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Abstract. The Lunar Lander problem presents a formidable challenge in the 

realm of reinforcement learning, necessitating the creation of autonomous 

spacecraft capable of safe landings on the lunar surface. In this study, three 

prominent reinforcement learning algorithms, namely Deep Q-Network (DQN), 

Double Deep Q-Network (DDQN), and Policy Gradient, are investigated and 

examined to address this problem. Initially, DQN algorithm, combining neural 

networks and Q-Learning, is leveraged to learn an optimal landing policy. By 

approximating Q-Values through neural network training, the spacecraft learns 

to make informed decisions, leading to successful landings. Subsequently, 

DDQN algorithm, which mitigates overestimation bias, is used. By utilizing two 

neural networks - one for action selection and the other for evaluation - DDQN 

improves stability and convergence, resulting in refined landing policies. 

Furthermore, this work explores the application of Policy Gradient methods for 

this problem. By directly optimizing the policy using gradient ascent, the 

spacecraft maximizes cumulative rewards, achieving efficient and accurate 

landings. The performance of the algorithms is assessed through extensive 

simulations that encompass diverse lunar surface conditions. The results 

demonstrate the effectiveness of these methods, showcasing their capability to 

facilitate successful and fuel-efficient spacecraft landings. In conclusion, this 

study contributes to the understanding of DQN, DDQN, and Policy Gradient 

algorithms for the Lunar Lander problem. The findings highlight the unique 

strengths of each algorithm and their potential in autonomous spacecraft landing. 

The insights gained from this research have implications for the development of 

intelligent landing systems in future lunar missions, advancing the field of 

reinforcement learning in aerospace applications. 
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1 Introduction 

The Lunar Lander problem is a simulated task that involves training an intelligent 

system to control a lander and achieve a safe landing on the Moon [1,2]. The lander has 

thrust control, and the goal is to adjust the thrust to achieve a smooth and accurate 

landing in each initial state within a target area. The challenge lies in finding the right 
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thrust strategy to avoid accidents and landing failures in the low-gravity and complex
terrain conditions of the Moon. Through interaction with the environment and
guidance from reward signals, the intelligent system learns how to adapt to different
states and make optimal decisions to successfully complete the landing task.
There are several key reasons for using reinforcement learning methods to solve

the Lunar Lander problem [3,4]. Firstly, in the Lunar Lander problem, it involves a
complex environment characterized by continuous state and action spaces, as well as
unknown system dynamics. Traditional solution methods may struggle to effectively
model and address such complexity. Secondly, reinforcement learning offers a
flexible and highly adaptive approach to tackle such complex problems.
Reinforcement learning algorithms can learn from interactions with the environment
without requiring prior knowledge of the problem. In the case of the Lunar Lander
problem, there is no need to have prior understanding of the complete physics model
or the optimal strategy. Reinforcement learning algorithms can autonomously learn
and improve through trial and error and optimization processes based on interactions
with the environment. Thirdly, Reinforcement learning algorithms exhibit strong
adaptability and generalization capabilities when faced with different tasks and
environmental variations. For the Lunar Lander problem, there may be various initial
conditions and task objectives. Reinforcement learning can adapt to these variations
by learning from experience and finding optimal strategies to accomplish the tasks.
Lastly, The Lunar Lander problem necessitates the intelligent system to make
decisions without human intervention. By interacting with the environment,
reinforcement learning methods empower the intelligent system to acquire an optimal
strategy and autonomously make decisions without the need for predefined rules.
The Lunar Lander problem has practical applications in many aspects. Firstly,

considering that spacecraft landing on the moon is devoid of any human intervention
and relies solely on the capabilities of the machine itself, the Lunar Lander problem
can be directly applied to the landing phase of space missions on Mars or the moon.
By employing reinforcement learning methods, an intelligent system can learn to
control the lander and achieve safe and precise landings in diverse landing scenarios.
Secondly, the Lunar Lander problem can also be applied to the scenario of automated
parking for self-driving cars. Through interactions with the environment, the
intelligent system can learn appropriate control strategies, enabling the car to achieve
accurate parking in various parking scenarios. This would greatly facilitate people's
parking operations and help prevent accidents caused by human errors. Thirdly, the
Lunar Lander problem can be utilized for robot navigation and manipulation tasks. By
learning from reward signals in the environment, robots can acquire the skills to
navigate and perform tasks in complex environments, such as avoiding obstacles and
grasping objects. Lastly, the Lunar Lander problem can also be regarded as a game
control problem, where reinforcement learning can be applied to flying or landing
tasks within a game context. The intelligent system can learn the optimal strategies by
interacting with the game environment, aiming to achieve high scores or complete
specific objectives.
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2 Method

