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Abstract. Reinforcement learning (RL) has made significant advancements in 

training artificial agents to play video games. Among various RL algorithms, the 

deep Q-network (DQN) based on Q-learning has shown outstanding performance 

in this domain. Recently, dueling DQN, as an enhancement to the standard DQN, 

has garnered significant attention in the research community. However, there re-

mains a need for a comprehensive and detailed comparison between DQN and 

dueling DQN, specifically in the context of the Super Mario game environment, 

as well as an examination of their performance differences. This article aims to 

investigate and compare the advantages and disadvantages of DQN and dueling 

DQN in the Super Mario game. It seeks to explore the potential reasons underly-

ing the observed differences in their respective performances. The evaluation is 

conducted over 3000 epochs, during which the final scores achieved by dueling 

DQN are observed to be slightly higher than those achieved by DQN. By con-

ducting a rigorous and systematic analysis, this research is conducted for improv-

ing the the understanding of the nuances and performance disparities between 

DQN and dueling DQN in the specific context of the Super Mario game. The 

obtained results will shed light on the potential benefits and drawbacks of each 

algorithm, providing insights for further advancements and improvements in RL-

based gaming agents. 
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Reinforcement learning (RL) has emerged as a prominent and active research area,
distinguished from traditional supervised and unsupervised learning paradigms. In
contrast to these methods, RL places a primary focus on the dynamic interaction
between an environment and its corresponding agents. By actively exploring the
environment, RL agents continually acquire feedback in the form of rewards, which
serve as signals to refine their decision-making processes and optimize their actions in
order to maximize cumulative rewards. One of the core characteristics of RL is the
incorporation of sequential decision-making within a Markov Decision Process
framework. RL agents operate in an environment with partially observable states and
must make a series of actions over time to accomplish long-term missions. The
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temporal dimensionality introduces challenges related to the trade-off between
short-term rewards and long-term objectives, necessitating the use of sophisticated
algorithms to balance exploration and exploitation strategies [1].
The distinctive feature of RL is that it is adaptive, with agents continuously

learning from their experiences to enhance performance. RL agents attempt to
estimate the ideal policy or value function through the use of a variety of learning
techniques, such as value-based methodologies or policy gradients, while relying on
the environment's feedback to inform their choices. With high uncertainty and
randomness, RL can handle complicated issues thanks to its iterative learning process.
RL techniques have been thoroughly studied in a variety of domains, such as

operational research, simulation-based optimization, evolutionary computing, and
multi-agent systems, including games [1].
Playing video games is the most simple and affordable method of observing agent

performance among these applications. As a result, this article decides to use gaming
to test the Deep Q network (DQN) and competing DQN algorithms. The gaming
environment is based on a set of RL research tools called OpenAI Gym. It has a
website where people may share their findings and assess the efficacy of algorithms,
as well as a growing database of benchmark challenges that highlight a common user
interface [2].
This library encompasses a robust package that integrates reward strategies and

state representations, thus serving as a suitable framework for RL training. Within the
OpenAI Gym library, the Super Mario environment was specifically chosen as a
testbed due to its characteristic of exhibiting linear state changes over time. Although
the presence of traps within the game is deterministically governed rather than
stochastic, their abundance poses a formidable challenge for agents, necessitating
multiple training iterations to attain high scores. In this context, the dynamic
manifestation of traps as the agent traverses the environment provides a distinct
opportunity to discern the contrasting capabilities of the dueling DQN and DQN
algorithms [3,4]. In the context of experimental design, this study adopts both DQN
and dueling DQN methodologies to train on identical Super Mario game levels over a
duration of 3000 iterations. The ultimate criterion for evaluating the comparative
efficacy of these two approaches rests upon the obtained final scores. Subsequently, it
is discerned that dueling DQN exhibits a marginal performance advantage over DQN
within this experimental setting.

