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Abstract. The online assignment problem, also known as the online-
weighted bipartite matching, produces the smallest weight perfect match-
ing given a complete bipartite graph. The problem is a variant where one
part of the graph is known in advance, while the other part is revealed
one vertex at a time. Moreover, all the incident edges are revealed as a
new vertex arrives. This computational problem plays an important role
in the fields of operational research and computer science. Due to the in-
complete information about the input, it is difficult for online algorithms
to produce the optimal solution. The quality of the solution of an online
algorithm is measured using a competitive ratio. It has been proven that
for this problem, no online deterministic algorithm can achieve a com-
petitive ratio better than (2n − 1) and no online randomized algorithm
can achieve an expected competitive ratio better than ln n. It has been
shown that advice in online computation improves the lower bound of
the competitive ratio of online problems. Advice in online computation
can be interpreted as additional information for the online algorithm to
compensate for the lack of information about the whole input sequence.
In this paper, we investigate how introducing machine-learned advice
could improve the competitive ratio for this problem. We provide an
online algorithm for the online assignment problem by simulating a ma-
chine learning (ML) algorithm that predicts the whole input in advance.
We utilize an optimal offline algorithm to provide a matching solution
from the predicted input. Furthermore, we investigate how the predic-
tion error of ML affects the competitive ratio of the online algorithm.
We utilize a benchmark data set to perform our empirical analysis of the
solution quality. We show that as the ML prediction error increases, the
solution quality decreases. Moreover, the magnitude of error is directly
proportional to the size of the input. This result is analogous to the
competitive ratio of the best deterministic algorithm for the online as-
signment problem which is dependent also on the parameter n. We show
that our proposed online algorithm for the online assignment problem
with ML prediction significantly outperforms the optimal deterministic
online algorithm for the assignment problem. Also, we show that for
some tolerable errors, i.e., for ML prediction with RMSD(A,A′) > 10,
our proposed online algorithm has a better solution quality. Otherwise,
we propose the use of the existing best randomized online algorithm for
the assignment problem. The trade-off for the solution quality is the
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running time of the online algorithm which is highly dependent on the
optimal offline algorithm and the ML predictor.

Keywords: online assignment problem, machine-learned advice, competitive
analysis

1 Introduction

The assignment problem (AP) is a computational optimization problem that has
diverse applications in various fields. Some of the few examples include assigning
tasks to workers in a crowd-sourcing platform [1], passengers to vehicles in a taxi
dispatching system [17,23], and receivers to access points in a wireless connection
networks [9]. The problem is also known as the minimum-weighted bipartite
matching problem. Given a complete bipartite graph, the goal is to obtain a
matching with the minimum total edge weight. The most widely used algorithm
to solve the problem is the Hungarian algorithm which runs at O(n3) time. An
improvement of the algorithm for the assignment problem is from Karp et al.
[12] which runs at O(n2 log n) time.

Most combinatorial model of the problem assumes that the entire input is
known before the start of the computation. However, most real-world problems
deal with uncertainty. For instance, the entire input may not be known to the
algorithm and given a partial input, the algorithm must decide or output a part
of the solution. Problems with this limitation are called online problems. On the
contrary, if the entire input is known, the problem is called an offline problem.

We focused on the online assignment problem variant that was introduced
by Khuller et al [14]. This variant imitates real-world situations as data arrives
with respect to time. Online algorithms for this variant must decide on what to
do with the arriving nodes immediately and the decisions made are irrevocable.
The drawback of online algorithms, however, is that they perform worse than
their offline counterparts because of the lack of knowledge of the entire input
sequence which leads to a less optimal solution. The competitive ratio of an
online algorithm is used as a metric to compare the online algorithm to the
optimal offline algorithm for the problem. For the assignment problem, the best
deterministic algorithm is from [14] and [11]. It has a competitive ratio of (2n−1)
and is proven to be the tight lower bound for all online deterministic algorithms
for the problem. In terms of expectation, an O(log2 n)-competitive randomized
algorithm exists and has a tight lower bound of O(ln n) [2].