2.1 Dataset

The environment implementation for the entire problem is based on the Gym
environment, and the data used is sourced from Gym [5]. The specific data
description of the Lunar Lander problem may be as follows:
Action Space: Push left, push down, push right, no thrust are four discrete actions

in space.
Observation Space: lander's horizontal and vertical position, velocity, angle,

angular velocity, and other relevant parameters are included in the observation
space.These observations provide information about the lander's current state and the
environment, enabling the agent to make appropriate decisions.
Rewards: The reward function is used to evaluate the agent's performance after

taking specific actions at each time step. In the Lunar Lander problem, a common
reward rule is to provide high rewards for successful landings and lower rewards or
penalties for unsuccessful landings.
Starting date: The starting state refers to the initial state of the lander when the

simulation environment begins. The choice of starting state can have an impact on
problem-solving, and it should be set based on specific requirements.
Terminal States: Terminal states indicate the completion or failure of the lunar

landing task. For example, the task may end when the lander successfully touches
down in the target area, or when a landing failure occurs or the designated time limit
is exceeded.

2.2 Models

Deep Q-Network (DQN). Before introduce this algorithm, the Q-Learning algorithm
will be introduced, it is the fundamental of the DQN algorithm [6]. Q-Learning, a type
of reinforcement learning, operates without a model and can be considered as an
asynchronous dynamic programming approach. It equips agents with the ability to
learn optimal actions in Markovian domains by directly experiencing the outcomes of
their actions, eliminating the need for domain mapping.
During Q-Learning, the agent engages in interactions with the environment. It

observes the current state, selects actions accordingly, and receives rewards as
feedback. The primary objective is to determine an optimal policy that maximizes the
total accumulated reward for each state. At the core of Q-Learning is the concept of
the Q-Value function, which estimates the value of taking a specific action in a given
state. This Q-Value denotes the expected cumulative reward for executing a particular
action in a specific state. The Q-Value function is iteratively updated through the
learning process in Q-Learning.
DQN is an improved algorithm that builds upon Q-Learning and employs a deep

neural network estimate the Q-Values for different state-action pairs. [7]. Unlike
traditional Q-Learning, DQN utilizes a deep neural network as a function
approximator, with the state as input and the output being the corresponding Q-Values
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for each action. By storing and randomly sampling previous experiences in an
experience replay buffer, DQN can train the deep neural network stably and reduce
the fluctuation of targets by using a target network. These improvements enable DQN
to handle complex problems with high-dimensional state spaces and enhance the
algorithm's convergence and stability.
Therefore, Q-Learning is the foundation of DQN, it addresses the limitations of

traditional Q-Learning in high-dimensional state spaces and training instability. It
achieves this by incorporating deep neural networks for function approximation and
introducing techniques like experience replay. DQN demonstrates better performance
and scalability in handling complex tasks and large state spaces.

Double Deep Q-Network (DDQN). It is an improvement over DQN aimed at
mitigating a problem called overestimation in DQN [8]. In DQN, the selection of
Q-Values is based on maximizing the Q-Value from the target network. However, this
can lead to an overestimation of the value for certain actions. To address this issue,
DDQN introduces an additional neural network to evaluate the value of the action
chosen for maximization. In other words, DDQN uses the target network to select
actions but uses the current main network to evaluate the value of that action. By
doing so, DDQN can reduce the impact of the overestimation problem and obtain
more accurate Q-Value estimates.
Therefore, DDQN is an improvement over DQN that mitigates the overestimation

problem by using an additional neural network to evaluate action values. This
improvement can enhance the performance and stability of the algorithm and, in some
cases, result in more accurate strategies.

