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Abstract. Spiking Neural P Systems (SN P Systems) replicate the
brain’s information spiking mechanism through synapses. These systems
are known for trading memory for time, making them useful in different
areas both inside and outside computer science. While web-based simu-
lators like WebSnapse offer the potential for centralized GUIs to simulate
SN P system variants, their architecture, codebase, and technologies limit
their capabilities. This paper presents WebSnapse Reloaded, a recreated
version designed for centralization, optimization, and improved user and
developer experiences. With a client-server architecture, it enhances stor-
age usage, scalability, and future development possibilities. The modular
codebase simplifies extension and maintenance. Optimizations include
algorithm refinement through matrix representation and enhanced user
experience. WebSnapse Reloaded reduces task steps, improves software
implementation, passes correctness benchmarks, and resolves previous
issues. Future recommendations include integrating WebGL or alterna-
tive graphing libraries, and developing APIs for other SN P variants to
streamline simulator extension.

Keywords: membrane computing, spiking neural p systems, visual sim-
ulator, client-server architecture

1 Introduction

Membrane computing is a field of computation inspired by the structure and
function of biological cells [27]. It represents computation as the behavior of
a network of interacting “membranes” that can move, divide, and merge. P
Systems, the computing models in membrane computing, are known for trading
memory for time [10] to solve computationally hard problems. Under these are
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Spiking Neural P System (SN P System), inspired by the workings of the human
brain and imitates the way neurons work [27].

Several simulators were developed to address the issue of manually tracing
the system configuration for each time step. Existing GUI simulators for SN P
Systems such as [9], [7], [6], laid the foundations for making these concepts more
accessible. However, certain gaps were found in WebSnapse v2 concerning its
architecture, computational method, code base organization, and user experi-
ence. To address these issues, the researchers created WebSnapse Reloaded to
improve the performance, extensibility, and both the developer and user experi-
ence of the application. We note that despite the performance improvements in
this present work, our simulator WebSnapse Reloaded was developed as a GUI
simulator as defined in [28]. It is beyond the scope of WebSnapse reloaded to
match simulation engines or parallel simulators as in [22, 5].

The following sections further elaborate the premise and process of the
research. Section 2 formally defines SN P systems and its matrix representation.
Section 3 provides an overview of this paper’s predecessor, WebSnapse v2 and
discusses the scope and contributions of the study. Section 4 presents WebSnapse
Reloaded in detail: its features and functionalities, enhancements and testing
procedures. Section 5 further tests the simulator’s correctness through the two
case studies provided. Lastly, the conclusions and future recommendations can
be found in Section 6.

2 SN P Systems and its Matrix Representation

Fig. 1. An SN P System that generates all positive integers greater than 1 represented
in WebSnapse Reloaded
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SN P System Spiking Neural P Systems, or SN P systems for short, is a branch
under membrane computing [23, 24] inspired by the human brain and models
how neurons work [26]. It is a group of neurons placed in the nodes of a directed
graph and communicate by spiking information along the arcs [13]. For further
details on the main ideas and recent results on theory the reader may consult
[15], for applications in [8], with a dedicated chapter in the handbook in [25]. To
visualize SN P systems better, an example by [15] is represented in WebSnapse
Reloaded found at Figure 1, which shows an SN P System that generates all
positive integers greater than 1. Further, [26] formally defines an SN P System
as follows:

Definition 1 (SN P system). A computing extended Spiking Neural P system
of degree m ≥ 1, is a construct of the form:

Π = (O, σ1, . . . , σm, syn, in, out)

where:

1. O = {a} is the singleton alphabet (a is called spike).

2. σ1, . . . , σm are neurons of the form σi = (ni,Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi

(b) Ri is a finite set of rules of the following two forms:

i. E/ac → ap; d where E is a regular expression over a and c ≥ p ≥ 1,
d ≥ 0;

ii. as → λ, for s ≥ 1, with the restriction that for each rule, E/ac →
ap; d of type (i) from Ri, we have as /∈ L(E)

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output spike train neurons.