This paper is a continuation of our work in [5], where we provide an empirical
analysis of the competitive ratio of the online assignment problem with respect to
two parameters ε and µ that quantifies the difference between the actual and the
predicted output. In the previous paper, ε quantifies the percentage of the total
number of edges that differs in weight between the actual and predicted input.
Meanwhile, the parameter µ quantifies the difference between the edge weights.
In this study, we combined the two error parameters into a single one. We used
the RMSD to represent the error between the original online input and the
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predicted online input of the algorithm. Like what we have shown in the previous
result in [5], we show that the RMSD value is directly proportional to the error
in the solution quality. Thus, inversely proportional to the competitive ratio.
We compare the empirical competitive ratio with the best deterministic online
algorithm for the online assignment problem as well as the expected competitive
ratio of the randomized online algorithms for the problem.

We will use the terms AP and assignment problem; ML, machine learning,
and machine learned ; request, input and input sequence; competitive ratio and
solution quality will be used interchangeably.

2 Preliminaries

The formal definition of the online assignment problem is as follows.

Definition 1 (Online Assignment Problem) Let G = (U, V,E) be a com-
plete bipartite graph, where U is a set of n black vertices and V is a set of n
white vertices. Let the weight of an edge (vi, uj) ∈ E be ei,j = d(vi, uj), where d
is metric. At the onset, n black vertices are known, and as white vertex vi arrives
along with its edge weights, the algorithm matches ui to one of the available black
vertices. Once matched, a pair cannot later be separated. The algorithm tries to
produce the smallest weight perfect matching possible.

The complete bipartite graph is revealed in an online manner. Without loss of
generality, we assume that the white vertices arrive from v1 to vn. We illustrate
the online behavior in the following figure.
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Given this, there is a need to measure the goodness of an algorithm for
the problem. In this paper, the competitive ratio will be used to measure the
solution quality of the online algorithm, with respect to the solution obtained by
the optimal offline algorithm. We illustrate the online behavior in the following
figure.
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Definition 2 (Competitive Ratio) For all finite request sequences I, let ALG(I)

be the worst-case performance of an online algorithm ALG and OPT(I) simi-
larly to be the performance of an offline algorithm OPT. ALG has a competitive
ratio of c (or is c-competitive) if there exists a constant b such that

ALG(I) ≤ c ·OPT(I) + b

If b = 0, ALG has a strictly competitive ratio of c (or is strictly c-competitive)
such that

ALG(I) ≤ c ·OPT(I)

2.1 Related Work

The pursuit of a faster and more efficient algorithm has always been an interest
in the computer science research space. This is not different from what will be
investigated in this paper, that is, to formulate an algorithm that results in a
better solution quality for the online assignment problem. Some of the processes
from Lykouris and Vassilvitskii’s model will be followed, in which an online al-
gorithm is merged with machine-learned advice [18]. These will be introduced
later on.

Optimal Offline Algorithm. The constructed online algorithm, ALG, will
involve using an optimal offline algorithm, OPT, for solving the online AP.
Table 1 shows various algorithms that efficiently solve the offline AP.

Algorithm Time Complexity

Kuhn, 1955 [15] O(n4)
Munkres, 1957 [20] O(n3)

Tomizawa, 1971 [25] O(n3)
Edmonds and Karp, 1972 [8] O(n3)

Karp, 1980 [12] O(n2 log n)

Table 1: List of several offline algorithms for the AP and their time complexity

The Hungarian Algorithm is one of the best-known offline algorithms to solve
the classical problem. [15] presented this algorithm, which was later refined by
[20]. It was the first algorithm to solve the AP in a polynomial time, specifically,
at O(n3) time. Other studies, such as [6], [25], and, [8], have also presented
algorithms with the same time complexity.

