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Both magnetic resonance imaging (MRI) and computed tomography (CT) make
non-invasive medical treatment easier and are particularly useful to doctors when
making diagnoses. Medical imaging with high resolution (HR) can give better
information about lesions and increase diagnostic precision. However, a variety of
issues make the process of acquiring HR medical photos challenging. Medical
images are particularly subject to physical restrictions and acquisition time
constraints in addition to potential technological limitations. For instance,
movement brought on by organ pulsations and patient tiredness can further
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deteriorate image quality and cause images with worse signal-to-noise ratios
(SNR). Super resolution (SR) imaging techniques are therefore becoming
increasingly crucial [1-3].
Deep learning (DL) techniques have recently outperformed traditional machine

learning algorithms in tasks like image classification [4] and target detection [5],
which is largely due to the increase in computational power and the availability
of large data. Convolutional neural network (CNN)-based models have greatly
raised the quality of SR techniques for SR tasks [6-9]. The shallow structure of
the first SRCNN[6] hindered its performance. As a result, researchers have
proposed networks with deeper hierarchical structures as VDSR [7], DRRN [8]
and Memnet [9] in order to improve performance. Recently, a deeper RCAN
model has been proposed [10], which gave extremely satisfactory results in the
SR problem. To further enhance the performance, some scholars have proposed
super-resolution models incorporating dense connections like SRDenseNet [11]
and Memnet [9]. Additionally, more efficient SR approaches based on CNNs
connect a collection of similar feature extraction blocks to build the entire
network, as shown by RDN [12], IDN [13], MSRN [14], and SRFBN [15],
demonstrating the critical importance of each block's performance.
On representative computer vision tasks (target recognition, picture

classification, and semantic segmentation), multiscale networks provide good
results [14, 16, 17]. Zhang et al. suggested an image SR technique for the SR task
that uses multiscale residual networks to adaptively find picture features at
various scales [14]. A deep multiscale network for medical image SR was
proposed by Wang et al. and can more accurately reflect the overall topology and
local texture features of HR medical images [17]. The aforementioned techniques
successfully perform image SR in the spatial domain of the image, but they
typically result in outputs that are overly smooth and lack texture information.
The context and texture information of the image can be preserved at various
levels with image SR in the transform domain, which leads in improved SR
outcomes. To get HR images by forecasting the "missing details" of wavelet
coefficients in low resolution (LR) images, Guo et al. created a deep wavelet
super-resolution DWSR network [18]. In addition, Huang et al.’s wavelet
transform (WT) application to face SR using convolutional neural network
demonstrated that the method can successfully record the local texture
information and overall topology data of the face [19].
In the current study, I propose an NSST-MSID network---a non-subsampled

shearlet transform and multi-scale information distillation network---for the SR
approach for medical images. The MSID network primarily consists of a series of
cascaded multi-scale information distillation blocks, which successfully convert
LR photos into HR images and thoroughly extract the multi-scale features of
medical images. Furthermore, NSST outperforms WT in terms of multiscale,
multidirectional, and translation invariant properties. The proposed network
contains NSST, validates NSST's superiority over WT, and characterizes the SR
problem of medical images as a problem of NSST coefficient prediction, causing
the MSID network to further maintain deeper structural information than the
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spatial domain.

2 Model Construction

2.1 Overview

In the current study, a medical image SR approach has been proposed concerning
the NSST domain MSID network. The method firstly proposes the MSID network,
which integrates the multi-scale with the information distillation structure to form
a cascaded multi-scale information distillation network, which extracts richer
features of long-short paths and facilitates the reconstruction of higher-quality HR
medical images. In addition, the implementation of the SR method in the
transform domain leads to better texture details and smoother edges in the
processed images. Therefore, this paper proposes the use of NSST with superior
performance for HR image prediction. Compared with wavelet and curvilinear
transforms, NSST has better multi-scale, multi-direction and translation invariant
properties, which can better explore the texture and edge features, and further
enable the MSID network to retain richer structural details. Specifically, in this
paper, a series of cascaded depth MSID blocks are designed in the NSST domain
to utilize the rich potential features in medical images for HR image
reconstruction. First, a low-frequency component and several high-frequency
components are extracted from LR medical images using NSST. The low-
frequency component retains global topological information, and the high-
frequency component captures structural and textural information. The MSID
network is then used to estimate the transform coefficients of the generated HR
image using the combination of these components. All the components share a
common set of parameters, and these low/high-frequency components are used as
inputs to the network to improve the recognition capability more than the null-
domain image. Ultimately, these transform coefficients are inverted by NSST to
obtain super-resolution reconstructed HR images. The proposed MSID blocks and
the prediction of NSST coefficients in the NSST-MSID network are introduced in
this part after a description of the proposed MSID network’s topology (see Figure
1).
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Fig. 1. NSST-MSID network structure (Photo/Picture credit: Original)

