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Abstract. With the advancements in technology, smart hydroponic systems 

have gained popularity as an efficient and sustainable method of cultivation. 

These systems allow for precise monitoring and control of various parameters 

such as nutrient levels, pH, temperature, and humidity. To further improve the 

monitorin capabilities of smart hydroponic systems, integrating object detection 

using vision-based techniques is proposed. This integration aims to enhance the 

monitoring process by enabling the system to identify and track specific objects 

or elements of interest. In this paper, we propose a modified, yet lightweight, 

object detection model based on the YOLO-v8 architecture.   

  

The proposed model can detect ‘ready', 'empty pod', 'germination', 'pod', and 

'young' on the hydroponics palate. The experimental results also demonstrate 

that precision is improved by a large margin. In fact, as shown in the 

experiments, the results show a 0.91 score for F1-Confidence curve. Recall rate 

at different probability thresholds with all classes 91% confidence with F1 over 

0,8 except “ready” class.  
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1.  Introduction  
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Smart Hydroponic Systems are a modern approach to agriculture that utilizes advanced 

technology and automation to grow plants without soil [1]–[3]. One key aspect of these 

systems is the use of water-based nutrient solutions to provide plants with essential 

nutrients. To effectively monitor and manage the growth of plants in smart hydroponic 

systems, it is crucial to integrate object detection using visionbased techniques[4]. 

Integrating object detection using vision-based techniques in smart hydroponic systems 

allows for real-time monitoring and analysis of plant health, growth patterns, and the 

presence of any pests or diseases[5]. Moreover, vision-based object detection can 
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provide valuable insights into the overall performance of the hydroponic system by 

tracking and analyzing various parameters such as water levels, nutrient levels, and 

environmental conditions. By implementing object detection using vision-based 

techniques, smart hydroponic systems can achieve higher levels of efficiency and 

productivity. The controlled environment of smart hydroponic systems allows for 

optimization of growing conditions, leading to higher plant yields and better product 

quality[6]. Additionally, the use of hydroponic systems in agriculture is becoming 

increasingly popular due to their ability to be operated automatically and easily 

integrated with technologies such as web-enabled smart devices[7].   

Object detection is a computer vision technique that involves identifying and 

localizing objects within an image or video. This is typically achieved through the use 

of machine learning algorithms that are trained to recognize specific objects or classes 

of objects. These algorithms analyze the visual features of an image or video frame and 

classify them based on predefined patterns or characteristics. In the context of smart 

hydroponic systems, object detection using vision-based techniques refers to the ability 

to identify and track various entities within the system, such as plants, pests, diseases, 

and environmental parameters. By utilizing object detection techniques, smart 

hydroponic systems can automatically detect and locate these entities, providing 

valuable information for growers to make informed decisions about their cultivation 

practices and take necessary actions to ensure plant health and optimal growth. 

Integrating object detection using vision-based techniques in smart hydroponic systems 

allows for real-time monitoring and analysis of plant health, growth patterns, and the 

presence of pests or diseases.   

Vision-based techniques offer a range of tools and algorithms for monitoring 

hydroponic systems. These techniques involve capturing images or videos of the plants 

and their surrounding environment and applying image processing algorithms to extract 

relevant information. These can include techniques such as image segmentation, feature 

extraction, and object recognition. When applied to smart hydroponic systems, vision-

based techniques can provide valuable insights into various aspects of the system's 

operation and plant health. For example, vision-based object detection can be used to 

monitor the growth and development of plants by analyzing factors such as leaf size, 

color, and shape. Additionally, it can be used to detect and track pests or diseases by 

identifying abnormal patterns or discoloration in the plants. Integrating object detection 

using vision-based techniques in smart hydroponic systems offers numerous benefits 

for monitoring and managing the system. It allows for automated and continuous 

monitoring of plant health and growth, reducing the need for manual inspections. 

Furthermore, by providing real-time information on the presence of pests or diseases, 

it enables growers to take timely actions to mitigate the risks and prevent further 

damage to their crops.    