2 Related Work

The distinctive feature of RL is that it is adaptive, with agents continuously learning
from their experiences to enhance performance. RL agents attempt to estimate the
ideal policy or value function through the use of a variety of learning techniques, such
as value-based methodologies or policy gradients, while relying on the environment's
feedback to inform their choices. With high uncertainty and randomness, RL can
handle complicated issues thanks to its iterative learning process [5].The agent's
behavior in Q-learning is determined by a policy that balances exploration and
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exploitation. Initially, the agent explores the environment to gather information about
state-action pairs, and as learning progresses, it exploits the learned Q-values to select
actions with higher expected rewards. Q-learning employs the Bellman equation to
iteratively update the Q-values, gradually approaching the optimal value function.
The algorithm converges to the optimal policy, guaranteeing optimality and
convergence under certain conditions [6]. Q-learning has shown success in various
domains, especially in problems with discrete states and actions. However, it faces
challenges in continuous state and action spaces, often requiring additional techniques
like function approximation or deep learning to handle large and continuous state
spaces effectively.
In order to broaden the scope of Q-learning, the DeepMind team unveiled DQN in

2013 [7]. DQN solves the issues posed by continuous state and high-dimensional
action spaces by fusing Q-learning and deep learning. Environment observations are
inputted into DQN, which then generates corresponding Q-values for every potential
action. To do this, a Q-network is trained to resemble the ideal Q-value function [8,9].
The training process of DQN incorporates two key techniques: experience replay and
target network. Experience replay involves storing and replaying experience samples
of the agent's interactions with the environment. This method improves sample
efficiency and data utilization, enabling the agent to learn from past experiences. The
target network is employed to stabilize the training process. It involves periodically
updating a separate network with the parameters of the Q-network, which reduces
target value deviations during training.
Dueling DQN serves as an enhancement of the traditional DQN algorithm. It

introduces a novel approach by decomposing the Q value function into two distinct
components: the state value function, denoting the overall value of choosing any
action in a given state, and the advantage function, quantifying the relative advantage
of each action compared to others [10]. This decomposition allows Dueling DQN to
grasp more knowledge of the underlying structure of the Q values and facilitates more
accurate estimation. By separately modeling the state value and advantage, Dueling
DQN effectively disentangles the value estimation process, enabling more efficient
and precise value function approximation. This innovative approach not only
improves the learning process but also enhances the algorithm's ability to generalize
across different states and actions. Through the utilization of this decomposition
technique, Dueling DQN strives to achieve more efficient and accurate Q value
estimation, resulting in improved overall performance in RL tasks.
In previous research, researchers have investigated the comparative performance of

DQN and Dueling DQN algorithms. Hessel et al. conducted a study comparing DQN
with various enhanced algorithms, including Dueling DQN, Double DQN, and Noisy
DQN. Their findings revealed that Dueling DQN achieved significantly higher scores
compared to DQN and outperformed other DQN-based enhanced networks [8].
The DeepMind team, responsible for the development of Dueling DQN, also

employed the Atari game environment to compare the DQN algorithm with Dueling
DQN. Their results demonstrated that the Dueling DQN algorithm achieved higher
scores in the game, highlighting its superior performance. Additionally, this study
included visualizations to illustrate the differences between Dueling DQN and DQN
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on the same image, further elucidating the advantages of the Dueling DQN algorithm
[10].
Building upon these previous findings, this article aims to explore the performance

disparities between Dueling DQN and DQN in a more complex environment, namely
the Super Mario game. By examining their performance in this challenging
environment, the study seeks to provide further insights into the differences and
capabilities of Dueling DQN and DQN algorithms.

3 Method

3.1 DQN

The DQN algorithm was developed to handle decision-making problems in the
context of Markov Decision Processes (MDPs), exploiting the advantages of RL and
deep learning. The Q-value function, which is calculated by DQN utilizing deep
neural networks, represents the expected cumulative reward in a particular state,
received from an specific action.
A number of hidden layers are often present in the DQN, in addition to an output

layer. Convolutional layers and fully connected layers are widely employed in the
hidden layers to manage the raw input data gathered from the environment. The
number of output nodes is equal to that of available actions, and each node in the
layer reflects the Q-value for a certain action. The neural network layer that was used
in this essay is displayed in Table 1.