2.2 MSID Network Structure

This work proposes an MSID network, compared with traditional multiscale
CNNs or multiscale residual networks, the MSID network incorporates cascaded
information distillation blocks, extracts the features of local long and short paths,
collects as much information as possible using fewer convolutional layers,
gradually enriches the effective features for HR image reconstruction, and obtains
competitive results. The shallow feature extraction (SFE) module and deep
feature extraction (DFE) module make up the two components of the MSID
network (see Figure 2). ILR and IHR are used to represent, respectively, LR images
and HR pictures. The end-to-end mapping function F between ILR and IHR must be
learned as the last step.

�� = argmin
�

1
� �=1

� ���� �� ���� , ���� (1)

�� = �1, �2, …, ��, �1, �2, …, �� denotes the weights and bias parameters of the
� convolutional layers; � is the number of training samples; ��� is the loss
function minimizing the difference between ��� and ���.
In image SR techniques, the mean square error function is the most widely

employed objective optimization function [8, 9]. The usage of mean square error
loss, as demonstrated by Lim et al., has drawbacks, hence in this study, the mean
absolute error is used as the loss function instead [20]:

��� �� ���� , ���� = 1
� �=1

� �� ���� − ���� 1
� (2)

To specifically extract shallow features from medical photos, two convolutional
layers are used:

�0 = ����1 ����2 ��� (3)
Where ����1 and ����2 stand for the two SFE module layers' respective
convolution processes. Following the shallow feature module, the DFE module,
which comprises a series of cascaded MSID blocks, uses the shallow features.
Each MSID block can gather as much data as feasible and then extrapolate more
insightful data. A 1 * 1 convolutional layer is subsequently used to feature-fuse
the output data:

��� = ���� �1, �2, …,�� (4)
Where �1, �2, …,�� signifies the cascade of feature maps produced by MSID
blocks 1, 2, ..., T, ���� is the fusion function of 1 * 1 convolutional layers. After
the features are fused, the feature map ������� is obtained by global residual
learning:

������� = ��� + �0 (5)
Except for the feature fusion layer, which has 128 filters, all convolutional layers
in the MSID network are constructed with 64 filters.
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Fig. 2.MSID network workflow (Photo/Picture credit: Original)

2.3 MSID block

There are two sections to each MSID block that can be utilized to extract the
characteristics of local long and short pathways, respectively. Unlike the IDN
model [13], three paths are constructed in each part, and different convolution
kernels are used for different paths. This allows the model to detect long and short
path features at various scales in an adaptive manner. Specifically, it is assumed
that the inputs and outputs of the first part are��−1 and ���. Thus, there are:

��1 = � �1×11 � �3×32 ��−1 + � �5×53 ��−1 + � �7×74 ��−1

(6)
Where �1×11 , �3×32 , �5×53 , and �7×74 are the first part of the 1 × 1, 3 × 3, 5 × 5, and
7 × 7 convolution functions, respectively; ∙ denotes the connection of feature
maps obtained from different convolution kernels; and � denotes the ReLU
function[21]. Then, the 64-dimensional ��1 feature maps and the ��−1 inputs of
the MSID blocks are connected to the channel dimension:

� = � � ��1, 64 ,��−1 (7)
Where � and � stand for the join operation and the slice operation. In order to
combine the recent multiscale data with the earlier data, the 64-dimensional
features are derived from � . This might be viewed as the short path information
that was remembered. The second portion then gets the long path information
using the remaining 64-dimensional feature map as input:

��2 = � �1×15 � �3×36 ��1, 64 + � �5×57 ��1, 64

+ � �7×78 ��1, 64

(8)
Where �1×15 , �3×36 , �5×57 , and �7×78 are the second part of the 1 × 1, 3 × 3, 5 × 5,
and 7 × 7 convolution functions, respectively; Last but not least, the input data,
short path data, and long path data are all combined:

�� = � + ��2 (9)
Where �� denotes the output of the MSID block.
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2.4 NSST coefficients prediction

