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Abstract. This research focuses on exploring the robustness of the reinforcement 

learning algorithm Twin Delayed Deep Deterministic Policy Gradients (TD3), 

especially in terms of its performance in the face of uncertainty, noise, and at-

tacks. Reinforcement learning is a machine learning paradigm in which an agent 

learns how to perform tasks and optimize long-term rewards through interaction 

with its environment. This learning approach has a wide range of applications in 

areas such as autonomous driving, gaming, robot control, and many others. TD3 

is an advanced reinforcement learning algorithm that performs remarkably well 

in various complex tasks and environments. Additionally, TD3 possesses some 

unique performance advantages, such as the dual Q-Critic structure and target 

policy smoothing, which potentially make it robust when facing uncertainty and 

noise. While there has been extensive research on the robustness of reinforcement 

learning, there is a relative lack of research specifically targeting TD3. This study 

aims to fill this gap and investigate how TD3's performance changes when dif-

ferent types of noise are added or when it is subjected to attacks. This research 

aims not only to gain a deeper understanding of the TD3 algorithm itself but also 

to provide strong support for the theory and practice of reinforcement learning 

robustness. This research has broad applications and academic value and has the 

potential to drive further advancements in the field of reinforcement learning. 
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1 Introduction 

Reinforcement Learning (RL) has found extensive applications in various fields, in-

cluding but not limited to autonomous driving, robot control, financial trading, 

healthcare, energy management, and gaming. For instance, in autonomous driving, RL 

can be used to optimize path planning and decision-making; in financial trading, RL 

algorithms can automate trading strategies; in healthcare, RL can be employed for gen-

erating personalized treatment plans. 
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Twin Delayed Deep Deterministic Policy Gradients (TD3) is an advanced RL
algorithm and an improvement upon Deep Deterministic Policy Gradients (DDPG).
Compared to other RL algorithms, TD3 has several significant advantages and unique
features:
1. Dual Q-Critic Structure: TD3 employs two independently trained Q-Critic

networks to estimate action-value functions, reducing the problem of overestimation
and enhancing algorithm stability and performance.
2. Target Policy Smoothing: TD3 introduces noise in the selection of the target

policy, which helps maintain robustness in the face of environmental noise and
uncertainty.
3. Delayed Policy Updates: Compared to DDPG, TD3 updates the policy network

less frequently, reducing instability between the policy and value functions, further
enhancing algorithm stability.
4. Efficiency and Scalability: TD3 excels not only in low-dimensional problems

but also effectively scales to high-dimensional and complex tasks and environments.
Due to these advantages, TD3 has performed exceptionally well in various tasks

and environments, making it an ideal candidate for research into the robustness of
reinforcement learning.
In the realm of reinforcement learning robustness, there have been notable studies.

For example, the paper titled "Deep reinforcement learning with robust deep
deterministic policy gradient" explores improving RL performance by introducing
robust deep deterministic policy gradients [1]. The paper titled "Robust reinforcement
learning via adversarial training with Langevin dynamics" enhances RL algorithm
robustness through adversarial training and Langevin dynamics [2]. The paper titled
"Efficient and robust reinforcement learning with uncertainty-based value expansion"
enhances RL algorithm efficiency and robustness through uncertainty-based value
expansion [3]. However, research on the robustness of TD3 algorithm under different
types of noise and attacks remains relatively limited, which is the issue this study
aims to address [4,5].
This research aims to fill this research gap and investigate the performance of the

TD3 algorithm under less-than-ideal conditions, including uncertainty, noise, or
attacks. This not only contributes to improving the algorithm's reliability and
robustness but also holds broad practical value in fields such as autonomous driving,
robot control, and financial trading. Furthermore, this study may drive advancements
in the theory and practice of reinforcement learning robustness and introduce new
methods or metrics for quantifying and assessing algorithm robustness.
This research will delve into the TD3 algorithm using FGSM and IGM attacks, as

well as adding Uniform, Gaussian, and Ornstein-Uhlenbeck noise.
The primary objective of the research is to quantify the performance changes of the

TD3 algorithm when subjected to different types of noise and various attacks.
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2 Method

2.1 Dataset

The experiment utilized the BipedalWalker Hardcore v3 as the test environment,
which includes various slopes, obstacles, and pits, posing challenges to reinforcement
learning algorithms [6]. Data collection was primarily achieved through interaction
with the environment, with the TD3 algorithm's agent performing actions within the
environment and collecting information such as states, actions, rewards, and more.