Table 1. Architecture of the neural network used in this paper.

Layer Output Shape Param
Conv2d-1 [-1,32,20,20] 8224
Conv2d-2 [-1,64,18,18] 18496
Linear-3 [-1,512] 10617344
Linear-4 [-1,12] 6156

The neural network has two convolutional and two linear layers in total, as shown
in the table. The neural network utilizes the q value as its final output before training
to bring it closer to the desired q value. Each layer's activation function is a relu
function.
The learning target of DQN is to reduce the mean squared error between the

estimated Q-values and the intended Q-values. The goal Q-values are computed using
a separate target network with predetermined parameters to increase stability
throughout training. The formula for updating the Q value is as follows.

� ��, �� ← � ��, �� + α ��+1 + γmax
�'

� ��+1, �' − � ��, �� (1)

� ��, �� indicates the expected cumulative reward for the current state and action
pair, and the Q-value of performing an action in the current state. α is the learning
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rate, which determines how large an update will be. Each update has a smaller impact
when the learning rate is low, and each update has a bigger impact when the learning
rate is high. ��+1 represents the immediate reward obtained after taking an action ��
in the current state �� , which is the reward feedback received when performing an
action in the environment. γ is used as a discounting factor to balance the weight
given to both current and future benefits. More focus is placed on present benefits
with a smaller discount factor, and more attention is placed on future prizes with a
greater discount factor. max

�'
� ��+1, �' represents the action with the largest Q

value in the next state ��+1, it essentially indicates that the agent selects the following
state using the current Q value function. The best thing a state can do.
The term on the right side of the formula represents the highest Q value of the

ensuing state after discounting the immediate benefit obtained by acting in the current
state and taking that action's Q value into account. This is expected to lead to the
identification of the perfect policy as the Q-value function finally approximates it
ideal form. By iteratively updating the Q-value function, the Q-learning algorithm can
decide the optimum strategy for the RL challenge, allowing the intelligent agent to
select the best course of action in the environment.The value functions that were
discussed in the section before are objects with a high dimension. This work may use
a DQN, � �, �; θ with parameterθ, to approximate them. At iteration �, this work
optimizes the following series of loss functions to estimate this network:

� θ = � � + γmax
�'

� �', �'; θ− − � �, �; θ
2

(2)

� θ is the mean square error between the goal Q value and the predicted Q value.
� reflects the expected value, which entails adding up or averaging the samples from
each potential pair of state-actions. � represents immediate reward, which is the
reward feedback obtained by the agent after performing action � in state � . �'
represents the next state. �' depicts the course of action chosen in the next state. γ is
used to balance the weighting of current and future benefits. � �, �; θ is the output
of the DQN, representing the Q-value estimate for taking action � in state � .
� �', �'; θ− is the output of the target network, which represents the Q value
estimation of taking action �' under the next state �' , where θ− means fixed the
target network parameters, where the parameters of a fixed, independent target
network are represented by. This work might attempt to utilize conventional
Q-learning to learn the network � �, �; θ 's parameters live. In actual use, this
estimator does poorly. The use of gradient descent to update the online network
� �, �; � while freezing the target network's parameters for a predetermined number
of iterations was a significant breakthrough [11].

3.2 Dueling DQN

The main difference between Dueling DQN and DQN is how the Q value is
calculated. The following formula explains how Dueling DQN and DQN differ from
one another. The DQN Q value function is expressed as follows:
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� �, � = �θ �, � (3)

One of them, and the parameter, is the DQN neural network function. State and
action are inputted directly, and the appropriate Q value is output.
Dueling DQN's Q value function is written as:

� �, � = �θ � + �θ �, � − 1
� �'� ℎ��� �, �

'� (4)

