
A Mathematical Solution To 2D Light Intensity

Calculation

Yiming Chen

BIEC,Chongqing Bashu Secondary School, Chongqing, 400013, China

yiming.chen.biec@bashuschool.cn

Abstract. With the speedy improvement of the gaming industry, the connection

among recreation builders and players has end up increasingly more complex.

within the past, recreation developers regularly faced challenges in rewriting

code to ensure compatibility. However, with technological advancements, the

growing disparity in tool skills amongst customers has posed problems for build-

ers in growing likeminded functionalities and meeting overall performance ne-

cessities. To decorate the immersive revel in in 2D video games, many builders

incorporate lighting fixtures rendering engines. The proposed method for con-

structing the mathematical model involves calculating the distance from each

light source to the target point and then determining the influence of each light

source on the light intensity of the target point. The calculated values for each

light source are added together to obtain the final light intensity of the target

point. The Python test had a runtime of 1.69e-05 seconds. It calculated the light

intensity of 720 target points. The maximum frame rate achieved was 60 frames

per second at the highest quality setting (90 frames per second maximum). At the

default quality setting, the frame rate was 85 frames per second (90 frames per

second maximum).

Keywords: Game making, Algorithm, Light intensity Calculation, 2D games

1 Introduction

One area of research is the calculation of 2D light intensity in games. 2D light intensity

calculation is important for creating realistic and immersive lighting effects in games

[1-4]. Currently, there are several approaches to calculate 2D light intensity, including

ray tracing [5], rasterization [6], and hybrid methods. Ray tracing is a technique that

simulates the path of light rays in a scene to accurately calculate light intensity. It pro-

vides highly realistic lighting effects but can be computationally expensive, especially

for real-time applications like games.

Rasterization, on the other hand, is a faster and more commonly used method in real-

time rendering. It approximates the lighting effects by dividing the scene into small

triangles and calculating the light intensity at each vertex. The intensity values are then

interpolated across the triangles to create smooth lighting effects.

© The Author(s) 2024
B. H. Ahmad (ed.), Proceedings of the 2023 International Conference on Data Science, Advanced Algorithm and
Intelligent Computing (DAI 2023), Advances in Intelligent Systems Research 180,
https://doi.org/10.2991/978-94-6463-370-2_56

https://doi.org/10.2991/978-94-6463-370-2_56
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-370-2_56&domain=pdf

Hybrid methods combine the benefits of both ray tracing and rasterization. They use

ray tracing for certain parts of the scene that require accurate calculations and rasteri-

zation for the rest of the scene to achieve real-time performance.

The investigation into calculating 2D light intensity is ongoing, with an emphasis on

enhancing the effectiveness and authenticity of the lighting effects. For instance, scien-

tists are currently exploring methods like light baking, which involves precomputing

and storing lighting calculations in textures. This approach helps reduce the computa-

tional burden during runtime.

However, it is important to consider the hardware capabilities of the target audience

when implementing advanced lighting techniques. According to statistics from the

Steam gaming distribution platform (Shown in Fig.1), as of July 2023, the more cost-

effective 10 series (2016), 16 series (2019), and 20 series (2018) graphics cards from

Nvidia accounted for 36.71% of all the graphics card models included in the statistics.

In contrast, the ideal configuration for most AAA games, which consists of the newer

30 series (2020) and 40 series (2022), only accounted for 30.19% [1]. This means that

many players may have configurations that can only handle games with lower graphics

settings, which can potentially impact their gaming experience.

Fig. 1. Proportion of Steam Users' Graphics Processing Unit (GPU) series (NVIDIA) (Origi-

nal)

The research on 2D light intensity calculation has gained significant attention in recent

years due to its theoretical and practical value. From a theoretical perspective, it con-

tributes to the advancement of our understanding of light physics and its interaction

with 2D objects in a virtual environment. This knowledge not only expands our under-

standing of fundamental physics principles but also provides insights into how light

behaves in different virtual scenarios.

On the practical side, the study of 2D light intensity calculation plays a crucial role

in the development of visually appealing and immersive games. Lighting effects are

essential in creating a realistic and captivating gaming experience. By accurately cal-

culating the light intensity and its distribution on 2D objects, game developers can

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

NVIDIA 10s, 16s, 20s

NVIDIA 30s, 40s

Proportion

Proportion

560 Y. Chen

enhance the overall visual quality of the game and create a more immersive virtual

world. This, in turn, leads to better user engagement and satisfaction.

2 Related work

2.1 Overview of 2D Games

2D games are popular in the gaming industry due to their unique features. These games

use a grid system to construct game environments, allowing for efficient rendering and

level design. The pixel art graphics used in 2D games are visually appealing and create

immersive game worlds. The simplicity of the graphics and grid-based design make it

easy to create cohesive game worlds. The design also provides flexibility in level de-

sign, allowing for quick prototyping and experimentation. Additionally, the design con-

tributes to performance optimization by efficiently rendering visible portions of the

game world, resulting in smoother gameplay. The simplicity and flexibility of the de-

sign have contributed to the enduring popularity of 2D games.