An SN P System is a model that runs under a global clock, which synchro-
nizes the functions of all neurons letting them work in parallel. Each neuron
contains a finite set of rules that can be either firing or forgetting. Firing rules
trigger the sending of spikes to adjacent neurons when the regular expression,
E is satisfied, while forgetting rules empty the neuron if it contains exactly s
spikes. If the chosen firing rule has a specific delay, the neuron becomes closed,
making it unable to send and receive new spikes. If more than one firing rule is
applicable in a neuron at a time, only one rule is chosen non-deterministically.

Output spike train neurons receive the spikes sent by the system to the envi-
ronment, generating a sequence of 1’s and 0’s called spike train. More advanced
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SN P systems can integrate input spike train neurons [14] and weighted synapses
to simplify previously larger systems by reducing the number of neurons needed
to render the same results [21].

SN P systems serve many functions. Among these are simulating logical
gates and circuits and executing a sorting algorithm [14]. They are Turing-
complete [13] and are also able to solve NP-complete, or computationally hard,
problems [16]. SN P systems are also useful in fields outside of computer science,
e.g.: biology, ecology, economics and linguistics [10].

Matrix Representation of SN P Systems The Matrix representation of
SN P Systems was first conceptualized by [29] but the model only applies to
systems without delay. This work was then revisited by [3] which extended the
representation to apply to systems with delay. Their model was used for the im-
plementation of the simulation engine and is described in the following manner:

Let Π be an SN P System with m neurons and n rules. Its representation
was covered in [3] which can be broken down into the following vectors and
matrices:

Definition 2 (Configuration Vector). This vector contains the number of
spikes that each neuron has. C0 = ⟨c1, c2, . . . , cm⟩ is called the initial config-
uration vector which contains the number of spikes present in each neuron
before the computation starts. The Configuration Vector of Π at succeeding
time steps k is then defined as:

C(k) = ⟨c(k)1 , c
(k)
2 , . . . , c(k)m ⟩

where c
(k)
i is the amount of spikes that neuron σi contains for i = 1, 2, . . . ,m.

Definition 3 (Spiking Transition Matrix). This matrix describes the rela-
tionship of each neuron with regard to their rules. The Spiking Transition
Matrix is defined as:

MΠ = [aij ]n×m

where:

aij =


−c if neuron σj consumes c spikes in rule ri;

p if neuron σj produces p spikes in rule ri;

0 if neuron σj neither consumes nor produces spikes

in rule ri

Definition 4 (Status Vector). This vector describes which neurons are open
or closed at time k. The Status Vector is defined as:

St(k) = ⟨st(k)1 , st
(k)
2 , . . . , st(k)m ⟩
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where:

st
(k)
j =

{
1 if σj is open;

0 otherwise

Definition 5 (Indicator Vector). This vector describes which rules are appli-
cable to produce spikes at time step k. Assume a total order d : 1, . . . , n is given
for all the n rules of the system so they can be referred to as r1, r2, . . . , rn. The
Indicator Vector is defined as:

Iv(k) = ⟨iv(k)i , iv
(k)
2 , . . . , iv(k)n ⟩

where:

iv
(k)
i =


1 if the condition in rule ri is satisfied to produce a

spike at time k;

0 otherwise

Theorem 1 (Computation of System Configuration). For k ≥ 0, the sys-
tem configuration is given by:

C(k+1) = St(k+1) ⊙
(
C(k) + Iv(k) ·MΠ

)
We took the liberty of adapting the Matrix Representation to include input

spike train and weights on synapses to achieve the feature parity with WebSnapse
v2. The modified computation steps are detailed below. Furthermore, to consider
neuron delays, new vectors were defined thereafter to compute for the Indicator
Vector.

