

https://doi.org/10.2991/978-94-6463-388-7_16

An API for Secure Sharing of Electronic Health
Records in a Public Blockchain

Maria Patricia Javier1, Earth Wendell Lopez1, Gabriel Luis Marcelo1, and
Katrina Ysabel Solomon1

Advanced Research Institute for Informatics, Computing, and Networking,
De La Salle University,

2401 Taft Avenue, Manila 1004, Philippines
katrina.solomon@dlsu.edu.ph

Abstract. Electronic Health Records (EHRs) contain information such
as diagnoses, medications, and allergies of individuals stored in a digital
manner. Given the sensitive nature of these information, EHR systems
with improper access control may be vulnerable to attacks leading to a
breach of confidentiality. Those with strict security controls, on the other
hand, limit the accessibility of the records, making them difficult to share
said records among various medical institutions and professionals. One
approach to addressing the accessibility of EHRs, while not compromis-
ing confidentiality and access control, is by utilizing blockchain technol-
ogy. The inherent security of blockchains allow it to strengthen existing
EHR systems by addressing the limitations previously mentioned. In this
research, an Application Programming Interface (API) was developed to
integrate an EHR system to a blockchain network. The API includes
functionalities such as adding records, sharing and retrieving records,
and access control.

Keywords: electronic health records, blockchain, access control

1 Overview

Healthcare is undoubtedly a necessity in people’s lives and with it comes a
collection of data. These medical data can be stored in Electronic Health Records
(EHRs). These digital records can improve the efficiency of sharing medical data
throughout a medical facility. It can avoid redundancy and inaccuracy that is
usually the limitation of physical health records. However, EHRs also come with
its own limitations. They are commonly maintained using centralized systems
which may lead to a single point of failure if not secured properly. In other cases,
EHR systems tend to be too restrictive that it accessibility becomes an issue for
authorized entities [1].

One major incident of an EHR system breach happened to an established
healthcare company, Magellan Health, Inc. On the 12th of June 2020, Magellan
health notified the public of the breach that happened by issuing a Notice of Se-
curity Incident. In this statement, Magellan Health reported what happened—a

© The Author(s) 2024
J. Caro et al. (eds.), Proceedings of the Workshop on Computation: Theory and Practice (WCTP 2023), Atlantis
Highlights in Computer Sciences 20,

mailto:s-hagiha@photon.chitose.ac.jp
https://doi.org/10.2991/978-94-6463-388-7_16
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-388-7_16&domain=pdf

ransomware attack occurred on April 6 and was only detected by Magellan
Health on April 11. The attack led to the breach of important information such
as treatment information, health insurance account information, member ID,
email addresses, phone numbers, and other health-related information. Despite
Magellan Health not having evidence that any personal data has been misused,
it should be taken into account that the leaked information may be used by the
hackers with malicious intent [2] [3].

Blockchain serves as a digital ledger that can be used to hold information in
a distributed manner without requiring a third-party or centralization. Among
its properties, blockchains are notably known for being tamper-proof due to
its immutability. Transactions done over a blockchain are only considered valid
after a consensus had been reached [4]. Additionally, transaction details cannot
be modified anymore once it has been validated. Blockchain rose to popularity
because of its use in cryptocurrencies such as Bitcoin. This technology has since
been explored and applied to other domains such as Internet of Things (IoT),
business, and healthcare.

The integration of blockchain to EHR systems is a promising improvement
to the current state of medical data sharing. Blockchain-based EHR systems are
deployed in a decentralized manner which may prove useful in addressing the
limitations of traditional centralized EHR systems. Furthermore, the existing
properties of blockchains ensure that the accessibility and integrity of EHRs are
upheld.

BHEEM, a proposed blockchain-based framework by [1], provides an efficient
approach to storing as well as transferring or sharing of EHRs. The framework
defines the constituent nodes, the IT components, as well as the blockchain con-
tracts. Its architecture involves functionalities namely addition of a block, addi-
tion of a patient, access permission, addition of a record, retrieval of a record,
and transfer of a record. This framework proposed by [1] is an established frame-
work for blockchain although it is not particularly implemented and/or used by
healthcare systems today.