2.2 Models

TD3 Algorithm. In this TD3 implementation, it mainly consists of several
components [7,8]. 1) Environment Setup and Parameter Initialization: The
environment named "BipedalWalkerHardcore-v3" was created using the 'gym' library,
and parameters such as state dimension, action dimension, and maximum action value
were initialized. 2) Network Architecture: One network is named actor network. It is
responsible for generating policies, i.e., given state s, it outputs action a. Another one
is the Q-Critic network, for comprising two independent � networks (�1 and �2),
responsible for estimating the Q-value for state-action pairs. 3) Replay Buffer: Used
to store interaction history for experience replay. 4) Training Loop: In each episode,
the agent interacts with the environment, collects data, and then uses this data to train
the Actor and Q-Critic networks. 5) Model Saving and Loading: Functionality for
saving and loading models is provided.
The learning process of TD3 is as follows:
Firstly, action selection: The Actor network is used to select an action, possibly

with some exploration noise added. Secondly, environment interaction: The selected
action is executed, and the resulting next state and reward are observed. Thirdly, data
storage: The state, action, reward, and next state are stored in the Replay Buffer.
Fourthly, model training. The training process has three steps: 1) A batch of data is
randomly sampled from the Replay Buffer. 2) Target Q-values are computed, and the
Q-Critic networks are updated using mean squared error (MSE) loss. 3) The Actor
network is updated using the output of the Q-Critic networks.
In TD3, the Q-Critic Loss is:

Q-Critic Loss = � � �, � − � + γmin
�=1,2

��' �', �'
2

(1)

where �(�, �) is the current Q-value, � is the reward, � is the discount factor, and
��' �', �' is the target Q-value.
The actor loss is:

Actor Loss =− � � �, π � (2)

where �(�) is the policy output by the Actor network.
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This design and mathematical formulation enable TD3 to perform exceptionally
well in complex and uncertain environments.

Attack Algorithms. To evaluate the robustness of TD3, an attack algorithm called
Fast Gradient Sign Method (FGSM) is leveraged. FGSM is a method for attacking
deep learning models by adding a small, directional perturbation to input images to
cause incorrect predictions by the model [9,10].
The attack procedure is as follows. Given a model f, a loss function ℒ(�, �) , an

input sample x, and its true label �, the FGSM attack generates a perturbed sample �'
as follows:

�' = � + � ⋅ ����(��ℒ(�, �)) (3)

where ε is a small constant controlling the magnitude of the perturbation,
and ��ℒ(�, �) is the gradient of the loss function with respect to the input �.

Noise Models and Adaptivity.
Three different types of noise is also leveraged: Uniform noise, Gaussian noise, and
Ornstein-Uhlenbeck noise. The mathematical models are as follows:
Uniform noise: �(�, �)
Gaussian noise: �(�, �²)
Ornstein-Uhlenbeck noise: ��� = �(� − ��)�� + ����
The TD3 algorithm itself includes target policy smoothing, which helps mitigate

the impact of noise.

3 Result

Through the aforementioned designs, this work can evaluate not only the performance
of the TD3 algorithm under normal conditions but also gain a comprehensive
understanding of its robustness when facing various attacks and noise. Specifically,
TD3's dual Q-Critic structure and target policy smoothing mechanism adapt well to
the attack algorithms and these noise models, making this research practically
valuable.

3.1 Robustness of TD3 under Different Seeds

The model's average score under various random seeds consistently exceeded 286
points, demonstrating its efficiency. The consistent performance across different
random seeds indicates a model that does not overfit to specific initial conditions and
possesses good generalization capabilities. Results are demonstrated in Fig. 1.
Multi-Seed Evaluation: The model maintains high performance across a range of

seeds, which is a crucial indicator of robustness. This multi-seed evaluation
effectively mitigates the risk of overfitting to specific initial conditions, enhancing the
model's generalization capabilities.
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Oscillation Behavior and Convergence: Despite experiencing oscillations during
training, the model still converges to a stable and high-performing solution. This
resistance to variations within episodes further emphasizes the model's robustness.
Uniformity in Performance: The closeness of average scores under different

random seeds further confirms the model's robustness. This uniformity in
performance indicates the model's ability to withstand changes in initial conditions
and random elements within the environment.
The studied TD3 model not only exhibits excellent performance metrics but also

demonstrates significant robustness under various initial conditions. This is evidenced
by its consistently high scores across different random seeds. Here are detailed
descriptions of these key attributes.