Straight and curved lines cannot be “optimally” represented in wavelet analysis
picture functions [22]. The shear waveform transform is a geometric
representation that has several scales and resolutions [23]. To maintain the shear
wave transform’s superiority and prevent the detrimental effects of up-sampling
and down-sampling, NSST uses non-subsampled Laplacian pyramid filters [24].
As a result, the NSST exhibits the properties of multi-scale, multi-direction, and
translation invariance.
Multiscale decomposition and multidirectional decomposition are the two

components of NSST. A modified shear wave filter realizes the multidirectional
decomposition, whereas a non-subsampled Laplacian pyramid filter realizes the
multiscale decomposition. The non-subsampled Laplacian pyramid filter divides
the low-frequency subbands k times, yielding k + 1 high-frequency subbands and
one low-frequency subband, in order to capture the singularity of a picture or
signal. In order not to use the subsampling operation, the whole process maps the
shear-wave filter from a pseudo-polarized grid system to a two-dimensional
convolutional computational implementation in Cartesian coordinate system, i.e.,
it is directly processed in the transform domain. When comparing the high
frequency coefficients of NSST and WT, it is evident that NSST can more
accurately represent the texture curvature and details. The medical image SR
problem is presented in this paper as a prediction problem of NSST coefficients,
enabling the MSID network to further preserve richer structural details.
The majority of earlier SR techniques based on CNNs forecasted high-

resolution images in the spatial domain, producing outputs that were too
smoothed while losing texture features. The introduction claimed that SR
approaches in the transform domain can produce more accurate findings than
those in the spatial domain. Subsequently, some scholars[18, 19] proposed
predicting HR images in the WT domain. However, WT has limitations in
directionality, involving only three directions (horizontal, vertical and diagonal),
and is not capable of portraying curves. Therefore, the text adopts the superior
performance of NSST with better multi-scale, multi-direction and translation
invariant properties for HR image prediction. The MSID network can maintain
richer structural information outside of the spatial domain by modeling the
medical image SR problem as a prediction of NSST coefficients. It is important to
note that NSST is a quick and easy approach to boost performance and may be
utilized for various SR networks. The previous literature provided a full
description of the NSST implementation process [24].

3 Training Performance

3.1 Estimation Indicator

Both quantitative and qualitative evaluations of the suggested method's
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performance are made in the experiments. The network performance as well as
the picture quality, such as texture changes, are assessed using three metrics: peak
signal to noise ratio (PSNR), structural similarity (SSIM), and root mean square
error (RMSE) [25]. The following is the calculating formula:

���� �, � = 10 × log10
���2

1
�2 �=1

�
�=1
� ��,�− ��,�

2
��

(10)

���� �, � = 2����+�1 2���+�2
��2+��2+ �1 ��2+��2+ �2

(11)

���� �, � = 1
�2 �=1

�
�=1
� ��,� − ��,�

2�� (12)

Where ��� denotes the maximum gray value; x denotes the predicted image
obtained by network training; y denotes the standard high precision image; ��
denotes the mean of x; �� denotes the mean of y; ��2 denotes the variance of x;
��2 denotes the variance of y; ��� denotes the covariance of xy; �1 and �2 are
constants.
In addition, the test results in this paper were evaluated by a senior radiologist

with more than 10 years of experience in diagnostic imaging, and the mean
opinion score (MOS) was used as a criterion for subjectivity assessment [3, 26].

3.2 Image Dataset

To develop a dataset for medical image SR, medical images of the head, brain,
lung, abdomen, and bone were combined. Each bodily part is represented by 250
photos from the dataset's 1000 medical photographs. The bone and abdominal
photos were used with permission, whereas the head and lung images were
chosen from The Cancer Imaging Archive (TCIA) [27]. The training set was
made up of 700 medical photos (175 images for each bodily area), while the test
set was made up of just 300 images. The majority of the images were created
using MRI (T1-weighted imaging, T2-weighted imaging, diffusion-weighted
imaging DWI, and fluid flip recovery attenuation series FLAIR) and CT (low
density, high density, and mixed density) modalities. In this experiment, the MRI
images of the abdomen with an imaging resolution of 320×290 and the CT
images of other parts of the body with an imaging resolution of 512×512 were
used.
The experiment uses 1,000 original high-resolution medical photos. To create

the low-resolution image dataset, the original high-resolution medical images are
downscaled by 8*/4* using the conventional Bicubic (bicubic interpolation).
These low-resolution and high-resolution datasets form a training set that is fed
into the network for training in order to build SR models and finally obtain SR
results.

3.3 Training Process

On the 700-image training dataset given in Section 3.1, data augmentation was
done. The modified training images’ flipping and rotation were taken into
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consideration. The original photos are specifically rotated by 90, 180, and 270°
before being flipped horizontally. In this way, for each original image there are 4
additional augmented versions. The NSST-MSID network contains 8 MSID
blocks. The training medical images are decomposed by one level of NSST to
obtain 1 low-frequency subband with 4 high-frequency subbands, which are then
cropped into 48 × 48 overlapping 24-pixel slices for training. The initial learning
rate for all layers is set to 10-4, and after 50 cycles, the learning rate is reduced by
half. The batch input is set to 64. The model was trained on Tesla k80 GPUs in
about 9 hours.