In the other works, various monitoring techniques for smart hydroponic systems 

have been described. One example is the autonomous computer vision-guided plant 

sensing and monitoring system developed by David and Murat, which continuously 

monitors temporal, morphological, and spectral features of lettuce crops in a nutrient 

film technique hydroponics system [1]. This system combines computer vision 
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technology with hydroponics to provide comprehensive monitoring and analysis of 

plant growth and health. Another example is the hydroponic monitoring and automation 

system with a web interface management system, as described in the literature. This 

system allows users to monitor and control NFT hydroponic farming using a responsive 

web framework[8]. Furthermore, the development of embedded, portable analyzers 

with sensor arrays has enabled direct measurement of nutrient concentrations in 

hydroponic solutions[9]. These monitoring techniques showcase the importance of 

integrating object detection using visionbased techniques in smart hydroponic systems. 

Object detection using vision-based techniques in smart hydroponic systems offers 

numerous benefits for monitoring and managing the system.    

While vision-based techniques for monitoring hydroponic systems offer advantages 

in terms of automated and continuous monitoring, there are limitations that need to be 

considered. One limitation is the complexity and cost associated with implementing 

and maintaining such systems. Vision-based object detection requires specialized 

hardware and software, as well as skilled personnel to operate and troubleshoot the 

system. This can add to the overall expenses and may not be feasible for small-scale 

growers with limited resources. Another limitation is the accuracy and reliability of the 

object detection algorithms. Vision-based techniques heavily rely on the accuracy of 

image processing algorithms to detect and track entities such as pests or diseases. 

However, these algorithms may integration of object detection in hydroponic systems 

pose challenges in accurately identifying and distinguishing between different objects 

or abnormalities.   

  

2.  Related Work   

YOLO (You Only Look Once) is a real-time object detection algorithm that can be used 

for various applications such as selfdriving cars, surveillance systems, and facial 

recognition software. In recent years, researchers have also explored its application in 

agricultural settings, including smart hydroponic systems. Smart hydroponics refers to 

the use of advanced technology and automation to optimize crop growth in controlled 

environments. By using sensors, actuators, and other devices, these systems aim to 

provide optimal conditions for plant growth, maximizing yields and minimizing waste.   

Plant detection using YOLO in smart agriculture, especially in hydroponic systems, 

is a promising approach to automate the identification of plant diseases and optimize 

crop productivity. Park and Kim (2021) designed and developed a system for 

monitoring the strawberry cultivation environment in real-time and providing enhanced 

information about harvesting timing to decision-makers. The system collects, stores, 

and visualizes strawberry growing environment data, and uses a deep learning 

algorithm (YOLO) to classify the maturity level of strawberries in images. The 

algorithm achieves a high accuracy rate of 98.267% in predicting the harvest time [10].   

Wang and Liu (2021) developed a YOLO-Dense model for tomato anomaly 

detection in a complex natural environment. The model incorporated a dense 

connection module to improve network inference speed and multiscale training strategy 
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to improve recognition accuracy at different scales. Experimental results show that the 

YOLO-Dense model outperforms other models in tomato anomaly detection under 

complex natural environments, achieving a mean average precision (mAP) of 96.41% 

and a detection time of 20.28 ms per image [11].   

Hamidon and Ahamed (2022) presents an automated detection method for tipburn 

lettuce grown indoors using deep learning algorithms based on a one-stage object 

detector. The study evaluates three different one-stage detectors, namely CenterNet, 

YOLOv4, and YOLOv5, for detecting tip-burn on lettuce grown in indoor farms under 

different lighting conditions. In the training dataset, all the models exhibited a mean 

average precision (mAP) greater than 80% except for YOLOv4. The most accurate 

model for detecting tip-burns was YOLOv5, which had the highest mAP of 82.8%. In 

addition, the performance of the trained models was also evaluated on images taken 

under different indoor farm light settings, including white, red, and blue LEDs. Again, 

YOLOv5 was significantly better than CenterNet and YOLOv4 [12]. Zhang and Li 

(2022) propose a novel method called YOLO-VOLO-LS (based on YOLOv5) for 

variety identification of lettuce seedlings in the early growth stage. The method 

combines the advantages of target detection and target classification mechanisms to 

accurately identify different varieties of lettuce at the SP stage. The study found that 

the performance of the lettuce variety classification model in the SP stage needs 

improvement, which led to the proposal of the YOLO-VOLO-LS method. The results 

show that the method achieves excellent results in terms of accuracy, recall, precision, 

and F1-score, with values of 95.961, 93.452, 96.059, and 96.014, respectively. This 

novel method has a certain reference value for accurately identifying varieties in the 

early growth stage of crops [13].   