While blockchain-based EHR systems do well in terms of addressing the is-
sues of traditional EHR systems, it presents a new problem due to limitations on
functionality when it comes to secure data sharing of EHRs. Most blockchain-
based EHR systems are implemented in a decentralized manner posing some
issues such as accidental or actual malicious access towards these health records
which can cause a breach of confidentiality. According to multiple legislations
such as the Health Insurance Portability and Accountability Act (HIPAA) and
the Code of Federal Regulations, patients are given the right over their health
information and may be the one to dictate on who can access their health infor-
mation. Medical records that are shared need consent from the owner ranging
from the type of data to be shared, information about the recipient, and even the
period of time which the data can be accessed by the recipient [5]. Whether the
electronic health record is in a traditional or digital format, the rules of its pri-
vacy and confidentiality remain the same. No healthcare data must be exposed,

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 255

accessed, nor shared without the consent of the owner hence the limitation of
blockchain-based EHRs towards privacy and confidentiality must be addressed.

2 System Design and Implementation

2.1 System Overview

Fig. 1. System Overview

Figure 1 shows the overview of how the API gets called when integrated
with the system. The system implementation mostly follows the BHEEM frame-
work [1] only with data stored in the blockchain itself. Transactions are created
through the blockchain in which data or information are stored using a smart
contract.

The BHEEM framework was implemented with modifications mainly in terms
of storage. It covers the blockchain creation and its storage management. It also
covers the storage of the EHRs and as well as the creation of nodes and its
relationships, addition of a patient to the chain, the addition of a block to the
chain, and the addition of a record to a block. The API uses a smart contract to

256 M. P. Javier et al.

perform operations needed for secure sharing, thus every module interacts with
the blockchain for every transaction or call.

The five essential functions of the API namely, data pulling, access control
and permission, encryption, decryption, and record sharing will be distributed
to three main modules: Access Control and Permission Module, Records Sharing
Module, and Record Retrieval Module.

For the developed system, the assumption made by the researchers is that
the records being handled throughout are added by the respective healthcare
providers. However, ownership of said records is to be directly linked to the
patients thus, giving them sole access prior to sharing it with their respective
providers or chosen external parties. The Owner is to be regarded as the pa-
tient and the Receiving Node or Recipient would be either the Provider or an
External Party. The following figures display a brief step-by-step process of com-
munication among different users to allow for better understanding of how the
system works upon the interaction of different entities with the proposed API for
the involved functionalities. A more in-depth discussion for each process would
be covered in the subsequent subsections through each of the proposed API’s
modules.

Fig. 2. Record Sharing Process

Figure 2 provides a brief process of the communication when performing
record sharing in the system through the API. The process starts with the owner
requesting a change of access permissions through the API’s Access Permission
Module where after processing, would proceed with sending a key to the other
two modules, the Record Sharing Module and Record Retrieval Module, and the
recipient’s address to Record Sharing Module only. The Record Sharing Module’s
responsibility would proceed with sending a notification to the Receiving Node,
informing The user about the shared record where simultaneously would provide
them the secret key needed for accessing the said resource.

Figure 3 shows the overall process involving a recipient’s record retrieval
through the API. The process of decryption would be done within the client side

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 257

Fig. 3. Recipient’s Record Retrieval Process

using the private key shared to the user upon the notification that the certain
record has been shared. Assuming the private key used is valid, the recipient
would finally be able to view the record in plaintext format as well. In this way,
risks involving the sharing of keys over the network are minimized.

Fig. 4. Recipient’s Record Retrieval Process

Figure 4 on the other hand displays a simple process in the case that the
owner themselves wished to retrieve their own record. To do so, the owner simply
would have to request the record through the Record Retrieval Module and would
be able to easily receive it in its plaintext format as it is sent back.

Access Control and Permission Module Invoke and revoke of permissions
as well as key generation happen in the Access Control and Permission Module.
If the record owner is the one retrieving the record, then the owner can simply

258 M. P. Javier et al.

proceed to the Record Retrieval Module. On the other hand, if the owner intends
to share a record, then the process starts with an owner’s request for change of
permission and generates the original access permission of the requested record.
The module then updates the original access permission by creating a new trans-
action for the updated access permission and saves the recipient address which
is forwarded to the Record Sharing Module. The process then generates crypto-
graphic key and is forwarded to both the Record Retrieval Module and Record
Sharing Module.

Record Sharing Module The Record Sharing Module is responsible for no-
tifying the recipient with regards to their updated access permissions to a file.
From the Access Control and Permission Module, the recipient address and pri-
vate key file name is received. The module locates the recipient node and notifies
the recipient that a record has been shared and will be accessible for said recipi-
ent. Along with the notification, the recipient is also provided the key via secure
key exchange. The notification and the key allows the recipient to proceed to
the Record Retrieval Module.