Among them, �θ � is the state value function, which symbolizes the entire worth
of state � ; �θ �, � is the advantage function, which weighs each action's benefit
compared to other ones. Both the state value function and the advantage function are
parameterized by the neural network function �θ . When they are combined, Dueling
DQN can more accurately evaluate the relationship between state and action and
calculate the Q-value. This separation makes dueling DQN more accurate and
efficient when learning state-action value functions.
With the exception of a few extra nodes added at the output layer to calculate the

state value and benefits, Dueling DQN's network structure matches that of DQN.
Nevertheless, throughout the network's general training phase, the mean square error
of the Q value is optimized.
The neural networks of fighting DQN and DQN differ in the interim. The Q value

and the V value are separated from the Dueling DQN output. As demonstrated in Fig
1.

Fig. 1. Architecture of DQN and Dueling DQN (Figure credit: Original).

4 Result

This study compares the performance of DQN and Dueling DQN over the course of
3000 epochs. Additionally, the study explores the impact of two hyperparameters,
learning rate and batch size, on the performance of both algorithms. The goal is to
achieve better results by investigating the performance differences under different
hyper-parameter settings.
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4.1 Comparison in 3000 Epochs

The performance comparison of Dueling DQN and DQN with 0.0001 learning rate
and 256 batch size is shown in Fig. 2. The graph shows the scores averaged across
100 epochs, giving information on patterns in overall performance. According to the
figure, Dueling DQN and DQN both display performance patterns that are similar and
have an upward tendency over the course of 3000 epochs. Notably, a considerable
improvement has been seen in the first 500 epochs.

Fig. 2. Result comparison of Dueling DQN and DQN (Figure credit: Original).

The key difference between these two algorithms lies in their performance after the
initial improvement. DQN shows a steady and continuous improvement after the
initial 500 epochs, whereas Dueling DQN experiences greater fluctuations in
performance after a sharp increase near the 1000-epoch mark.
Overall, the performance of Dueling DQN slightly outperforms DQN over the

3000 epochs. Specifically, during the first 500 epochs, Dueling DQN exhibits a higher
growth rate compared to DQN. In the subsequent epochs, although Dueling DQN
shows larger performance fluctuations, it consistently achieves higher scores
compared to DQN. This performance advantage of Dueling DQN persists even after
the 3000 epochs.

4.2 Comparison of Hyperparameters

In this study, the focus was on investigating the impact of two important
hyperparameters, learning rate and batch size, on the performance of Dueling DQN
and DQN algorithms. The analysis was conducted over a period of 2000 epochs, and
the average scores of the last 100 epochs were recorded and displayed in Table 2.
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Table 2. Performances comparison of various learning rate.

Learning rate 0.0001 0.001 0.01 0.1
Dueling DQN 1034.74 640.34 780.16 767.66

DQN 904.84 648.64 803.16 386.67

Table 2 specifically highlights the results related to different learning rates ranging
from 0.0001 to 0.1. The findings demonstrate that the learning rate has distinct effects
on the performance of both algorithms. Notably, the optimal performance was
observed when taking 0.0001 as learning rate for both Dueling DQN and DQN, with
Dueling DQN achieving a score of 1034.74 and DQN obtaining a score of 904.84.
Interestingly, the analysis revealed that Dueling DQN's performance deteriorated

significantly when the learning rate increased to 0.001, reaching a score of 640.34. On
the other hand, DQN's performance exhibited its lowest point with a score of 386.67
when the learning rate was 0.1. These results suggest that DQN is more sensitive to
changes in the learning rate compared to Dueling DQN.
The variations in the algorithms' sensitivity to learning rate may stem from the

differences in their architectural design. The unique nature of Dueling DQN, which
separates the value and advantage functions, might contribute to its more stable
performance across various learning rate values.

Table 3. Performances comparison of various batch size.