Definition 6 (Decision Vector). This vector describes which rules are chosen
at time step k. Assume a total order d : 1, . . . , n is given for all the rules of the
system so they can be referred to as r1, r2, . . . , rn. The Decision Vector is
defined as:

Dv(k) = ⟨dv(k)1 , dv
(k)
2 , . . . , dv(k)n ⟩

where:

dv
(k)
i =


1 if the condition in rule ri was satisfied and chosen

at time step k;

0 otherwise

Definition 7 (Delayed Indicator Vector). This vector describes which rules
were chosen yet delayed to produce spikes at time step k. The Delayed Indica-
tor Vector is defined as:

DIv(k) = ⟨div(k)1 , div
(k)
2 , . . . , div(k)n ⟩
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where:

div
(k)
i =

{
1 if ri is scheduled to fire at some time d > k

0 otherwise

The Delayed Indicator Vector retains its value from the current time step
to the next if it still has a delay and is already set to 1 (representing an ongo-
ing delay). Additionally, if a rule is selected for firing and it has no delay, the
corresponding element in the Delayed Indicator Vector is updated to 1. Logi-
cal Bitwise OR operation was performed to ensure that the Delayed Indicator
Vector accurately represents the delayed firing status of each rule, taking into
account both the existing delays and new delays introduced by rule selection.

Definition 8 (Delay Status Vector). This vector describes how many ticks
are left before a rule is set to fire. The Delay Status Vector is defined as:

DSv(k) = ⟨dsv(k)1 , dsv
(k)
2 , . . . , dsv(k)n ⟩

where:

dsv
(k)
i =

{
d if ri is scheduled to after d ticks

0 otherwise

The delay status vector was utilized to include rules set to fire at a time
step d. When an element dsti reaches 0, it indicates that the rule ri is ready to
fire a rule. Furthermore, the decision vector denotes which rules were chosen at
the current tick. If the selected rule has no delay, it will fire. Finally, if there is
a delayed rule that becomes ready to fire, it will be executed. The delay status
vector works by setting all the rules of a neuron set to fire a rule with the
same value. This makes it easier for checking for the applicability of rules on a
closed neuron. To explain algorithm 4, it first loops over each delayed rule and
decrements the rules mapped under its parent neuron. Then, it loops to all the
chosen rules at the current time step and sets the rules mapped under its parent
to that rule’s delay initial value.

Definition 9 (Spike Train Vector). This vector contains the number of spikes
from the spike train to be sent to each neuron at time step k. The Spike Train
Vector is defined as:

STv(k) = ⟨spt(k)1 , spt
(k)
2 , . . . , spt(k)m ⟩

where:

spt
(k)
i =


sw if neuron ni has an incoming synapse weighted w

from an input spike train set to fire s spikes at

time step k;

0 otherwise
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One change for acquiring the next configuration is the addition of the Spike
Train vector. For the algorithm 3, it was set as the initial value of the Net Gain
before adding the product of the Indicator Vector and the Spiking Transition
Matrix. This algorithm also assumes that consumption rules do not yet apply
when a rule with delay is chosen, rather, the consumption of spikes will only be
done when the neuron is set to fire them at their specified time step.

Definition 10 (Configuration Vector). This vector was redefined to consider
the delay, weights, and spikes from the input spike train. Furthermore, it was
modified with the assumption that the consumption of spikes by closed neurons
does not apply until they’re fired in their firing step. The Configuration Vector
is redefined as:

C(k+1) = C(k) + St(k+1) ⊙
(
Iv(k) ·MΠ + STv(k)

)

3 WebSnapse v2

Simulators provide a great advantage in testing artificial imitations of real-world
systems. Through simulators, large systems that may be rare or impossible to
occur in reality can be tested to reach relevant conclusions. Simulators simplify
and speed up the testing of large systems that would rather take a long time if
done manually. One abstraction of P System Simulators is the Graphical User
Interface (GUI), which is designed with graphics to visualize complex systems
and interact with them. GUIs focus on providing simulation technology for users
who are not familiar with P systems.