These studies demonstrate the potential of YOLO in smart hydroponic systems for 

crop detection, providing better information on harvest time, and improving efficiency 

in farm management.  

3.  Method  

The methodology for the implementation of the algorithm will be based on the block 

diagram shown in Fig. 1.   

  
    

Fig. 1. Methodology. 
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3.1.    Preprocessing  

To build and test our approach we collected a set of images from the RoboFlow. This 

dataset was originally created by Rinat Landman [14]. The database for the detection 

lettucepallets consists of a total of 1286 RGB images taken with a  

13MP/M2MP camera with dimensions of 1920*1080 pixels between 'ready', 'empty 

pod', 'germination', 'pod', and 'young' leaf. These images are divided  into  

3 subgroups train (1060 images), test (151 images), and valid (299 images) 

respectively. Therefore, the samples acquired for training are of the trinity type as 

shown in Fig. 2.  

 

Fig. 2. Sample image of dataset. 

3.2. Processing  

In this processing part, a state-of-the-art object detection algorithm called YOLOV8 is 

being utilized to implement object detection in smart hydroponic systems. The 

integration of YOLOV8 aims to accurately identify and classify various objects of 

interest such as conditions on planting hole 'Ready', 'empty_pod', 'germination', 'pod', 

'young'. This integration will enhance the monitoring capabilities of the system, 

providing real-time information on plant health and status. Consequently, farmers or 

system operators can promptly take appropriate actions based on the detected objects, 

adjusting nutrient levels, applying pesticides, or implementing preventive measures as 

necessary. Integration of vision-based techniques for object detection in smart 

hydroponic systems has practical applications for effective system monitoring and 

management.    

The YOLO algorithm presents an effective method for achieving more precise 

bounding boxes. To achieve this, the input image is divided into a grid structure. In 

practical application, a more refined grid, such as a 9 by 9 grid, is employed. Each of 

these grid cells undergoes image classification and localization algorithms. This entails 

assigning a label Y to every grid cell, represented as an n-dimensional vector. The n-

dimensional vector encompasses several attributes, including PC which is set to 0 or 1, 

indicating the presence of an object in that specific grid cell. The network identifies 

four parameters - bx, by, bh, bw - to define the bounding box, but only when there exists 

a disease pattern associated with the respective grid cell. These parameters are utilized 
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to define the characteristics of the bounding box.  bx, by = Offset from the top left corner 

of the image bh = Height of the bounding box,  bw = Width of the bounding box.   

These parameters are explained and depicted in Fig. 3. Mathematically,   

 

Fig. 3. Predicting the box coordinates. 

 3.3. Post-Processing  

Post-Processing is one of the future perspectives of visionbased object detection in 

hydroponic systems is the refinement of post-processing techniques for object detection 

algorithm outputs. Post-processing techniques can further improve the accuracy and 

reliability of object detection results in hydroponic systems. These techniques include 

filtering out false positives, enhancing object localization, and improving object 

tracking. The YOLOv8 algorithm outputs can be refined to provide more precise and 

consistent object detection results in smart hydroponic systems.     

YOLOv8 generates predictions in the form of bounding box coordinates 𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ 
confidence, and class probability. The coordinates (𝑡𝑥, 𝑡𝑦) represent the center of the 

box relative to the cell's side, while (𝑡𝑤, 𝑡ℎ) predict the overall height and width of the 

image. Confidence represents the Intersection over Union (𝐼𝑜𝑈) between the predicted 

box and the ground truth box. To obtain the final prediction, the determining factor is 

the class confidence score, which is based on the conditional probability of the class 

and the box confidence score. The class confidence score measures the confidence 

value in object classification and localization. It provides a specific class confidence 

value for each box, encoding the likelihood of the class appearing in the box and how 

well the predicted box corresponds to the object. If no objects are detected, the 

confidence value is zero. Intersection over Union (𝐼𝑜𝑈) can be calculated by comparing 

the groundtruth bounding box and the predicted bounding box, which can be expressed 

using the equation:    