Record Retrieval Module Responsible for fetching the requested information
by either the owner or recipient being shared to is the Record Retrieval Module.
The module allows for both types of user to retrieve the record, varying mostly
upon the need to securely provide a record for the intended recipient before
completely accessing the said information. For the owner, a checking of Access
Permissions for the record will first be verified where a confirmation will result in
the retrieval of the record and the owner receiving it in plaintext. For recipients
given access permission by the owner, the process also begins with receiving
the recipient’s request, verifying access permission, and pulling the requested
record from the blockchain. The pulled plaintext record is to be ciphered with
the owner’s key in accordance with the specified encryption algorithm before
being sent to the recipient. The recipient then, with the shared key, will have to
decipher the encrypted record to receive the information again but in plaintext.

2.2 System Implementation

Electronic Health Record (EHR) Data Structure Due to smart contracts’
limitations on the maximum number of variables to be processed in a transaction,
the chosen EHR data structure was based on immunization records. These data
are synthetic and was generated using Synthea. A sample EHR can be seen in
Table 1.

2.3 Blockchain and Smart Contract

Blockchain processes such as creating and adding of blocks in the blockchain,
mining of transactions, and verification of transactions will be done through the

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 259

Table 1. Sample Immunization Record

Field Sample Data

Record ID (ID specific to record)
Date 08/01/2021
Patient ID 0xfB13CCd7c748952eC91C7A42a3C8eD6C86d0 b97F
Birthdate 08/24/1986
Complete Name Kris Jacinto
Gender M
Address 888 Hickle Ferry Suite 38
City Springfield
Code 140
Description Influenza seasonal injectable preservative free
Base Cost 140.52
Healthcare Expenses 8446.49
Healthcare Coverage 1499.08

tool, Ganache [6]. Ganache is an Ethereum simulator that can make develop-
ment for Ethereum applications easier, faster, and safer. It can provide a local
blockchain that allows for developers to develop, deploy, and test projects and
smart contracts such as Solidity in a safe environment and without the need
to pay for gas fees provided by Ethereum transactions making it cost-effective.
Additionally, since Ganache uses a local blockchain, transactions are almost in-
stantaneous which avoids the issues of slow-paced development in an Ethereum
blockchain because of its need for time to upload and deploy before contracts
can be tested. Furthermore, Ganache has two versions with one being used for
command-line interfaces called the ganache-CLI and the other is a full-fledged
desktop application with a graphical user interface called Ganache UI — to
which the researchers used the latter.

In Ganache Version 2.5.4, the addition of a block is done whenever a trans-
action is performed. Transactions are done with the help of a smart contract
that was developed in the local environment of Ganache. Once a transaction or
set of transactions has been completed, it will be added to a block pending its
addition to the chain. Aside from the transactions, the block must also contain
the hashed unique identifier of the previous block, hence the “chain” concept.
The current block will be assigned its own unique identifier, then will undergo
hashing with a nonce value. This block is then added to the chain. Both the
blocks and transactions can be seen in the user interface that Ganache provides.

In mining, by default, Ganache uses its automine feature that allows for
instantaneous processing of transactions, however, developers have the option to
disable this. By disabling the automine feature, developers then need to input the
time interval in the field that will determine the number of seconds of each block
mining. Whether automine is enabled or not, transactions will not be stored in
a transaction pool and will be included in the current block.

One smart contract was implemented for the system to reduce gas cost in-
cluding the extra ones incurred when reading and writing to and from multiple

260 M. P. Javier et al.

contracts. This smart contract contains all the functions that perform the oper-
ations and calls to the blockchain as well as the storage of data as opposed to
the multiple smart contract implementations. The three main information being
stored in the smart contract as structs are users, records, and permissions. The
permissions are stored in an array while both users and records are stored in
a mapped array wherein wallet address and record ID is used as primary key,
respectively.

2.4 API

The implementation of the API is deployed in a Django environment which
utilizes the Django REST framework, a tool that allows developers to create Web
APIs. The Django environment consists of connected files that work together to
allow the API to be fully functional. The API is written using Python and
utilizes HTTPS. The SSL certificate is self-signed since the API is only deployed
on a local test environment. It should be noted that on actual deployment, the
certificate must be obtained from a certificate authority (CA).

The API acts as a gateway for external clients to communicate with the smart
contract deployed in the test blockchain and vice-versa. Responsibilities for the
API include handling requests made by the user, making calls representing said
requests, interacting with the smart contract, and reading the data that comes
from both ends.