WebSnapse v2 is the extended version of the GUI simulator WebSnapse [7]
developed by [6] in 2022. It enhanced the user experience of WebSnapse and
added support for specific variants e.g. SN P Systems with Weights on Synapses
and SN P Systems with Input Spike Train Neurons [2]. The addition of input
spike train neurons and weights was able to reduce the number of neurons needed
to construct certain SN P systems, paving the way for designing simpler SN P
systems [6].

However, it still has multiple points for growth in terms of user experience.
Additionally, like the previously discussed simulators, its computational method
still follows an iterative algorithm as in the previous version [2], instead of the
existing matrix representation for computing SN P systems provided at [3].

Note that existing simulators which aim to enhance simulation engine per-
formance using CUDA [20, 19, 22, 5] and [11] have been in development by our
colleageus from the ACLab and thus were left out of the study’s scope. Rather,
this research is centered on addressing the previously mentioned deficiencies
identified in WebSnapse v2.
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Fig. 2. WebSnapse Reloaded User Interface

4 WebSnapse Reloaded

The following section shows the features of WebSnapse Reloaded. This covers
its basic functionalities, how the simulator computes each configuration of the
system, and how the software was developed. The links to the source code, details
for installation, experiments, and the application are available at the WebSnapse
page [1].

4.1 Basic Functionalities

Figure 2 shows the user interface of WebSnapse, consisting of the following com-
ponents labelled as such:

A Workspace: This renders the graphical representation of the system. This
is also where the user can design their SN P system, connect neurons with
directed synapses, zoom in and out, pan around the canvas, and view the
simulation as it runs the system. This is also where the user can right-click
to access the Context Menu (Label N).

B Simulation Options: This allows the user to run the simulation automat-
ically or manually and select whether the system will run in Pseudorandom
or Guided Mode which are defined later in the chapter. This is also where
the user can adjust the speed of the simulation. The restart button allows
the user to reset the simulation to its initial state.

C Workspace Menu: This contains the menu that can be accessed via the
WebSnapse Reloaded logo. This is also where the different workspace states
can be selected: View, Add Node, Add Synapse, Delete Element, Hand Mode,
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and Clear all. The Choice History Table, which displays the history of the
simulation, can also be accessed through this menu. Each state is discussed
further in Section 4.2.

D Workspace Options: This is where the user can zoom in or zoom out the
canvas, undo or redo tasks, and change the node view.

E Time Step Tracker: This tracks the time step of the simulation.

F Mini Map: This serves as a thumbnail view of the whole SN P system
present in the workspace which the user can navigate through mouse drag.

Other labels present in the figure are defined and discussed in the later subsec-
tions.

Neurons WebSnapse Reloaded divides neurons or nodes into three types. (1)
Regular Nodes. As shown in Figure 2 Label L, these nodes contain an ID, the
number of spikes, rules, and delay. Regular nodes can both send and receive
outgoing synapses and spikes to and from other nodes. During simulation, the
number below the node represents the current delay before it is able to send
spikes again. (2) Input Spike Train Nodes. Figure 2 Label I shows this type of
node. It can contain spikes with values [0, 1, 2, ...n] of length k for any k ≥ 0 which
is specified by the user before the simulation runs. This node cannot receive, but
it can send outgoing synapses and spikes to other nodes. The system reads the
input spike train from left to right. For simplicity, the node displays multiple
consecutive spike values as cki where ci is the spike value and k is the quantity. For
example, 1111011 is displayed as 14012. (3) Output Spike Train Nodes. Figure
2 Label M shows this type of node. Like the previous type, it can contain spikes
of the same format. However, this node acts like the environment, which means
its values cannot be specified by the user. Instead, this node receives spikes
from other connected nodes. This node cannot send, but it can receive outgoing
synapses and spikes from other nodes. The output spike train result is read from
right to left.

All types of nodes can be created, edited, and deleted inWebSnapse Reloaded.
Upon adding a neuron, the system generates a random ID for the neuron which
the user can modify before confirming the creation of the node. Type (1) node
rules are displayed and written using LATEX. Rules are written in the same form
as in Definition 1.