In 1980, an O(mn log n) algorithm to solve the AP for m sources and n
destinations was discovered by [12]. Its time complexity was achieved under the
assumption that the costs of the edges are independent random variables and
that the costs of the edges connected to a source are drawn independently from
a common distribution.
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Since this paper assumes that the sizes of the two disjoint sets are equal, [12]
would have a running time of O(n2 log n).

Online Algorithms. In this paper, known online algorithms for the AP will
be used as a benchmark when comparing the solution quality of ALG. Table 2
shows various algorithms that efficiently solve the online AP.

The first known online version of an edge-weighted bipartite matching was
introduced independently by [11] and [14]. In this version, assuming that the
bipartite graph is complete, a set of vertices called girl vertices are given in
advance, while the other set called boy vertices arrive one at a time. When a
boy vertex arrives, he reveals the weights of edges connected to him and the girl
vertices, and, he has to be matched off immediately, this decision is irrevocable.
Similar to the Linear Sum Assignment Problem, the goal of this algorithm is to
minimize the sum of the obtained weights.

Both papers, [11] and [14], gave a (2n − 1)-competitive online algorithm to
solve the problem and proved that no online deterministic algorithm can achieve
a competitive ratio lower than that for all metric spaces.

Since the bound is proven tight, different approaches to achieve better solu-
tions for the problem were done. One of these is using randomization as men-
tioned as an open problem in [11].

Furthermore, [19] discovered an online randomized algorithm with an ex-
pected competitive ratio of O(log3 n) —the first of this kind to achieve a poly-
logarithmic expected competitive ratio for the problem on general metrics. A
year later, O(log2 n)-competitive randomized algorithm was discovered by [2],
which improves the conversion from tree metrics to general metrics.

Table 2: List of several online algorithms for the AP and their competitive ratio

Algorithm Competitive Ratio

Khuller et al., 1994 [14] 2n − 1
Khuller et al., 1994 [14] 2n− 1

Meyerson et al., 2006 [19] log3 n
Bansal et al, 2007 [2] log2 n

In addition to comparing ALG’s solution quality, its time complexity will
also be determined.

Machine Learned Advice. An online algorithm that uses advice could make
better responses to the requests arriving sequentially as it contains sufficient
knowledge of the entire input sequence. This has been mentioned in [7] (oracle
with answerer and helper modes), [4] (advice tape), and [24] (clairvoyant oracle
with unlimited computational power).

A practical way to implement advice in real-life situations is through ma-
chine learning. [18] conceptualized a framework on how to utilize ML advice
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to improve the performance of an online algorithm. Augmenting ML advice to
online algorithms has been applied to multiple problems. [10] used ML advice to
optimize the online page migration problem and discovered that the competitive
ratio of their algorithm approaches 1 as the error rate of the predicted input
diminishes to 0.

Lykouris et al. [18] and Rohatgi et al. [22] both tackled the caching prob-
lem and [16] and [21] with the ski-rental problem —all of which resulted in an
improvement to the competitive ratios of their respective problems.

3 Online Algorithm for the Assignment Problem with
ML Advice

Algorithm 1 shows the constructed online algorithm for the assignment problem,
ALG, which is augmented with machine-learned advice. The questions consid-
ered in conceptualizing ALG were (1) whether an ML model could predict an
input sequence close to the actual one, and, (2) whether an online algorithm
could provide a solution or output close to the actual one by using the predicted
input as a source of guidance.

Algorithm 1: Online Algorithm with ML Advice for the AP

input : Actual input A, an nxn matrix, where aij ∈ N[1,n]

output: Matching M

1 for i← 1 to n do
2 a′i ← mlModel(ai−1, A) ; . returns predictions subject to error

3 end

4 P = Karp(A′), where P = p1, p2, ...pn, pi ∈ N[1,n] and is unique
5 for i← 1 to n do
6 ei ← (ai, pi)
7 M ←M ∪ {ei}
8 end

Lines 1-3 of Alg act as the reading section of the algorithm. It assumes that
a certain ML model can be read line by line, for n times, which would result
in an n × n when appended. The predicted matrix A′ is a prediction matrix
obtained from A differentiated by a certain defined degree of error. The method
of how it is perturbed can be seen in 3.2.