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝  

𝐼𝑜𝑈 =   

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛  

In addition to the 𝐼𝑜𝑈 value, the average 𝐼𝑜𝑈 value is also obtained, known as the 

mean average precision (mAP). In this study, mAP@ 𝐼𝑜𝑈 requires a threshold value 
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exceeding 0.5 to be considered successful. If the value is less than 0.5, the result can 

be considered incorrect. For the threshold set at 0.5, the following is known:   

If IoU ≥ 0.5, classify the object as True Positive (TP).   

If IoU < 0.5, classify the object as False Positive (FP).   

If the ground truth displays an object, and the model fails to detect the object, classify 

it as False Negative (FN).   

Any part of the image not detected should be classified as True Negative (TN).   

The above values can be used to calculate precision and recall using the equation:   

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)  

Recall, also known as sensitivity or true positive rate, is the ratio of true positive predictions to the total 

number of actual positive instances.   

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)  

 𝑅𝑒𝑐𝑎𝑙𝑙 =    

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)  

From the calculation of 𝐼𝑜𝑈, obtain True Positive, False Positive, and False Negative 

values used to calculate the precision and recall scores from the object detection results 

of lettuce pallets. The precision and recall values are then depicted on a curve known 

as the precision-recall curve. The Average Precision (AP) value itself is obtained from 

the calculation of the area under the curve for each detected class in the system. 

Meanwhile, the mean Average Precision (mAP) value is obtained by averaging the AP 

values from all detected classes.  

3.4.  Inferences  

This is the final process of using a trained YOLOv8 model to predict the presence of 

objects in an image or video frame. During inference, the model takes an input image 

as input and processes it through its neural network architecture to make predictions 

about the objects present in the image. The predictions made by YOLO may result in 

multiple bounding boxes for the same object or overlapping predictions. To filter out 

redundant and low-confidence predictions, a post-processing step is applied. Non-

maximum suppression (NMS) is a common technique used to remove duplicate and 

overlapping boxes, keeping only the one with the highest confidence. The final output 

of the YOLO inference process is a list of bounding boxes, each associated with a class 

label and a confidence score. These bounding boxes represent the objects detected in 

the input image. The NMS process can be summarized using the following equation:   

 𝑁𝑀𝑆  𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒   

 𝐼𝑜𝑈_𝑡 𝑜𝑙𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎  𝑒𝑟𝑒 𝑎    

Where:   
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𝐵 is the list of sorted bounding boxes.   

𝑏 and 𝑎 are individual bounding boxes in the list.   

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑏) is the confidence score of box    

𝐼𝑜𝑈(𝑏, 𝑎) is the Intersection over Union between boxes   𝐼𝑜𝑈_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is 
the threshold value for IoU, usually set to 0.5.   

The resulting set 𝑁𝑀𝑆(𝐵) contains the bounding boxes that have survived the non-

maximum suppression process and are considered the final predictions.   

  

4.  Result And Discussion  

In this section, we present an overview to the dataset, experiments conducted and the 

results.   

4.1. Experiment Dataset  

To build and test our approach we collected a set of images from the RoboFlow. This 

dataset was originally created by Rinat Landman [14].  This portion introduces the 

outcomes of the study conducted on the dataset shown in Figure 4 .    

  

Fig. 4. Predicting the box coordinates. 

Confusion matrix normalized to evaluate the performance of the integrated system 

in accurately detecting and classifying objects in a hydroponic environment shown in 

Figure 5.  To evaluate the performance of the integrated system in accurately detecting 

and classifying objects in a hydroponic environment, a confusion matrix was 

normalized. The integration of object detection using vision-based techniques in smart 

hydroponic systems has practical applications for monitoring and managing the system. 

The condition ready, empty_pod, germination, pod, young and background related 

predicted. The condition of the objects, such as ready, empty_pod, germination, pod, 

young, and background, were predicted and evaluated using a normalized confusion 

matrix.   
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Fig. 5. Confusion matrix normalized. 