During each step of a simulation, nodes can either be active or inactive.
Active nodes are signified by a glowing purple outline which means they are cur-
rently sending out a spike in that time step. Inactive Type (1) and Type(2) nodes
mean that there is no activity going on, and only apply the default appearance
of the node. Meanwhile, active and inactive Type (1) nodes are discussed below.
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Type (1) nodes can either be open or closed. Open nodes are able to send and
receive spikes to and from other connected nodes. These nodes are signified by
the delay value of 0 underneath it. Open nodes can be either active or inactive
with the former executing a firing or forgetting rule and the latter not executing
rules for that particular time step. However, it is still able to receive spikes from
other connected nodes. Meanwhile, closed nodes are not able to both send and
receive spikes. When other connected nodes send spikes to a closed node, these
spikes are dropped and lost. Closed nodes are indicated by a red outline during
simulation as shown in Figure 2 Label L. These nodes remain closed for the
duration specified by the delay number under it.

Synapses Like that of WebSnapse v2, synapses in WebSnapse Reloaded are
weighted and directed. By default, newly created synapses are set with weight
value of 1. However, the user is free to edit this after creating the synapse by
double-clicking the value. Like Open Nodes, synapses can either be one of two
states during each simulation step. The Inactive state is the default state of the
synapse signified by the default black color as shown in Figure 2 Label J. The
Active state indicates that a synapse is currently sending a spike towards the
node it is directed to. This is signified by a glowing purple animated broken line
as shown in Figure 2 Label K.

Other Functionalities JSON Support
In WebSnapse Reloaded, systems can be imported and exported using JSON
files. The original configuration of the system is converted into JSON syntax,
making it easier to read and understand. Users can modify the elements of the
system by editing the JSON file using any text editor. They can add more
neurons, edit node connections, and make other changes as needed. Once the
JSON file is edited, it can be reloaded into WebSnapse as long as there are no
formatting errors.

There are multiple ways to load and save configuration files. One way is to
access these options via the Context Menu. Like its predecessors, WebSnapse
Reloaded is able to simulate in Pseudorandom or Guided mode. Through the
Pseudorandom mode, the system simulates non-determinism by randomly se-
lecting which applicable rule to run at each time step. Meanwhile, the user can
specify which rules to select during points of non-determinism by running the
simulation in Guided mode. The speed of the simulation can also be set by ad-
justing the slider shown in Figure 2 Label B. Like its predecessors, WebSnapse
Reloaded provides the option for users to view spike train values and the rules
applied by each of the Regular Nodes per time step during the simulation. En-
tries in the Choice History Table are formatted in LATEX. This option is found by
clicking the rightmost button of the Workspace Menu (Labeled C from Figure
2). Finally, the simulator offers the option to clear all the elements at once using
the Clear All functionality which is done by clicking the Trash Bin Button on
the same menu.
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Feature Parity with WebSnapse v2 Among the goals of WebSnapse Reloaded
was to reach feature parity with WebSnapse v2. Given the discussed basic func-
tionalities, WebSnapse Reloaded was able to reach feature parity through the
following features: (1) Neuron actions such as adding regular, input spike train
and output spike train neurons, editing and deleting neurons; (2) Synapse actions
like adding, editing, and deleting weighted synapses; (3) Loading and saving con-
figuration files; (4) Running the simulation in Guided Mode or Pseudorandom
Mode; (5) and other features like Choice History Table and Clear all button.