The prediction matrix A′ will be then used as an input to an optimal offline
algorithm, [13] in this case, to get a matching P as the solution to A′

As it has been established that A′ is a prediction for A, A′ can be used as the
actual input, and its matching P can be projected into A to obtain the solution
M .

In a certain sense, this separates the Machine Learning Model from the algo-
rithm. It makes sense that for this study, the ML Model is treated as a black box
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that produces a prediction matrix A′ subject to some error E. The quality of the
ML model can be easily simulated using different values of E to describe how
well the model predicts A′ from A. With this, the study will revolve around em-
pirical tests and analysis of the error metric E and the parameters that describe
it to identify how such errors affect the solution quality of the online algorithm.
The figure below shows the relationship and the parameters that will be used
in this paper to investigate the effectiveness of this algorithm with the Online
Assignment Problem.

Fig. 1: Theoretical Framework for Algorithm 1 which shows the relationship be-
tween A and A′ and how this paper compares the solution from a benchmark
algorithm to Algorithm 1

This paper will use a Python library, NetworkX, to be able to use [12].

3.1 Running Time of the Algorithm

Line 4, in Algorithm 1, is [12] and it runs at O(n2 log n) time, while lines 5-8
runs at O(n) time as assigning an edge happens one at a time due to problem’s
manner of receiving input.

As mentioned earlier, ALG treats the ML model as a black box. Therefore,
when the algorithm has been integrated with a certain machine learning model,
the running time in lines 1-3 depends on what the model is and should be con-
sidered in determining the overall running time of ALG. Usually, more training
time is needed to get better predictions.

Figure 2 shows a grouped bar chart of the running time obtained from func-
tions, graph creation and bipartite matching, as the input size increases. Their
execution time was measured using the benchmark data set from [3], and a
computer using Macbook 2017 with a 2.5GHz dual-core Intel Core i7.

3.2 Obtaining predicted matrix A’

Since obtaining predictions from an ML model is beyond the scope of this study,
the prediction or the ML advice will be based on matrix A, which will be the
input to Algorithm 1.
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Fig. 2: Grouped bar chart of the execution time for (1) the creation of the bi-
partite graph, which was later used by [12], and (2) [12] itself. Both functions
utilize a Python library, NetworkX. The actual running time was computed by
executing the algorithm thrice using the dataset provided by [3]. Theoretically,
(1) has a running time of O(n2) while (2) has a running time of O(n2 log n).
Therefore (2) is asymptotically faster than (1), which is evident in the figure
when input size ≥ 600.

In this paper, it is assumed that there exists an oracle that somehow knows
the actual input to the algorithm. This oracle can be visualized as a machine-
learning model that predicts an input sequence. Specifically, this is the predicted
matrix A′, which is a perturbed version of A. Algorithm 2 shows how it is
produced.

Aside from A, Algorithm 2 requires two parameters to proceed to the per-
turbation, ε and k. ε is a scale factor to determine the number of elements to
perturb, while k is a constant to be used when perturbing a selected element.

To preserve the range of values of A to A′, lines 4-10 solve this problem.
Algorithm 2 has three conditions when perturbing an element:

1. If the value of the selected element exceeds the range of values in A if k is
added, subtract k.

2. If the value of the selected element falls behind the range of values in A if k
is subtracted, add k.

3. Otherwise, randomly choose whether the selected element should add or
subtract k.

Equation 1 shows the closed-form solution for Algorithm 2.