3.4 Comparison with other Advanced Methods

In this study, the effectiveness of the suggested strategy is assessed using data
from the brain, lung, abdomen, and bone. All of the models are trained using the
identical training sets, and the publicly available codes of the comparable
methods are used to ensure a fair comparison, including MSRN [28], IDN [13],
SRFBN [29], DWSR [18], DMSN [17], RCAN [10], and the present NSST-MSID
network. The PSNR, SSIM and RMSE values (scales: 4 × and 8 ×) used for
comparison are shown in Tables 1 to 3. It is evident that NSST-MSID network
suggested in this paper produces greater PSNR and SSIM values as well as lower
RMSE values as compared to the other approaches when tested on the four
datasets. This shows that the proposed technique has better image texture
variation quality and network performance. Additionally, the perceived realism of
the generated SR images is quantitatively evaluated using MOS. In this study, 100
photographs are randomly chosen for validation assessment from a test batch of
300 images. In this study, there is one HR picture for each image and seven
subsequent images that have been processed using the seven SR approaches. On a
scale of 1 (poor), 2 (fair), 3 (good), and 4 (very good), radiologists were asked to
rate the quality of the images (excessive smoothness, artifacts, poor texture, and
low signal-to-noise ratio); the MOS was then determined by computing the mean
and standard deviation of each approach. The MOS values of the currently
proposed NSST-MSID network obtained the greatest MOS when compared to the
MOS values of each method for the header dataset (4 ×).

3.5 Ablation Experiment

The influence of the number of MSID blocks T on the network's performance
shows that increasing T improves performance, suggesting that a deeper network
is preferable. Considering the compromise between accuracy and speed, T=8 is
used to construct the NSST-MSID network in the experiments. Incorporating the
distillation feature improves the PSNR values for all four sites at a scale of 8× and
a number of MSID blocks T = 8. After incorporating the multiscale feature, the
PSNR values of all four sites are improved at a scale of 8 × and the number of
MSID blocks T = 8. Additionally, since the absolute receptive field of the
convolution on various patches is constant, the size of the picture patch has little
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to no impact on the network's ability to extract features.
The NSST-MSID network suggested in this paper exhibits a considerable

improvement, with NSST predictions outperforming the spatial domain and the
other two transform domains. In addition to this, this paper further evaluates the
effect of NSST decomposition hierarchy on network performance. Since the more
high-frequency layers of decomposition and the more directions, the overhead of
the network will increase, so this paper only discusses the high-frequency layers
of decomposition with less than 5 layers. Considering the network overhead, this
paper selects the results of NSST decomposition of 3 layers. Table 8 shows the
PSNR values corresponding to different high-frequency layers decomposed by
NSST. As the number of decomposition layers and decomposition directions
increase, the learned details are richer and the PSNR values also increase.

4 Conclusion

The NSST-MSID network, a unique super-resolution reconstruction technique for
medical images that is based on the NSST domain's MSID network, is presented
in this research. By leveraging the NSST to handle the super-resolution
reconstruction problem in medical pictures, the suggested method seeks to
address the difficulty in getting high-resolution images in medical imaging.
Multiple cascaded MSID blocks make up the NSST-MSID network, which is
intended to extract multi-scale features from the images and convert low-
resolution images into high-resolution ones. This approach formulates the super-
resolution task for medical images as the prediction of NSST coefficients, in
contrast to earlier approaches that predicted high-resolution images in the spatial
domain. Compared to spatial domain techniques, this strategy enables the MSID
network to keep rich structural information better. Results from experiments on a
collection of medical images show that the NSST-MSID network outperforms
competing techniques in terms of PSNR, SSIM, and RMSE. This method
achieves better preservation of local texture details and global topological
structures in the reconstructed images, resulting in improved medical image
reconstruction effect. Overall, this research suggests a unique CNN-based SR
network for medical imagery. The network can completely extract the multiscale
aspects of medical images since it is made up of a succession of cascaded
multiscale information distillation blocks. In order to maintain deeper features
than the spatial domain, NSST is added into the network, significantly enhancing
SR performance. The results, both quantitative and qualitative, show that the
suggested method is superior. A practical answer to the problem of acquiring
high-resolution medical images is the NSST-MSID network. By leveraging the
NSST domain and the multi-scale information distillation network, this method
achieves better preservation of fine details and overall image quality in medical
image super-resolution reconstruction. The performance of the NSST-MSID
network can be further improved in the future research, and its use in other
medical imaging jobs can also be investigated.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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