Policy Gradient. It is a gradient-based reinforcement learning algorithm used to learn
the optimal policy [9]. Unlike value-based methods like Q-Learning, policy gradient
directly optimizes the policy itself, avoiding the need for value function estimation
and making it well-suited for problems that involve continuous action spaces.

The fundamental concept behind policy gradient is to optimize the policy through
maximizing the expected value of cumulative rewards. To achieve this, a policy
function π(a|s) is defined, which entails choosing an action "a" by considering the
current states according to a probability distribution. Then, the optimal policy is
learned by updating the policy function based on its gradient. Specifically, the update
rule for policy gradient algorithm is:

� = � + � ∗ �� �(�) (1)

where the parameter θ corresponds to the policy function π, and α represents the
learning rate, J(θ) is the expected value of cumulative rewards, and �� �(�) is the
gradient of J(θ) in terms of θ. The update rule means that a series of actions are taken
under the current policy, compute the expected value of cumulative rewards based on
these actions, and then by iteratively adjusting the parameters of the policy function in
the direction of the gradient to maximize the expected cumulative rewards.
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Reinforce Algorithm. For Reinfoorce, it is a specific algorithm under Policy
Gradient methods [10]:
At each iteration, an episode is sampled, and then the parameters are updated. In

Reinforce algorithm, the return of the current episode is used

�� = �=�+1
� ��−�� �� (2)

This return, �� , is used to update the parameters θ of the policy function qπ(�� ,
��). So, it can get the formula of Reinforce algorithm:

��+1=� �� + ���∇���(��|��, ��+1) (3)

If �� is greater than zero, the direction of parameter update will enhance the
likelihood of choosing the current action in the current state. This means that if the
return is favorable, the probability of selecting that action will be increased.
Moreover, the larger the return, the larger the magnitude of the gradient update,
resulting in a greater increase in probability.

2.3 Evaluation Indicators

In this section, the effectiveness of algorithms are measured by using several metrics.
Below are some relevant descriptions:
Learning speed: This metric measures the algorithm's processing speed in handling

a problem within the same episodes. It indicates that among algorithms with a fixed
number of episodes, the one that completes the learning process the fastest is
considered to have the optimal learning speed.
The amount of reward: Rewards are generally divided into two types: average

reward and maximum reward. Average reward refers to the average reward obtained
in each episode, while maximum reward represents the highest reward achieved in a
specific episode. It is generally considered better when the average reward value is
larger and the maximum reward in a single episode is the highest.
Convergence rate: It refers to the speed or rate at which an algorithm or process

approaches a desired or optimal solution. It measures how quickly the algorithm
converges or reaches a stable state. A faster convergence rate indicates that the
algorithm reaches the desired solution more quickly, requiring fewer iterations or
computational steps. On the other hand, a slower convergence rate means that the
algorithm takes longer to converge, requiring more iterations or computational effort
to reach the desired solution.
Noise: It refers to random or irrelevant fluctuations, outliers, or errors present in

the data. It can arise due to uncertainties in the measurement or data collection
process, sensor noise, interference during data transmission, labeling errors, and other
factors. In general, noise is measured by the magnitude of fluctuations in an image. If
the fluctuations in an image are large, it indicates a higher level of noise.
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3 Result

3.1 Environment and Experiment Design

In the OpenAI Gym environment, there is a Lunar Lander experiment environment
called "LunarLander-v2" that is used for machine learning experiments and algorithm
development. This environment is leveraged to do the experiment.
Task Objective: The objective of Lunar Lander is to control a lunar lander

spacecraft to achieve a smooth landing on the lunar surface. The agent needs to learn
how to adjust the lander's thrust and angle in the given environment to minimize fuel
consumption and maintain stability during landing.
State Space: The state space in the LunarLander-v2 environment includes the

lander's various position and velocity information, and whether it is in contact with
the lunar surface. These state information is provided to the intelligent agent for
decision-making and action selection.
Action Space: The agent can take the actions mentioned before. The target of agent

is to keep studying to choose appropriate actions to control the lander and achieve the
landing objective.
Reward Mechanism: The reward mechanism in the LunarLander-v2 environment

evaluates the agent's actions by providing rewards. A high positive reward is given for
a successful landing while penalizing unstable actions. Additionally, a significant
negative reward is given if the lander crashes or leaves the game area.
Termination Condition: The experiment terminates when the agent completes the

task or reaches the maximum number of steps. The completion condition is achieved
when the lander successfully lands.