A′ = A+ RAND(A|ε)× kij (1)

In this equation, RAND(A|ε) return an n × n matrix in which, based on
the scale factor ε, the selected elements will have a value of 1, and 0, otherwise.
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Algorithm 2: Perturbation of Matrix A as an ML advice

input : Actual input A: an nxn matrix, where aij ∈ N[1,n]

ε: a scale factor to determine the number of elements to perturb
k: a value to be added or subtracted to the selected elements

output: Perturbed matrix A′: an nxn matrix, where aij ∈ N[1,n]

1 Let min = minimum value in A, and max = maximum value in A
2 A′ = A
3 Choose bsize(A)× εc elements in A and do the following:
4 if Aij − k < min then
5 A′ij = A′ij + k ; /* Case 1 */

6 else if Aij + k > max then
7 A′ij = A′ij − k ; /* Case 2 */

8 else
9 Randomly choose between Case 1 and Case 2.

10 end

Then, each element of this matrix will be scaled by kij , which depends on what
the value of aij is. The range of values of kij is {−k, k}. Finally, adding the
scaled matrix to A would result in a perturbed matrix A′.

The next section of the paper will discuss how the parameters ε and k, which
are used to produce matrix A′ as an ML advice, affect the solution quality of
ALG, in other words, the correlation between the distance of A to A′ and the
competitive ratio of the algorithm.

Also, the succeeding section will discuss how far should A′ be from A for the
solution quality of Algorithm 1 to be better than the known bounds.

4 Results

An empirical test was conducted to determine how well Algorithm 1 performs in
comparison to the known bounds for the algorithms of the assignment problem.

Instead of creating a dataset to be fed to ALG for the test, the study relied
on a test dataset used in J.E. Beasley’s ”Linear programming on Cray super-
computers”, as choosing a probabilistic distribution would not be a concern
anymore.

The dataset contains 12 files, eight of which were appropriate for the testing.
The selected files were then converted to n× n matrices in the implementation
and were used as input and ML advice to Algorithms 1 and 2. The number of
rows (or columns), n, of the matrices are {100, 200, 300, . . . , 800}, and the range
of values of the elements is from 1 to 100. The optimal solution of the matrices
is also given in [3] and was verified to be correct during an examination.

Aside from the matrices of different sizes, Table 3 shows the sets of values
for ε and k, which were used to produce an ML advice or a predicted matrix
A′. The values for ε and k have been intentionally limited as the study assumes
that when a machine learning model has been included in the algorithm in real
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life, it is expected to produce accurate predictions before its training. Its trends
and the analysis of these trends will be later identified in this paper.

Table 3: Selected values for ε and k. The study purposely selected 0.5 and 50
to be the largest values for the parameters ε and k, respectively, because it is
assumed that an ML model can produce a matrix A′ in which the number of
elements to perturb will not reach 50% of the size of the matrix, and a selected
element will not incur more than 50 from its original value.

Parameters Values

ε {0, 0.1, 0.2, 0.3, 0.4, 0.5}
k {10, 30, 50}

Given all of these, Table 4 shows the resulting competitive ratios from every
possible permutation of ε and k, using the selected n × n matrices, which are
identified by the number of their rows, n.

It can be observed that when ε = 0, for all k and n, the obtained competitive
ratios were equal to 1. This observation is trivial because ε = 0 means that the
perturbation function has no elements to perturb from A. Thus, the predicted
matrix A′ is equal to the actual input A, and by the nature of ALG, its matching
or solution will be the same as the solution obtained by A using any optimal
offline algorithm for the AP.

Disregarding the values when ε = 0, for each n, the lowest competitive ratios
were from ε = 0 and k = 10, while the highest was from ε = 0.5 and k = 50.
These values mean that the lower the number of chosen elements and the value
for perturbation, for which ε and k are responsible, respectively, the lower the
competitive ratio ALG will obtain. In general, a lower value for the parameters
ε and k results in a lower prediction error, and thus, getting a better solution
quality.

This prediction error could be in the form of a difference between the actual
value and the prediction of the model. To get this difference, the root-mean-
square deviation (RMSD) was used, it is one of the most commonly used to
evaluate the performance of a regression model. Section 4.1 will present the
definition of RMSD for this study and will discuss the relationship between the
RMSD of A and A′ and the solution quality of Algorithm 1.

