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Abstract. With the increasing popularity of sports competitions, the recognition 

of number plate images has become a label for athletes in order to make it easier 

to monitor their progress and status in real time. This paper proposes a compre-

hensive deep convolutional neural network model for number plate recognition. 

The model is divided into three modules: the localization of the number plate, the 

pre-processing of the number plate and the character recognition. Deep learning 

algorithms were applied to number plate localization for high accuracy, number 

plate pre-processing using image enhancement techniques, projection methods 

for character segmentation, and finally a model combining multiple templates 

and BP neural networks for character recognition. Better results and potential for 

athlete number plate recognition is provided by the model proposed in this study. 

Further work is planned to test the robustness of the model in more complex sce-

narios and to apply it to real-world scenarios to provide more accurate number 

plate recognition for sporting events. 
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With a wide variety of sporting events on the increase and a large-scale development
trend. Thousands of photos of athletes during the event are stored in the image library
for each race. It is a huge challenge to find information about a specific athlete in a
large number of images. They are highly influenced by environmental factors due to
the low accuracy of traditional identification methods. It is hoped that a fast and
accurate number plate recognition system can be developed to identify athletes'
number plates more accurately and quickly to assist referees, spectators and
athletes in regulating their own behavior.
Athlete number plate recognition is the use of digital image processing and pattern

recognition to extract and identify the number plate, widely used in various types of
events [1]. Deep learning is a complex type of machine learning algorithm [2]. It is
adept at solving pattern recognition problems in diverse environments. It extracts
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image features through layering, using texture, edge, color and other information in
the image to predict where the target might be in the image. This process overcomes
the problems associated with traditional methods of extracting image features by
automatically learning the features from the samples [3], rather than manually
designing the features. Region localization, character segmentation and character
recognition are the main components of number plate recognition. Methods based on
greyscale image features and color images are commonly used to localize number
plate areas [4]. Acquired images of athletes usually contain a lot of unrelated
background. Number plate recognition requires the elimination of such irrelevancies
and the localization of the license plate region important to the character recognition
process. Frequently used methods for character segmentation include template
matching [5], projection [6] and connected region [7]. The image should be pre-
processed before character segmentation, as the number plate positioned may have
uneven light and tilt problems due to the influence of shooting light, shooting angle,
etc. Common character recognition techniques include template matching, OCR,
SVM and so on [8].
A comprehensive deep convolutional neural network model for license plate

recognition is proposed in this paper, based on an analysis of current license plate
recognition difficulties. The work will be important for the further enhancement of the
accuracy and robustness of athlete number plate recognition and the advancement of
related fields.

2 Material and Methods

2.1 Dataset Description

The composition of the experimental dataset of athletes' bibs in this paper is mainly
derived from photos of runners' public participation taken from marathon websites.
The collection of photos fulfils the conditions: (1) Various races in various areas; (2)
Taken from different locations within the same field, including the finish line as well
as the race; (3) Photographs taken by athletes in different atmospheric conditions; (4)
Sharply focused and blurred photos; 2500 images are selected as the dataset and each
image contains the information of the athlete's number plate, which is divided into a
training set and a test set in a ratio of 7:3. A random sample of 1500 license plate
photos was selected due to the small number of publicly available license plate
recognition datasets for athletes. The athletes' photos and a subset of the number plate
dataset were shown in the Figure 1.
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Fig. 1. Athletes' photos and the number plate dataset (photo credited: original)

2.2 Convolutional Neural Networks (CNN)

CNN is one of the leading deep learning algorithms and is widely used in image
processing. Following the proposal of the AlexNet network by Krizhevsky et al. in
2012 [9], the development of convolutional neural network related techniques has
accelerated [10-13], establishing the position of convolutional neural network based
related techniques in deep learning applications. The CNN consists of the following
layers: input, convolution, pool, full connection, activation function and output.
Figure 2 illustrates the CNN model.

Fig. 2. Example of CNN Model [14]

Input Layer. The captured image is fed into a convolutional neural network
for feature extraction from the original image, which can be multi-channel.
Convolutional Layer. This means that the convolution kernel will be moved to

all positions on the image, and at each position the template will be convoked
with the image. Each convolution layer can generate a set of feature maps, where
the first convolution layer may only be able to extract a few low-order features
such as edges, lines, and so on, while the network of each subsequent
convolution has a significantly higher feature extraction capability than the first
network and is able to extract more complex and higher order features that
cannot be extracted by the first layer [15].
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��� = �∈��
���−1 ∗ ���� + ���� (1)

Where ���� is the convolution kernel in eq. ��� is the first map of feature � after the
convolution. ��� for the bias parameter. �� is the set of feature maps used for the
selection of the input image.
Pooling Layer. In order to retain the most significant features of the image and

improve the speed of the network, the pooling layer is used to downscale the features
extracted from the convolutional layer. The main types of pooling are Max Pooling
and Mean Pooling [16].
Fully Connected Layer. Data from previous layers is integrated, and all activation

data from previous layers is input to the fully connected layer, which ultimately
outputs a one-dimensional feature vector.