3.2 Comparison between DQN and DDQN

When using DQN and DDQN to solve the Lunar Lander problem, determining in
choosing the hyperparameters, learning rate and discount factor are really significant.
Here are some descriptions to these two hyperparameters:
Learning Rate: The learning rate determines the step size when updating the neural

network weights. Choosing an appropriate learning rate balances the training speed
and stability. If the network weights change too slowly or the training does not
converge, the learning rate could be increased. Conversely, if the training process is
unstable or diverges, the learning rate could be decreased.
Discount Factor: The significance of future rewards is measured by the discount

factor. A higher discount factor (e.g., 0.99) implies that the agent assigns greater
importance to rewards in the distant future. This is beneficial for learning long-term
goals and planning. However, an excessively high discount factor can lead to unstable
training or slow convergence. A lower discount factor (e.g., 0.95) focuses more on
immediate rewards, which may make the agent inclined towards short-term gain
strategies.
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As shown in Table 1 and 2, considering these two factors, various values are
tried. Here are two tables showing the comparison between DQN and DDQN when
using different learning rate discount factor.

Table 1. The result of DQN

Learning rate Discount factor Average reward Completion time(s)
1 0.0005 0.99 195.55 423
2 0.001 0.99 209.69 396
3 0.0005 0.975 123.70 602
4 0.001 0.975 60.41 580
5 0.0005 0.95 -55.19 640
6 0.001 0.95 -69.33 648

Table 2. The result of DDQN

Learning rate Discount factor Average reward Completion time(s)
1 0.0005 0.99 234.88 450
2 0.001 0.99 243.36 410
3 0.0005 0.975 204.08 510
4 0.001 0.975 112.42 498
5 0.0005 0.95 -46.69 715
6 0.001 0.95 -63.35 727

From two tables, it could be observed that when choosing 0.001 in learning rate
and 0.99 in discount factor, average reward is the biggest among them. Here is the
reward comparison between DQN and DDQN, as shown in Fig. 1, 2 and 3
respectively.

Fig. 1. The reward of DQN (Figure credit: Original).
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Fig. 2. The reward of DDQN (Figure credit: Original).

Fig. 3. The comparison of the reward between DQN and DDQN (Figure credit: Original).

3.3 Performance Comparison of Different Vales in Policy Gradient

Considering the two factors: learning rate and discount factor. This work tries to
change the two values to find the best situation. Here is a table showing the
comparison when using different learning rate discount factor, as shown in Table 3.
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Table 3. The result of Policy Gradient with Different Parameters.

Policy
Gradient

Learning
rate

Discount
factor

Average
reward

Completion
time(s)

1 0.015 0.99 -74.68 16
2 0.01 0.99 3.45 76
3 0.005 0.99 76.25 130
4 0.001 0.99 -66.32 47
5 0.015 0.97 -88.72 152
6 0.01 0.97 89.23 251
7 0.005 0.97 59.86 171
8 0.001 0.97 -75.34 56

Results in the table shows that when selecting 0.01 and 0.97 as the learning rate
and discount factor respectively, average reward is the biggest, as shown in Fig. 4.

Fig. 4. The reward of Policy Gradient with 0.01 learning rate and 0.97 discount factor (Figure
credit: Original).

Here is the reward when selecting 0.005 and 0.99 as the learning rate and discount
factor respectively, as shown in Fig. 5.
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Fig. 5. The reward of Policy Gradient with 0.005 learning rate and 0.99 discount factor (Figure
credit: Original).

When selecting 0.015 and 0.97 as the learning rate and discount factor
respectively, average reward is the smallest, as shown in Fig. 6.