4.2 Enhanced Features

Simplified Functionalities for Nodes and Synapses Websnapse v2 [6] im-
plements a decentralized method of accessing element functionalities, which costs
additional steps and time. WebSnapse Reloaded was able to simplify this by cre-
ating states in the workspace accessed through the Workspace Menu in Figure 2
or via keyboard shortcuts specified below. Each state has its dedicated features
as follows. (1) Select State (V). This is the default state upon opening Web-
Snapse Reloaded. This state is dedicated to understanding and experimenting
with the current SN P system on the workspace. (2) Node State (N). This state
is primarily dedicated to adding new nodes. When the system is in this state,
the user can click on any empty area in the workspace to add a new node. This
state is ideal for when the user wants to create multiple nodes before arranging
the system with synapses. (3) Edge State (E). This state is primarily dedicated
to added new synapses or edges. (4) Delete State (D). This state is primarily
dedicated to deleting elements one by one. When the system is in this state,
the user can simply click on any element they want to delete. (5) Hand State
(H). This state is primarily dedicated to navigating and exploring the SN P
system. The user can drag anywhere in the workspace to view different parts of
their created system. While in this state, the SN P system cannot be modified.
WebSnapse Reloaded also accommodates other keyboard shortcuts which can
be seen in Table 1.

Function Shortcut Function Shortcut

Clear all Q Auto Layout CTRL + L

Change View Y Radial Layout CTRL + SHIFT + L

Save/Export to JSON CTRL + S Undo CTRL + Z

Load/Import JSON CTRL + 0 Redo CTRL + SHIFT + Z

Duplicate CTRL + D

Table 1. Keyboard Shortcuts in WebSnapse Reloaded
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Adding New Nodes. In WebSnapse v2, creating a new node requires 3 steps:
(1) clicking the “New Node” button, (2) filling out the required fields, and (3)
dragging the new node to a specific spot. This means that creating 100 new nodes
requires 300 steps. In WebSnapse Reloaded, the process is simplified by through
the node creation mode which allows users to double-click on the desired location
for the new node before filling in the required forms, reducing the number of steps
to 2 per node after entering the Node state. This means that creating 100 new
nodes in WebSnapse Reloaded only requires 201 steps, reducing the total number
of steps by about 1/3.

Adding Synapses. In WebSnapse v2, adding synapses requires the user to
click and drag from a source node to a destination node. This leads to a pop up
that lets the user specify the weight of the synapse. This is ideal for situations
when each synapse made is assumed to be distinct. However, for systems that
all synapses are the same value (e.g. 1), this accumulates when the user wants
to add multiple synapses. WebSnapse Reloaded adapted the same method for
adding a new synapse by click and drag but setting the default weight to 1. If the
user wants a different synapse weight, they can simply edit the synapse through
double-clicking.

Editing and Deleting Elements. InWebSnapse v2, editing and deleting nodes
and synapses is done through dedicated buttons that lead to a pop-up screen
with a dropdown list of element IDs. This can be time-consuming and confusing
when dealing with multiple elements. In WebSnapse Reloaded, the process is
simplified by allowing users to edit an element by double-clicking on it, and to
delete elements by entering the Delete State and clicking on the target elements.
This eliminates the need to search through a list of IDs and makes the process
more efficient.

Simplified Loading and Saving Configuration Files WebSnapse v2 allows
loading and saving configuration files through the Menu Actions. WebSnapse
Reloaded simplified this process by allowing keyboard shortcuts (see Table 1).
These functionalities may also be accessed via other methods such as the Logo
Menu (see Figure 2 Label G).

Simplified General Appearance of the User Interface Among the aims
of WebSnapse Reloaded was to make the simulator more intuitive for the end-
users, especially the ones who are unfamiliar with SN P systems. To do this,
the interface was designed with more familiar visual elements and more area
for the workspace. The Workspace Menu and Simulation Options were designed
to take up less space so that the area allotted for the workspace is maximized.
Colors were set to softer tones and variety was reduced towards a monochromatic
theme so that distracting elements are minimized, potentially increasing user
productivity.
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4.3 New Features