2.3 Image Enhancement

When the image is captured, it is affected by the environment, resulting in blurring,
distortion and lack of focus, and when it is transferred, it is affected by electronic
noise, making it difficult to segment and recognize characters. To improve image
quality, Image Enhancement is often used [17]. Image Enhancement can improve the
quality of an image by clarifying blurry images, enhancing specific information in the
image while reducing or removing undesired information [18], and increase character
recognition accuracy. Filtering, sharpening and grey level adjustment can be used to
enhance the image.
Spatial Filtering. Spatial filtering is a widespread image enhancement technique

that uses the spatial information of the image itself to filter the image to improve the
quality and appearance of the image. Mean, Median and Gaussian filtering are some
of the most widely used spatial filtering methods. Mean filtering replaces the grey
value of each pixel in an image with the average of its surrounding pixels, effectively
removing noise from the image while blurring the edges. Median filtering is ideal for
removing very high levels of noise, such as pepper noise, by sorting pixel values in a
window from smallest to largest and then using the median as the new pixel value.
Gaussian filter is a smoothing function that calculates each pixel's grey value and its
neighbor's grey value by a certain weight, which can effectively eliminate high-
frequency noise and preserve fine image information.
Histogram Equalization. The principle of histogram equalization is to change the

original image's greyscale histogram from being concentrated in one greyscale
interval to being evenly distributed across the range. It is a non-linear stretching of an
image so that the number of pixels in a given greyscale range is approximately equal
[19]. This can enhance low contrast or overexposed images by giving the image a
wide dynamic range of grey tones and high contrast.
Image Sharpening. The purpose of image sharpening is to enhance an image's

edges or contours. Sharpening techniques include first-order differential sharpening
and second-order differential sharpening. The most frequently used method is the
gradient method. In discrete image processing, the gradient is represented by a
difference approximation. The Robert, Sobel, Prewitt, Laplacian, etc. operators are
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commonly used in the gradient sharpening method [19]. Equations (2) and (3) denote
the difference form of the first order differentiation and the difference form of the
second order differentiation, respectively [19].

∆�
∆�
= � � + 1 − �(�) (2)

�2�
��2

= � � + 1 + � � + 1 − 2�(�) (3)

2.4 Method of Character Recognition

Character recognition is mainly based on template matching, artificial neural
networks, etc. Template matching involves either directly matching the characters to
the template or extracting the features of the characters and matching these to the
template. Direct comparison with the template requires resizing the characters to the
standard template size, and then comparing the characters to the template. However,
since the image has been pre-processed and normalized, the greyscale of the images
or the location of the pixels is usually altered, affecting recognition performance. This
method involves extracting a set of characteristics from the character image to be
recognized and comparing them with the corresponding characteristics in the template
library to obtain a recognition output [1]. The BP neural network is a multilayer back-
propagating network with continuous transfer function, which has a simple structure
and has been widely used as a mathematical model for nonlinear uncertainty [20]. The
model in this paper combines multi-template and BP neural networks. This template
matching technique rapidly identifies and outputs simple and easy-to-read signs, and
feeds more complex signs into the BP neural network. Figure 3 represents the
algorithmic structure for combining templates and BP neural networks.

Fig. 3 algorithmic structure [20]
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3 Result and Analysis

3.1 Number Plate Locator

Most of the traditional positioning of the number plate is done by means of the color
characteristics of the number plate. The plate area can be detected by exploiting the
fact that there is a significant difference between plate color and background color.
However, this method is easily affected by the shooting environment, shooting angle
and distance, which ultimately results in inaccurate positioning. CNN is used for
number plate localization in this paper. The extraction of the candidate regions is first
carried out on the input image. The region is then fed into the network that will be
used for the extraction of the region's features. These extracted characteristics are fed
into a classifier, which classifies and filters out number plates and backgrounds. The
constructed CNN consists of three convolutional, three pooling, one fully connected
and one softmax classification layer. To extract the features of the candidate region,
the size of the candidate region is normalized to 32*32 and then input into the
network. Multiple convolutional kernels are used to abstract features from the image.
A CNN structure diagram was presented in Figure 4.