Fig. 1. Result of TD3 under different seeds (Figure Credits: Original).

3.2 Robustness of TD3 under Different Noise Interference

The performances under different noise levels are shown in Fig. 2. The original state,
as a baseline, the model achieved an average score of 288.35 in the absence of noise
interference. After introducing Gaussian noise with a variance of 0.25, the model's
average score slightly decreased to 273.69. However, this decrease remains within an
acceptable range compared to the original state, indicating the model's robustness to
Gaussian noise. Under the influence of uniform noise with a variance of 0.25, the
model's average score was 285.43, nearly on par with the original state's score, further
demonstrating the model's robustness. With Ornstein-Uhlenbeck noise at a
perturbation coefficient of 0.25, the model's average score was 275.47. Although it
experienced a slight decrease, it still indicates the model's resilience.
In the evaluation under various noise conditions, it could be observed that the

model exhibited varying degrees of oscillation in each assessment. Despite the
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fluctuations, the overall score trend remained stable above the average score. This
phenomenon further confirms the model's ability to maintain stable performance in
the presence of uncertainty and noise interference, showcasing its excellent
robustness.
The results of this experiment indicate that the TD3 model can maintain relatively

stable performance under various noise conditions. This performance is not only
highly effective in specific tasks but also demonstrates significant robustness in
different environmental conditions. This robustness is a critical factor in the
application of reinforcement learning models in complex and uncertain environments.

Fig. 2. Result of TD3 under different noise levels (Figure Credits: Original).

3.3 Robustness of TD3 under FGSM Attacks

The results are shown in Fig 3. In the absence of any attacks, the model achieved an
average score of 288.35, serving as a baseline for comparison. At a lower perturbation
coefficient of 0.1, the model's average score decreased to 274.15. Although it
experienced a decrease, it remained within an acceptable range compared to the
original state. When the perturbation coefficient increased to 0.25, the model's
average score significantly dropped to 117.25, indicating a noticeable performance
decline under this level of perturbation. With the perturbation coefficient further
increased to 0.5, the model's average score became negative (-84.85), and the
oscillation amplitude increased. This suggests that the model has nearly lost its
original performance under this level of perturbation. At a low perturbation
coefficient (e.g., 0.1), the model can maintain relatively high performance, indicating
a degree of robustness. As the perturbation coefficient increases (e.g., 0.25 and 0.5),
the model's performance sharply declines, even becoming negative under the highest
perturbation level. This indicates that the model is highly sensitive to high-level
perturbations.
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Oscillation and Instability: Under high perturbation conditions, the model exhibits
increased oscillation, further confirming its lack of robustness under these conditions.
These experimental results clearly demonstrate the differences in TD3 model

robustness under different perturbation coefficients. Particularly, under high
perturbation coefficients, the model's performance sharply declines, highlighting its
vulnerability. These findings provide valuable insights into the design of robustness in
reinforcement learning models when facing adversarial attacks.

Fig. 3. Result of TD3 under different levels of FGSM attacks (Figure Credits: Original).

4 Conclusion

This study comprehensively evaluated the robustness of the TD3 algorithm under
different environmental conditions and attack scenarios. Experimental results showed
that TD3 exhibited excellent performance consistency and generalization ability under
multiple random seeds and different initial conditions. The average score of the model
under various random seeds exceeded 286 points, demonstrating its efficiency and
robustness. After adding different types of environmental noise (such as Gaussian
noise, uniform noise, and Ornstein-Uhlenbeck noise), the performance of TD3 get
lower, but the decrease was relatively small and within an acceptable range. However,
when facing FGSM attacks, the robustness of TD3 showed obvious hierarchical
characteristics. At lower perturbation coefficients (such as 0.1), the model was able to
maintain relatively high performance. But when the perturbation coefficient increased
to 0.25 and 0.5, the performance of the model plummeted, even achieving negative
average scores. This result revealed that TD3 was vulnerable to high-level adversarial
attacks. Overall, the TD3 algorithm demonstrated good robustness against
environmental noise and uncertainty, but was sensitive and fragile under
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high-amplitude adversarial attacks. These findings provide valuable insights for
further improving the robustness of TD3 and other reinforcement learning algorithms.
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is not included in the chapter's Creative Commons license and your intended use is not
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permission directly from the copyright holder.
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