4.1 Root-Mean-Square Deviation for A and A′

In this paper, Equation 2 shows the definition of the root-mean-square deviation.
Its original formula has been adjusted for this study to accommodate n × n
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Table 4: Resulting competitive ratios of Algorithm 1 using the sets ε, k, and n.
To get these values, the seed was set to 0 in the implementation.

ε k
n

100 200 300 400 500 600 700 800

0
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.1
10 1.2 1.6 2.0 2.3 2.7 2.8 3.0 3.2
30 2.2 3.3 4.2 5.8 6.4 6.9 7.4 7.7
50 4.7 7.6 7.9 11.4 12.7 14.6 15.4 16.5

0.2
10 1.6 2.1 2.7 3.2 3.5 3.6 3.7 4.1
30 2.8 5.8 6.5 8.0 9.3 10.3 10.3 10.8
50 6.1 11.6 13.3 16.3 18.2 19.6 20.6 21.9

0.3
10 1.9 2.7 3.4 3.6 4.1 4.1 4.4 4.5
30 3.9 6.6 8.0 9.8 11.3 11.8 12.2 13.1
50 7.7 14.0 17.4 19.8 21.3 21.9 23.0 23.9

0.4
10 2.1 2.9 3.7 4.2 4.4 4.5 4.7 4.8
30 4.4 8.4 9.7 11.8 12.3 13.4 13.6 14.3
50 9.6 15.4 18.8 22.2 23.0 24.1 24.9 25.1

0.5
10 2.6 3.2 4.2 4.4 4.7 4.8 5.0 5.1
30 5.6 8.5 10.5 12.9 13.3 13.8 14.4 14.8
50 11.6 17.3 21.0 23.3 23.9 25.0 25.1 25.5

matrices, in which it describes the distance of the value of each element of A′

from A.

RMSD(A,A′) =

√√√√√ n∑
j=1

n∑
i=1

(aij − a′ij)2

n2
(2)

Using the equation, Table 5 shows the RMSD obtained from all permutations
of ε and k for the 100 × 100 matrix and are appended with its corresponding
competitive ratios.

It can be observed that the obtained RMSD values follow along the direction
of the competitive ratios. For a certain ε, as the competitive ratio increases,
the RMSD also increases. Furthermore, similar to the previous observation, the
RMSD(A,A′) = 0 for all possible k values since A = A′.

To see what type of relationship they have, graphically, Figure 3 shows the
scatter plot for the RMSD between A and A′ versus the competitive ratios,
which are listed in Table 5, along with a trend line. Ignoring the parameters,
the values from the third and fourth columns of Table 5 are treated as y and x
values, respectively, and each row is treated as an ordered pair, which were used
as the data for the plot.

A linear trend line was included in the figure because it has the lowest R2

value among any curved lines and polynomial lines of degree greater than 1. It
has a positive slope and the scatter about the line appears to be small. Therefore,
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Table 5: Resulting RMSD and competitive ratios using presented algorithm using
the sets ε and k, and for the 100× 100 matrix of the Beasley dataset.

ε k RMSD(A, A′)
Competitive

Ratio

0
10 0.0 1.0
30 0.0 1.0
50 0.0 1.0

0.1
10 3.2 1.4
30 9.5 2.2
50 15.8 4.7

0.2
10 4.5 1.8
30 13.4 2.8
50 22.4 6.1

0.3
10 5.5 2.0
30 16.4 3.9
50 27.4 7.7

0.4
10 6.3 2.1
30 19.0 4.4
50 31.6 9.6

0.5
10 7.1 2.3
30 21.2 5.6
50 35.4 11.6

RMSD(A,A′) and the solution quality of the algorithm has a linear relationship
with a strong and positive correlation. Moreover, a linear relationship means
that both variables have a direct proportionality to each other.