Fig. 4. CNN Structure Diagram (photo credited: original)

To demonstrate the effectiveness of the recognition, the results of the proposed
method are compared with those of a conventional recognition method, which relies
on manually extracted characteristics. It is noticeable that the region appears to
overlap heavily with the background, since conventional location is based on both
color features and the extraction of morphological parameters. There is a clearer
segmentation and better differentiation from the background of the number plate
region obtained after deep learning. After convolution, pooling and classification, it
allows for a precise localization. Number plate recognition based on deep learning
can, to a certain extent, overcome the interference caused by background noise and
complete the number plate recognition process more accurately. A total of 2500
images of number plates have been tested under the same conditions. The evaluation
criteria are the correct and incorrect localization rates. Images that fail to be

348             Y. Ba and J. Sun



recognized are also counted as incorrect localizations. The correct localization rate of
this paper's method is as high as 93.76%, while the correct localization rate of
morphological feature-based method is only 86.45%, proving the superiority of this
paper's method. The traditional localization was shown in the Figure 5, and Figure 6
showed CNN recognition.

Fig. 5. Traditional Localization (photo credited: original)

Fig. 6. CNN Recognition (photo credited: original)

3.2 Number Plate Pre-processing

To complete the identification of the athlete's number plate, once the number plate has
been positioned, the characters on it must be segmented, accurately identified and
then subjected to character recognition. Because of possible interference of
background color and lighting conditions, the positioning of the number plate may
result in irregular illumination and blurring, and the angle and lighting of the shot may
result in the number plate being out of focus. All of them will affect the correct
segmentation of characters. Thus, pre-processing of the localized plate region is
required to improve plate recognition.
Spatial Filtering. Due to the limitations of shooting conditions and the effects of

equipment during transmission, noise is introduced into the image. Comparison of
three spatial filters, mean, median and Gaussian. When it comes to removing points of
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high frequency noise from images, Gaussian filters are considered to be more
effective. Figure 7 showed the spatial filtering.

Fig. 7. Spatial Filtering (photo credited: original)

Histogram Equalization. Variations in the greyscale can be altered by adjusting
the brightness or contrast of the pixels in the image. Histogram equalization balances
out the pixels and increases the contrast and sharpness of the image. With the help of
adaptive histogram equalization, the image contrast can be improved without an
excessive increase in the overall color distortion of the image. The histogram
equalization has been shown in the Figure 8.

Fig. 8. Histogram equalization (photo credited: original)

Image Sharpening. For image edge detection and enhancement of high frequency
components of edges to improve clarity and detail, a Laplace filter and Sobel operator
is often used. Figure 9 displayed the image sharpening.

Fig. 9. Image Sharpening (photo credited: original)

After comparing different image enhancement methods, the Gaussian filter is used
to denoise the image and smooth the image structure, enhances the image features by
adaptive histogram equalization and finally goes through Sobel operator for edge
detection.
Character Segmentation. The regional number plate image is pre-processed for

character segmentation. The projection method for the segmentation of number plate
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characters will be the subject of this paper. To calculate the sum of pixels for each
column and row, the binary image is projected horizontally and vertically. Character
regions are followed by an analysis of the projection histograms, which identifies the
spike in each letter and the position of the segment between the letters. Figure 10
showed how the characters get segmented.

Fig. 10. Character recognition result (photo credited: original)

Once the number plate region localization, pre-processing and character
segmentation have been completed, the final critical step in number plate recognition
is to recognize the segmented characters. It combines template matching and BP
neural networks to reduce template matching segment size and use the BP network for
more sophisticated character recognition. The results of the character recognition
were shown in Figure 11.

Fig. 11. Character recognition results (photo credited: original)

4 Conclusion

In conclusion, deep learning has greatly improved the efficiency of number plate
recognition as a method capable of extracting abstract features from images. This
paper proposes and implements a comprehensive deep convolutional neural network
model for athlete number plate recognition. The module is structured into number
plate localization, number plate pre-processing, segmentation, and number plate
recognition. Existing localization methods rely on traditional manual feature
extraction, which is unsatisfactory due to strong environmental influences. In this
paper, the CNN model, which is more robust in complex environments, is used for the
automatic extraction of features for number plate recognition. To achieve superior
denoising results, several image enhancement techniques are used simultaneously to
optimize the pre-processing results. Finally, the character recognition module was
completed using image segmentation, character normalization, multiple templates and
BP neural networks. Deep learning technology is more accurate in recognizing
images of athletes' number plates than traditional recognition technology. This
research will have a significant impact on the efficiency of sports organizations and
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the enhancement of the spectator experience at sporting events. By automatically
recognizing athletes' number plates, the system can reduce errors and manual
intervention, improve accuracy and provide real-time results for the competition. As
science and technology continue to advance, the application and expansion of image
recognition technology supported by deep learning methods is expected to grow
exponentially in the field of competitive sports image recognition.
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medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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