]. 

Sharpe Ratio (SR): The Sharpe ratio quantifies the risk-adjusted return of a trading 

strategy. It assesses returns generated per unit of risk undertaken, enabling a compari-

son of risk and return among different models [15]. 

Annualized Return (R%): The annualized return indicates the annual rate of return 

achieved by the trading strategy. This metric facilitates a standardized comparison of 

returns across different time frames [16]. 

3 Results 

The presented performance results in Fig.1 and Table 1 provide valuable insights into 

the effectiveness of various deep reinforcement learning models in the context of trad-

ing across different asset classes. These results demonstrate notable disparities in their 

performance, which can be attributed to several key factors. 

Firstly, the Generalized Distributional Policy Gradient (GDPG) system consistently 

outperforms other models, including the Turtle trading technique, which is a well-es-

tablished benchmark in the field of trading performance comparison. The cumulative 

trade returns and risk-adjusted returns (R%) for GDPG are notably higher for most of 

the evaluated U.S. stocks over the three-year period from 2016 to 2019. This superiority 

in performance may be attributed to GDPG's ability to capture market dynamics effec-

tively while maintaining a level of stability. Its quantitative comparison with other mod-

els, as provided in Table 1, clearly showcases its dominance. 

Moreover, Deep Q-Network (DQN) also warrants attention in the context of algo-

rithmic trading. DQN exhibits commendable performance, with competitive Sharpe 

Ratios (SR) and positive returns (R%) for several U.S. stocks. While not consistently 

outperforming GDPG, DQN presents an alternative approach that leverages Q-learning 

techniques to make trading decisions. This underscores the versatility of reinforcement 

learning models, allowing traders to choose between DQN and GDPG based on their 

specific objectives and risk tolerance. 

On the other hand, the observed performance of the Advantage Actor-Critic (A2C) 

algorithm is noteworthy. A2C demonstrates strengths in capturing larger market moves 

without frequently changing positions. This attribute can be particularly advantageous 

in volatile markets, where sudden price movements can lead to substantial gains. Fur-

thermore, A2C exhibits resilience in navigating markets characterized by mean-revert-

ing behavior, indicating its adaptability to different market conditions. 

It is essential to highlight that the observed differences in performance underscore 

the significance of selecting an appropriate algorithm tailored to the specific 
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characteristics of the trading environment and asset class. The choice between GDPG, 

DQN, and A2C, for instance, depends on the trader's objectives and risk tolerance. 

GDPG excels in providing stable and risk-adjusted returns, making it suitable for risk-

averse investors. DQN and A2C offer alternative strategies, with DQN leaning towards 

Q-learning and A2C combining actor-critic architecture, each catering to distinct trad-

ing preferences. 

Lastly, the differences in performance can be further analyzed by considering the 

underlying mechanisms of each model. GDPG's emphasis on risk-adjusted stability 

may be attributed to its distributional policy gradient approach, which allows it to make 

informed decisions based on a probabilistic understanding of the market. DQN's per-

formance stems from its ability to estimate Q-values and make decisions based on long-

term rewards, providing traders with an alternative method to approach trading deci-

sions. A2C's strength in capturing large market moves could be linked to its actor-critic 

architecture, which combines both policy and value estimation, enabling it to exploit 

opportunities more effectively. 

 

Fig. 1. Returns for commodity, equity index (first row); FX and portfolio of using all contracts 

(second row); fixed income (third row) [8]. 
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Table 1. Comparisons between GDQN, GDPG and Turtle strategy in some U.S. stocks over 3 

years (2016-2019) [12]. 

 GDQN GDPG Turtle 

Symbol SR R(%) SR R(%) SR R(%) 

AAPL 1.02 77.7 1.30 82.0 1.49 69.5 

GE -0.13 -10.8 -0.22 -6.39 -0.64 -17.0 

AXP 0.39 20.0 0.51 24.3 0.67 25.6 

CSCO 0.31 20.6 0.57 13.6 0.12 -1.41 

IBM 0.07 4.63 0.05 2.55 -0.29 -11.7 

 

4 Conclusion 

In conclusion, this paper has delved into the realm of trading strategies and explored 

their evolution from traditional expert-driven approaches to the incorporation of cut-

ting-edge machine-learning techniques, culminating in the application of DRL. The in-

tegration of DRL has showcased its potential to create adaptive trading algorithms ca-

pable of navigating the dynamic and complex landscape of financial markets.  

The overview of DRL's key components and principles has underscored its signifi-

cance in adapting to high-dimensional and continuous state spaces, making it particu-

larly well-suited for the intricate patterns and non-linear relationships characteristic of 

financial markets. The discussion of DRL methodologies such as DQN, PG, A2C, PPO, 

and GDPG has provided insight into their mechanisms, strengths, and potential appli-

cations in trading strategies. 

The comparative analysis of these DRL models across various asset classes has 

demonstrated the superiority of GDPG in achieving more stable risk-adjusted returns, 

surpassing the performance of the renowned Turtle trading strategy. The study also 

highlighted the nuanced differences in performance between models when applied to a 

single stock, showcasing the importance of aligning model selection with specific mar-

ket dynamics. However, it's important to acknowledge the challenges associated with 

DRL, including the need for reliable data, risk management, and interpretability of 

models. These challenges serve as avenues for future research and development, shap-

ing the direction for refining DRL-based trading strategies. 

This paper's contributions lie in providing a comprehensive understanding of the ap-

plication of DRL in trading, presenting a clear picture of the strengths and limitations 

of various DRL models, and demonstrating their performance across different scenar-

ios. The insights gained from this exploration not only shed light on the potential of 

DRL but also underscore the importance of tailoring strategies to the unique character-

istics of the trading environment. As researchers continue to address challenges and 

refine these models, the future of DRL in reshaping trading strategies appears promis-

ing, holding the potential to usher in a new era of intelligent and adaptive approaches 

to navigating financial markets. 
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