5 Analysis

Looking at the trend of the competitive ratio with changing n and ε, it is quite
easy to see its consistency with RMSD(A,A′) in which all variables k, ε, and n
is directly proportional with the competitive ratio. We see in our results that for
the smallest Beasley Data Set graph of size 100, the algorithm gives a compet-
itive ratio of 1.344 on the lowest error benchmark for our empirical tests. The
resulting competitive ratio then increases as we increase the error which further
solidifies the hypothesis that with a better predictor, an algorithm for the on-
line assignment problem with ML advice will result in an improved competitive
ratio.

Comparing these results to the best deterministic and randomized algo-
rithms, the online algorithm with advice performs considerably well when the
prediction error is small. The graph below shows that the algorithm performs
better than the best-randomized algorithms when k <= 10 and ε <= 0.5 for all
sizes of n in the Beasley Data set.

Now the analysis begs the question, up to what extent does the online algo-
rithm with advice perform better than its counterparts? To answer this, a more
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Fig. 3: Scatter plot of RMSD of the matrix of size 100 × 100 of the Beasley
dataset, A, and the predicted matrix A′, versus the obtained competitive ratio
from ALG. The plot is also accompanied by a linear trend line, which best
approximates the relationship between the two variables.

Fig. 4: Graphical comparison between competitive ratios of the presented algo-
rithm and best known randomized algorithms with k = 10

representative measure should be used in place of the variables used in the pre-
vious graph. Figure 5 below uses the RMSD(A, A’) as a measure of total error
to show the performance of the online algorithm with advice.
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Fig. 5: Empirical competitive ratio obtained when increasing RMSD(A,A). This
plot provides a guide in identifying a tolerable RMSD threshold in deciding
whether to incorporate ML in the online algorithm. For each plot, we can com-
pare the performance of the best online randomized algorithm (orange) and
known lower bound result (green) for n = 100, 400, 800, respectively.

It is shown in Figure 5 that certain RMSD(A,A′) values result in a bet-
ter performance from the online algorithm with advice against the randomized
algorithm. For a 100x100 graph, the algorithm will perform better as long as
the RMSD(A,A′) does not exceed 3 and so on. Thus, as long as the prediction
matrix A′ is good enough to produce a small enough RMSD(A,A′), the online
algorithm with ML Advice can perform better than the best deterministic and
randomized algorithms.

Moreover, Figure 5 shows a range of tolerable RMSD for any ML predictor
that will improve the current best competitive ratio. For RMSD greater than 10,
we suggest utilizing randomized algorithms for the online assignment problem.

Even though the results have so far been positive with better predictions, one
thing to consider for the algorithm is its trade-off with regard to the running
time. As mentioned in the running time analysis section of this study, the running
time of the ML Model pre-processing where the ML predictions are produced
is highly dependent on the ML Model. This means that the performance of the
algorithm improved with a worse running time as it is widely accepted that better
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predictions from an ML model result from more training time (and data). This
means that not in all cases that it would be advantageous that this algorithm
will be used over the classical randomized and deterministic algorithms.

6 Future Work

Using ML advice for online algorithms is still an extremely young and under-
developed approach to algorithm design. Even though this research has shown
improvements against its classical counterparts, it is still a very fundamental
approach to the problem and further research can still greatly improve its per-
formance. With this, the researchers have identified several ideas to build upon
the current research for the online assignment problem with ML Advice.

– A theoretical measure of the closed form of the function obtained from the
algorithm that describes the relationship between the error and solution
quality.

– Investigating the consistency of the presented algorithm when given a dif-
ferent benchmark data set.

– Investigating the consistency of the presented algorithm when given a data
set with values from different metric spaces.

– Further analysis using different definitions of the error metric and/or differ-
ent definitions of the perturbed matrix A′

– A less naive than the projection implementation of the algorithm.
– Real-world implementation of the algorithm using a Machine Learning Model

to obtain the prediction matrix A′

– An empirical test in which a Machine Learning model is used to identify the
specific trade-offs between an ML Model’s running time and the competitive
ratio of the solution.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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