  4.2. Training Model  

The experiments and tests were conducted on a server equipped with a GeForce 

GTX1030 T1 GPU, an Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz   2.90 GHz 

CPU, and running 64-bit Windows 10. The PyTorch framework and Python 3.9 were 

used for the experiments. The model was trained using GPU acceleration, while the 

tests were conducted using both GPU acceleration and CPU.  This section presents a 

comprehensive performance analysis of the custom YOLO model, which is based on  

the YOLOv8s framework. Figure 6 shows the training set loss function of the custom 

YOLOs model plotted against the training iteration rounds (epochs).   

  

 

 

  

 

 

 

 

   
    .    

Fig. 6.  Predicted training bou nding box regression  
loss, object confident loss, and object classi fication  
loss   
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However, when applied to the initial datasets of lettuce-pallets, the achieved mean 

Average Precision (mAP) at IoU thresholds between 0.5 and 0.95 was 72,8% for all 

class. Furthermore, for the same datasets, a mAP50 of 95% was achieved. It is 

important to note that the original data labeling provided was deemed unreliable upon 

closer examination, as previously indicated, due to the method of generation. 

Consequently, the reliability of these results is contingent on the accuracy of the mask 

labeling. The F1 confidence curve provides a measure of the integrated system's 

accuracy in detecting and classifying objects within a hydroponic environment. This 

curve is generated by plotting the F1 score, which considers both precision and recall, 

against different confidence thresholds. The F1 confidence curve allows for the 

evaluation of the integrated system's accuracy in detecting and classifying objects 

within a hydroponic environment. All classes shown 0.91 score for F1Confidence 

curve. The curve shown in picture figure 7.  

  

Fig. 7. F1-confidence curve 

4.3.  Precision and Recall Result  

The precision-recall curve is a useful tool for assessing the performance of the 

integrated system in terms of object detection and classification accuracy in a 

hydroponic environment. The curve as shown figure 8, plots the precision rate against 

the recall rate at different probability thresholds with all classes 91% confidence with 

F1 over 0,8 except “ready” class. By analyzing the precision-recall curve, the tradeoff 

between precision and recall can be observed for varying thresholds. Furthermore, the 

precision-recall curve result an optimal classification threshold that provides 

satisfactory precision and recall performance. All of  precision and recall performance 

curve already shown in figure 8.   
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Fig. 8. Precision-recall curve 

The recall-confidence curve is an important metric used to evaluate the performance of 

the integrated system in accurately detecting and classifying objects in a hydroponic 

environment.  

  

Fig. 9. Recall-confidence curve 

The recall-confidence curve provides insights into the integrated system's ability to 

accurately detect and classify objects within a hydroponic environment at different 

levels of confidence. This evaluation metric is essential in evaluating the performance 

of the integrated system in accurately detecting and classifying objects within a 

hydroponic environment. Based on figure 9, the recall-confidence curve shows that as 

the confidence threshold increases, the recall rate also increases. This indicates that 
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the system can correctly identify a higher proportion of objects as the confidence in 

their detection increases. Integrating object detection using visionbased techniques in 

smart hydroponic systems has practical applications for monitoring and managing the 

system.    

We have obtained the following results as shown in Figure  10. On training the 

model up to 100 epochs the model has predicted with high accuracy for detection 

conditions on planting hole 'Ready', 'empty_pod', 'germination', 'pod', 'young'.    

 

Fig. 10. The result of detection object with class 

5.  Conclusion And Future Works  

In conclusion, the integration of object detection using vision-based techniques in 

smart hydroponic systems has shown promising results in terms of accurately 

detecting and classifying objects within a hydroponic environment. The 

recallconfidence curve provides insights into the system's ability to detect and classify 

objects accurately in a hydroponic environment at different confidence levels.  

Overall, the precision-recall and the recall-confidence result provide valuable insights 

into the performance of the object detection and classification model in the smart 

hydroponic environment. These evaluation metrics allow us to understand the 

system's accuracy and ability to correctly identify objects, which is crucial for 

monitoring and managing the hydroponic system effectively especially for "ready" 

class. However, this preliminary research still has some limitations. Besides the 

dataset used is still too small, the amount of data portion in each class is also not 

balanced. Therefore, combinations with similar datasets and the application of various 

augmentation techniques need to be done.    
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