Fig. 6. The reward of Policy Gradient with 0.015 learning rate and 0.97 discount factor (Figure
credit: Original).
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4 Discussion

There are advantages and disadvantages of methods. For DQN, firstly, it utilizes
experience replay and target networks to improve training stability and sample
efficiency. Secondly, It exhibits the capacity to effectively manage high-dimensional
state spaces, such as image inputs. However, it is less suitable for problems that
involve continuous action spaces. as it operates and learns in discrete action spaces.
And it can suffer from training instability, leading to difficulties in convergence
during the training process.
As for DDQN, it is an improvement over DQN that addresses the issue of

overestimation of action values, enhancing training stability. And it employs two
Q-Networks, one for action selection and another for action value estimation,
mitigating the instability of training targets. However, it still operates in discrete
action spaces and is not applicable to problems with continuous action spaces.
As for Policy Gradient it is a direct policy learning method that can handle

problems with continuous action spaces. Moreover, it learns the probability
distribution of actions and can generate more continuous and smooth policies.
Additionally, it directly optimizes the expected return without the need for indirect
value estimation like value-based methods. However, it typically requires more
samples and longer training time as it relies on sampling and Monte Carlo methods
for training. And it can encounter training instability, especially in the initial stages.
The result shows that the impact of parameters on these two methods is nearly

identical. When choosing 0.001 and 0.99 as two parameters, both methoods perform
best. They get the highest average reward and the completion time is the shortest. The
average rewards are 209.69 and 243.36 respectively, and the completion times are
396s and 410s respectively.
While keeping the learning rate constant, the discount factor progressively

decreases, it could be observed that a decrease in average rewards and an increase in
completion time. When keeping the discount factor constant and change the learning
rate, result shows that the average rewards are generally higher when the learning rate
is 0.001 compared to when it is 0.0005.
Fig.1, 2, and 3 display the reward plots for the best-case scenario. Fig. 1 show that

the rewards show an overall upward trend, but the noise is relatively high, with
noticeable fluctuations. Moreover, the convergence rate is slow, as it takes
approximately 270 episodes for the rewards to converge to nearly 200. Fig. 2
demonstrates that, firstly, its average reward is slightly higher than that of DQN.
Secondly, the noise is relatively smaller, which makes its performance more stable
compared to DQN. Lastly, its convergence rate is relatively faster, reaching around
200 rewards at approximately 180 episodes. Finally, the reward comparison plot in
Fig. 3 shows that DDQN exhibits a consistently increasing trend in rewards, while
DQN shows larger fluctuations. This indicates that DDQN is more stable than DQN.
The findings in Table 3 illustrate the outcomes when either the learning rate is

unchanged and the discount factor is adjusted, or the learning rate remains constant
while modifying the discount factor. The results indicate that the best performance is
observed when the learning rate is set to 0.005 and the discount factor is set to 0.99,
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as well as when the learning rate is set to 0.01 and the discount factor is set to 0.97.
the average rate is relatively high, which means it has a good performance.
From Fig. 4, it could be observed that reward coverage to 200 at about 250

episodes and the noise is small, and the completion time is 251s. Fig. 5 shows that
reward coverage to 200 at about 350 episodes and the noise is relatively bigger,
however, the completion time is 130s, which is smaller than Fig. 4. Fig. 6 displays
that in this scenario, the reward performance is the worst, as it remains consistently
stable around -180 after approximately 200 episodes. This represents the poorest
performance among the several scenarios examined.

5 Conclusion

In this study, three different methods are applied, namely DQN, DDQN, and Policy
Gradient, to the Lunar Lander problem. Each method brought unique insights and
performance characteristics to the table. Methodology-wise, DQN is a value-based
approach that learns the value function between states and actions. DDQN, an
improvement over DQN, addresses the issue of overestimation of action values by
utilizing two Q-Networks. Policy Gradient, on the other hand, is a direct policy
learning method that optimizes the expected return without relying on value
estimation.
The results obtained from experiments indicate that in terms of average rewards,

both DQN and DDQN outperformed Policy Gradient. They demonstrated higher
rewards and more stable performance throughout the training process. However, it is
worth noting that Policy Gradient exhibited a faster completion time, achieving twice
the number of episodes in less time compared to DQN and DDQN. This indicates its
superior processing speed.
In conclusion, The selection of method relies on the distinctive objectives and

practical considerations of the Lunar Lander problem. DQN and DDQN are suitable
for maximizing rewards and ensuring stability, making them reliable choices when
high performance is desired. On the other hand, Policy Gradient offers faster
processing time, which can be advantageous in time-sensitive applications. Future
research could explore hybrid approaches that combine the strengths of these methods
to achieve even better results in Lunar Lander or similar reinforcement learning tasks.
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