Backward compatibility is important in the American handheld video game industry

when introducing new product generations. It allows existing users to continue using

previous generation products, transferring network effects to the new generation. How-

ever, challenges may arise in providing new software services. Ensuring compatibility

across different devices, especially in 2D games, is a challenge due to varying hardware

and software capabilities. Optimizing performance is crucial for a seamless gaming ex-

perience, and a balance must be struck between visual quality and performance. Imple-

menting optimization techniques such as texture atlases, sprite batching, level of detail

(LOD), and culling can improve rendering and gameplay performance. Regular testing

and profiling on different devices ensure a consistent gaming experience [2].

2.2 Previous Approach to Lighting Rendering in Games

Various techniques have been proposed to address lighting rendering in video games.

Previous research has suggested adaptive shading rate adjustment based on scene con-

tent and motion [3]. This paper introduces a new mathematical method to calculate light

intensity.

The previous approach of light intensity calculation in games has limitations in rep-

resenting complex lighting scenarios accurately. One challenge is the inability to ac-

count for dynamic light sources and their interactions with different surfaces. Recent

research has proposed using ray tracing techniques for light intensity calculation. Ray

tracing traces the path of light rays from virtual light sources to surfaces in the game

environment, considering reflection, refraction, and shadowing. This approach pro-

vides more accurate rendering of light and shadows, resulting in enhanced visual real-

ism, but also creates enormous lags among games.

Advancements in hardware acceleration, such as dedicated GPUs for ray tracing,

have made real-time ray tracing feasible for gaming applications. This enables game

developers to implement more sophisticated lighting models and achieve higher visual

fidelity. Although ray tracing introduces computational overhead, optimizations like

A Mathematical Solution To 2D Light Intensity Calculation 561

hierarchical data structures and parallel processing techniques have been explored to

improve efficiency and performance.

Overall, the adoption of ray tracing techniques in light intensity calculation repre-

sents a significant advancement in game graphics, providing a more accurate and visu-

ally appealing lighting experience for gamers.

3 Mathematical Derivation and Reasoning

This algorithm is designed to calculate the light intensity at a specific point in an area

by considering multiple unbiased light sources. Each light source is characterized by

its position (x,y) and the intensity of its light (i). The algorithm works by summing up

the contributions from each light source to determine the total light intensity at the given

point.

By utilizing this algorithm, game developers are able to precisely compute the illu-

mination intensity at any given location within a region containing multiple light

sources. This allows for more realistic rendering of lighting effects in games as game

developers can accurately calculate the brightness of a point in a 2D plane relative to

multiple light sources.

The algorithm's ability to consider multiple light sources allows for a more realistic

and accurate representation of light distribution in a given area. This is particularly im-

portant in scenarios where the interaction between different light sources can signifi-

cantly affect the overall lighting conditions. Moreover, the algorithm's use of objective

and professional terminology ensures that the results obtained are in line with academic

and industry standards. By avoiding personal opinions or subjective interpretations, the

algorithm provides an unbiased and reliable calculation of light intensity.

3.1 Algorithm Design

⚫ Step 1: Calculating the distance between each light source and the target point

First, we need to calculate the distance (d_i) between each light source and the target

point. This can be done using the distance formula in Cartesian coordinates (Fig.2):

𝑑𝑖 = √(𝑥𝑡 − 𝑥𝑖)
2 + (𝑦𝑡 − 𝑦𝑖)2   (1)

This formula calculates the Euclidean distance between two points in a two-dimen-

sional plane [7].

⚫ Step 2: Calculating the intensity of each light source at the target point

Next, we can calculate the intensity (I_{t,i}) of each light source at the target point

using the adjusted inverse square principle (Fig.2)::

𝐼𝑡,𝑖 =
𝐿𝑖

𝑑𝑖
2 + 1

   (2)

562 Y. Chen

This formula considers the initial intensity (L_i) of the light source and the distance

(d_i) between the light source and the target point. By adding 1 to the denominator, we

prevent division by zero and ensure that the intensity is always positive.

⚫ Step 3: Summing up the contributions from each light source

Finally, we can calculate the total illumination intensity (I_t) at the target point by

summing up the contributions from each individual light source (Fig.2)::

𝐼𝑡 = ∑ 𝐼𝑡,𝑖

𝑁

𝑖=1

 (3)

This formula sums up the intensities of all (N) light sources at the target point, resulting

in the combined illumination intensity.

Fig. 2. Overview of the algorithm (Original)

4 Results

Fig.3 illustrates the modified testing sample used to simulate a 2D game. The purpose

of this sample is to calculate the light intensity for each individual tile in the scene. This

calculation is based on multiple light sources that are placed by both the program and

the user, including static and moving points. The runtime data collected during the test

includes the frame rate range (fps), average frame rate, and program cycle interval.