Batch Size 64 128 256 512
Dueling DQN 772.86 810.64 944.36 1200.90

DQN 916.22 777.87 883.67 885.21

The performance variance between Dueling DQN and DQN for various batch sizes
is shown in Table 3. As the batch size grows, there is a discernible improvement in
the average score for Dueling DQN. Particularly, the average score is 772.86 when
the batch size is 64. The average score slightly climbs to 810.64 as the batch size is
increased to 128. The average score significantly rises to 944.36 when the batch size
is increased further to 256. The batch size of 512 results in the greatest average score,
which is 1200.90. On the other hand, DQN's performance under various batch sizes
exhibits greater unpredictability. Across the various batch sizes, the DQN average
scores vary. The average scores for batch sizes 64 and 128 are 916.22 and 777.87,
respectively, with batch size 64 recording the higher score. The average score slightly
decreases to 883.67 when the batch size is raised to 256. The average score stays
largely unchanged at 885.21, therefore increasing the batch size to 512 has little
discernible impact.
From these results, it can be inferred that Dueling DQN is more sensitive to

changes in batch size compared to DQN. It demonstrates consistent performance
improvements with larger batch sizes. However, the performance of DQN is less
impacted by changes in batch size, showing less stability in terms of average scores
across different batch sizes. It is worth noting that the optimal batch size may vary
depending on the specific problem and dataset. Further investigation and
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experimentation are required to identify the most suitable batch size for achieving
optimal performance for both Dueling DQN and DQN algorithms.
In previous studies, Dueling DQN has shown superior performance compared to

DQN. However, the results presented in this paper did not yield similar findings.
Several factors could contribute to this discrepancy, such as differences in the number
of epochs or variations in hyperparameter settings. It is important to note that the
performance of deep RL could be sensitive to these experimental choices.
Future research should focus on adjusting the number of epochs and systematically

comparing more hyperparameter configurations. By exploring different choices in
these settings, a better understanding of the optimal conditions for achieving superior
performance can be obtained. This process will help to identify the appropriate
trade-offs between computational resources and the learning ability of the algorithm.
Additionally, conducting a comprehensive sensitivity analysis on hyperparameters,

such as exploration-exploitation trade-offs, and network architectures, will be crucial
for further improving the performance of the algorithm. By meticulously adjusting
and fine-tuning these parameters, it could gain insights into how they impact the
convergence speed and stability of the algorithm, ultimately aiming for better results.

5 Conclusion

In this study, an analysis of the performance of Dueling DQN and DQN algorithms
was conducted 3000 epochs in a specific task and compare the result of two different
hyper-parameter. Through careful experimentation and evaluation, the performance of
both algorithms was observed and documented. The obtained results deviated from
previous studies, suggesting potential differences in the experimental setup or
hyperparameter configurations. Throughout the 3000 epochs, the performance of the
algorithms, Dueling DQN and DQN, was carefully analyzed. Initially, both
algorithms faced difficulties in learning an effective policy, leading to a period of
stagnation in their performance. However, after this initial phase, both algorithms
started to show rapid improvement and continued to increase their scores. By the end
of the 3000 epochs, they achieved scores close to 1300 points. When comparing the
specific hyperparameter settings of learning rate and batch size, it is evident that they
influenced the performance of the algorithms differently. Under a learning rate of
0.0001 with 256 batch size, Dueling DQN significantly improved and achieved the
highest score. However, DQN performed best when the batch size was 128 and the
learning rate was 0.001. Interestingly, Dueling DQN exhibited a faster rate of
improvement compared to DQN, especially around the 500-epoch mark. This surge in
performance could be attributed to the specific hyperparameter settings of Dueling
DQN, which may have allowed it to learn more effectively in the given task. Despite
not achieving similar results as previous studies, this research provides valuable
insights into the potential factors influencing the performance of Dueling DQN and
DQN algorithms. The differences in the observed patterns may be attributed to the
number of epochs and variations in hyperparameter settings.
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Future work should focus on adjusting the number of epochs and conducting a
systematic exploration of hyperparameters to further refine and improve the
performance of Dueling DQN in the given task. By critically evaluating and
fine-tuning these factors, it is possible to gain a deeper insight of the algorithm's
capabilities and optimize its performance.
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