It utilizes the web3 library in order to communicate with the smart con-
tract which handles the operations and calls to the blockchain and storing data
in the smart contract. The crypto library is utilized for the cryptographic re-
quirements of the system implementation, mainly focusing on AES, 3DES, and
Blowfish, mostly for encrypting and decrypting records when being accessed by a
valid recipient. Other libraries such as secrets and struct were also used for cryp-
tographic purposes. The pickle library was used for saving and retrieving keys
on the server. The uuid library was used for the generation of key IDs to ensure
that they are unique and is considered safer than using integer-based IDs. The
requests and json library was used for handling the API endpoints and its data.
Lastly, the DiffieHellman library was used for performing the Diffie-Hellman key
exchange algorithm for a secure key exchange.

API Requests Table 2 lists all possible requests a client can call to the API
to perform functions from the smart contract.

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 261

Table 2: API Requests

Request Method Parameter(s) Response
initialize GET N/A Returns a message that

it is connected to the
blockchain. Otherwise, it
returns a message stating
that it failed to connect
to the blockchain.

add user POST
address,
role

Returns the value of the
address and user role as
JSON. Otherwise, it re-
turns a message that the
user already exists.

check user GET address Returns a message that
tells that it has logged
successfully. Otherwise,
it returns a message that
tells that log-in has failed
and the address is not
found.

get current GET N/A Returns the address
of the current account
logged in. Otherwise, it
returns a JSON response
error.

add record POST

record date,
birthdate,
name,
gender,
address,
city,
vaccine code,
desecription,
base cost,
expense,
coverage

Returns a message that
the record is successfully
added with its corre-
sponding record ID. Oth-
erwise, it returns a mes-
sage that the addition of
the record is unsuccess-
ful.

262 M. P. Javier et al.

Table 2 continued from previous page
Request Method Parameter(s) Response

modify permissions POST

owner address,
recipient address,
record ID,
permission

Returns a message
that the modification
of record permission
is successful alongside
the key ID associated
with it. Otherwise, it
returns a message that
the modification of
record permission is
unsuccessful.

view permissions GET address Returns a list of cur-
rent permissions that the
user has which contains
the access ID, record ID,
and key ID. Otherwise,
it returns a message that
viewing of record permis-
sions is unsuccessful.

load user keys POST
address,
public key

Returns the available
keys of the current
address, nonce used
for encryption, and the
API’s public key for
Diffie-Hellman. Other-
wise, it returns a JSON
Response error.

check owner GET record ID Returns a value depend-
ing if the current address
is the record owner. Oth-
erwise, it returns a JSON
response error.

retrieve record
GET record ID Returns the record of the

owner. Otherwise, it re-
turns a JSON response
error.

POST
record ID,
address,
private key

Returns the encrypted
shared record of the
owner to the recipient.
Otherwise, it returns a
JSON response error.

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 263

3 Test Results

To determine the overall performance of the API, functionality tests were con-
ducted. The functionality testing focuses on checking whether the expected out-
put is achieved for the tasks of each module.

To test the API’s functionality, a sample client-side application is created to
interact with the API. The client requires user address registration and login in
order to use the functionalities offered by the API. Divided into three modules,
the Access Control functionality is under the Access Permission module, Encryp-
tion, and Data Pulling functionalities under Record Retrieval module, and Data
Sharing functionality under the Record Sharing module. For this functionality
test, the default encryption algorithm, AES, is selected.

Fig. 5. Server-side Record Permission Invocation

As for the access permission, the access control functionality is tested out
by modifying record permissions of added records, given that the one requesting
for change of access permission of a record is its owner. A record is shared to a
recipient using the Invoke Permission option as shown in Figure 5. This indicates
that the recipient now has (R)ead access permission for the shared record.

In the instance that an owner wants to change a recipient’s access into having
no access, this can be performed by choosing the Revoke Permission option.
Compared to the response received when giving a (R)ead access, Figure 6, on
the other hand, returns almost the same information but shows that the key ID
created with the invocation has been deleted.

264 M. P. Javier et al.

Fig. 6. Server-side Record Permission Revocation

Fig. 7. Client-side Record Retrieval by Owner

Retrieving a record works in two ways: one, if the owner of the record is the
one retrieving it and, two, when a recipient wants to retrieve a shared record. If
as an owner, the user simply needs to provide a record ID with the request. Data
will be easily pulled from the blockchain and returned back in plaintext/json.
Figure 7 shows this instance of an owner retrieving their own record.