Python is the preferred programming language for implementing this testing sample.

A Mathematical Solution To 2D Light Intensity Calculation 563

Fig. 3. The Process Steps of The Testing Sample (Original)

The first test focuses on measuring the algorithm's speed in a single sampling process.

The result obtained from this test indicates a runtime of 1.6927719116210938e-05 sec-

onds (calculated with time.time ()[8,9]), which demonstrates the efficiency of the algo-

rithm.

The second test aims to simulate a real-world scenario in game development. Spe-

cifically, it involves calculating the light intensity of 720 randomly selected tiles under

the influence of 20 randomly placed light sources. To gather the necessary runtime data,

cProfile is utilized [4,10]. The analysis of the data reveals that a total of 48,467 function

calls were made within a time span of 0.029 seconds. The main function of the algo-

rithm accounts for approximately 0.009 seconds, with 720 calls being made. It is worth

noting that the generation of lists required for creating the random points and light

sources is the most time-consuming part of the process.

Overall, these tests provide valuable insights into the performance of the algorithm

in terms of speed and efficiency. The results demonstrate its effectiveness in handling

the calculations required for determining the light intensity of each tile in a 2D tile game

scenario.

564 Y. Chen

5 Conclusions

This article uses mathematical methods to first calculate the distances between the tar-

get points and each light source, and then separately calculates the impact of each light

source on the target points. Finally, all the light data is added together to obtain the final

intensity. By using mathematical methods, this approach is compatible with the major-

ity of computer platforms and all programming languages that support mathematical

operations. It also has strong adaptability, allowing users to modify the variables ac-

cording to their own needs and adjust the function curve to their desired state.

When implemented in a three-dimensional space, the algorithm enables the compu-

tation of the light depth for each point in the given area. This process involves deter-

mining the distance between the light source and the target point, and subsequently

applying the aforementioned function to calculate the change in intensity (Δdepth). The

resulting Δintensities are then combined to determine the ultimate intensity for the des-

ignated point.

Furthermore, the algorithm's effectiveness extends to virtual reality applications. In

virtual reality environments, the algorithm can be utilized to create a more immersive

and interactive experience for users. By accurately calculating the light depth for each

object in the virtual world, the algorithm enables realistic lighting effects that enhance

the sense of presence and realism. This enhances the overall user experience and creates

a more engaging virtual environment.

References

1. Steam Hardware & Software Survey. (2019). Steampowered.com. https://store.steampow-

ered.com/hwsurvey/

2. Claussen, J., Kretschmer, T., & Spengler, T. (2010). Backward Compatibility to Sustain

Market Dominance Evidence from the US Handheld Video Game Industry.

https://doi.org/10.5282/UBM/EPUB.11499.

3. Yang, L., Zhdan, D., Kilgariff, E., Lum, E., Zhang, Y., Johnson, M., & Rydgård, H. (2019).

Visually Lossless Content and Motion Adaptive Shading in Games. Proc. ACM Computer

Graph Interaction and Technology., 2, 6:1-6:19.

4. The Python profilers. (n.d.). Python Documentation. https://docs.pyth -on.org/3/library/pro-

file.html#module-cProfile

5. Ray tracing. NVIDIA Developer. 2019, https://developer.nvidia.com/discover/ray-tracing

6. Caulfield, B.. What is Path tracing? | NVIDIA blog. NVIDIA 2022, Blog.

https://blogs.nvidia.com/blog/2022/03/23/what-is-path-tracing/

7. Miyazawa M, Zeng P, Iso N ,et al. (2016) A systolic algorithm for Euclidean distance trans-

form. IEEE Transactions on Pattern Analysis & Machine Intelligence, 28(7):1127.

8. GeeksforGeeks. (2019). Python time. time method. GeeksforGeeks. https://www.geeks-

forgeeks.org/python-time-time-method/

9. Akeret J , Gamper L , Amara A ,et al.(2014) HOPE: A Python Just-In-Time compiler for

astrophysical computations. Astrophysics Source Code Library, 2014. DOI:

10.48550/arXiv.1410.4345.

10. Azuma T , Uomori K , Morimura A .(1999) Real-time active range finder using light inten-

sity modulation, Proceedings of the Conference on Three-Dimensional Image Capture and

Applications II, San Jose, CA, USA, January 25-26, 1999.1999.DOI:10.1117/12.341067.

A Mathematical Solution To 2D Light Intensity Calculation 565

https://doi.org/10.5282/UBM/EPUB.11499
https://developer.nvidia.com/discover/ray-tracing
https://blogs.nvidia.com/blog/2022/03/23/what-is-path-tracing/
https://www.geeksforgeeks.org/python-time-time-method/
https://www.geeksforgeeks.org/python-time-time-method/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

566 Y. Chen

http://creativecommons.org/licenses/by-nc/4.0/