For recipients, on the other hand, when wanting to access a record they have
been given access to, the user will need to provide more than the record ID.
Initially, the keys are first updated in cases of any permission changes prior. The
user is then asked to provide the record ID, filename of his key dictionary, and

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 265

Fig. 8. Server-side Record Retrieval by Recipient

the key ID corresponding to the private key needed to decrypt the record being
tried to retrieve. If all parameters requested are valid, the server will then be
able to return the shared record. The server side will check if the user accessing
the record has a valid access permission for said file. If the user does have access
to the file, it will retrieve the record and return it to the requester. This scenario
is shown in Figure 8.

4 Conclusion

The research aimed to develop an API to improve the use of public blockchain
technology for healthcare by addressing limitations in security or privacy issues
in terms of sharing sensitive data and information such as Electronic Health
Records (EHRs) by adding a layer of security using a cryptographic algorithm
to the data at rest prior to transit. This implementation eliminates the aforemen-
tioned issues of traditional EHRs being prone to tampering and general inacces-
sibility. Furthermore, blockchain-based EHRs utilizes the strengths of blockchain
as one needs to compromise all that has the ledger for data to be possibly compro-
mised. The decentralized characteristic of blockchain allows for user discretion
in sharing their own healthcare data with the benefit of blockchain’s immutabil-
ity. Along with the benefits of blockchain, the API’s functionalities were tested
using a client application developed by the researchers. Ganache was used as a
testing environment for the blockchain, Remix for the smart contract, Django

266 M. P. Javier et al.

framework for the application development, and Web3 for the connection be-
tween the application code, the smart contract, and the blockchain. The API
functionalities: record addition, record sharing, and record retrieval were tested
with various API calls designed to communicate through the blockchain with
a smart contract were successful. Records from the blockchain can be added,
shared given that the user gives permission to another user, and accessed by
users that have been granted to view records which can be checked with the
client application.

As the study focused on API development as a possible solution to the prob-
lem, the blockchain environment was not much focused on which left the gas
fees and practical cost of implementation out of consideration such as details on
upkeeping user balances. Input validation for records were not taken into con-
sideration as the researchers assumed correct input for testing purposes. Also, as
the study follows the existing framework wherein access control on roles were not
discussed in detail, the implementation offers different roles for a user but has
the same access on functionalities regardless if the user registered as patient, a
doctor, or a healthcare provider. Since the study followed in utilizing blockchain
for storing data, it’s immutable characteristic also offers advantages with it be-
ing tamper-proof but also comes with disadvantages such as not being able to
modify erroneous inputted data and smart contract’s limitation on maximum
number of variables it can handle in a transaction, given that the records being
stored are healthcare data which are usually composed of several data fields.

The implementation also utilizes the Django REST API framework which
provides flexibility and ease of implementation, as well as test coverage of source
code, for the necessary client-server setup to test out the API itself. With this,
there is an option to utilize a database for the web app implementation which the
researchers decided not to focus on as exploration of the blockchain technology
as a storage for healthcare data is intended. Other options for storing EHR data
include other hospital’s systems with their own servers and Cloud-based EHRs.
These other options also come with its advantages and disadvantages such as
EHR systems being prone to theft or data being tampered while cloud-based
solutions become more expensive as the need for storage increases. The best
choice for data storage relies on the use case of the API depending on the needs
of the system that will use it. It could also be possible to implement a hybrid
storage which involves both the blockchain and database that can utilize both
its strengths together to create a better system overall.

References

1. Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. & Rodrigues, J.
BHEEM: A Blockchain-Based Framework for Securing Electronic Health Records.
2018 IEEE Globecom Workshops (GC Wkshps). pp. 1-6 (2018)

2. Cyber autopsy series: Phishing attack on magellan health. GlobalSign. (2020,10),
https://www.globalsign.com/en/blog/cyber-autopsy-series-phishing-attack-
magellan-health (visited on 08/18/2023)

An API for Secure Sharing of Electronic Health Records in a Public Blockchain 267

3. Davis, J. Magellan health settles for $1.43m after Data Breach, delayed notifica-
tion. SC Media. (2022,9), https://www.scmagazine.com/analysis/magellan-health-
settles-for-1-43m-after-data-breach-delayed-notification (visited on 08/18/2023)

4. Yaga, D., Mell, P., Roby, N. & Scarfone, K. Blockchain Technology Overview. CoRR.
abs/1906.11078 (2019), http://arxiv.org/abs/1906.11078

5. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M. & Wang, F. Secure and trustable
electronic medical records sharing using blockchain. (2017,8)

6. Ganache. Ganache - Truffle Suite. https://trufflesuite.com/ganache/ (visited on
08/18/2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

268 M. P. Javier et al.

http://creativecommons.org/licenses/by-nc/4.0/

	An APIforSecureSharingofElectronicHealthRecords inaPublicBlockchain