Researchers of WebSnapse v2 recommended a list of additional functionalities
which can further improve the experience of using the simulators. These recom-
mendations alongside other new features were added by WebSnapse Reloaded as
follows: (1) LATEX Support in presenting neuron rules. This allows for a cleaner
and more familiar format in the interface; (2) Context Menu (Figure 2 Label N),
accessible by right-clicking the workspace, allows users to easily execute com-
mon tasks; (3) Selecting multiple elements at once; (4) Duplicating elements; (5)
Undo and Redo actions; (6) Auto Layout and Radial Layout for complex and
cluttered systems; (7) Mini map navigation; (8) Focus node; (9) Fit View fea-
ture for large systems; (10) Simplify View which hides the rules of all the nodes,
showing only the number of spikes contained in each node. (11) Change theme,
where the user can use the simulator in light or dark mode; (12) Size-adaptation
for nodes with more or less number of rules which maximizes the workspace;
(13) Spike Train String Folding which aids in input and output analysis and
optimizes space; and (14) Save Graph to Image (PNG Format);

4.4 Technologies and Development

Visual Simulation A more robust visual simulation system was created for
WebSnapse Reloaded using the VueJS framework for the front-end, as it out-
performs ReactJS in booting, redrawing, and bundling size benchmarks. The
rendering issue for larger systems in both versions of WebSnapse was addressed
by replacing CytoscapeJS with G6, an alternative graphing library that offers
many features out of the box and is easier to implement. Additionally, LATEX
support was added to improve the representation of neurons and make it easier
for users to visualize how the system works. This was achieved by converting
the MathJax SVG DOM element to its data URI scheme values and adding it
to the neuron object in the canvas.

Simulation Engine API The next configuration of the system is computed
using the matrix representation of SN P Systems with Delay provided in [3] which
reduces its algorithm as a series of matrix operations. This was implemented
using the Python Framework Fast API alongside NumPy, a library optimized
for matrix operations.

4.5 Architecture

Modularity The codebase of WebSnapse was structured with modularity in
mind in order to improve the developer experience and make it easier to extend
the application in the future. This was done by separating the software into the
client and server sides of the application. Visualized in Figure 3 is the client-
server architecture with each of their respective responsibilities.
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Visualization Engine

SN P Builder
Graph Interactions
Graph Simulation

Simulation Engine

Classes
Middlewares
Modules

Client-Side Server-Side

Simulation request

Simulation response

Fig. 3. Visualization of Client-Server Architecture

Communication Channel Websockets serve as the communication medium
between the client and server, facilitating real-time and bidirectional data ex-
change. This technology enables efficient and instantaneous communication be-
tween the client-side and server-side components of the application. The utiliza-
tion of websockets enhances the efficiency and speed of communication, making
it ideal for applications that require instant updates, such as real-time collabo-
ration tools, chat applications, and live data streaming.

Benefits and Versatility of the Architecture The utilization of the Sim-
ulation Engine API enables the server to store the context of the simulation,
eliminating the need to save system change values in client storage and resolv-
ing the storage issue. The adoption of a Client-Server Architecture brings about
additional benefits, such as enhanced scalability of the server, allowing for the
seamless execution of simulations without compromising on quality or speed.
The versatility of the Simulation Engine API extends to researchers who wish to
develop their own clients, empowering them to tailor their own user interfaces
and incorporate the API’s functionality into their custom applications. The ar-
chitecture introduces possible integration of new servers specifically designed for
variants of SN P systems into the WebSnapse client application, allowing for
the expansion of the platform’s capabilities and the inclusion of diverse com-
putational models. By integrating these new servers, the WebSnapse client ap-
plication becomes a comprehensive and adaptable tool, offering a wide range of
computational possibilities to researchers in the field.

4.6 Testing

Testing the reliability of the application was done using SN P systems from the
literature that also included the benchmarks provided in the previous papers
for WebSnapse. Evaluation metrics for the simulation of SN P Systems include
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its stability, which was determined through stress testing to find the maximum
number of simulation steps the system can handle. Another metric is correctness,
which was assessed by testing the simulation output against sample systems.

General Testing To test the correctness of the simulator, existing SN P Sys-
tems from literature were used. These test cases were compiled and formatted
into JSON files and are available in the links provided at the WebSnapse page
[1]. These tests are discussed further in Section 5. To test the functionality of
the simulator, manual quality assurance and testing methods were conducted
with the support of other fellow researchers in the Algorithms and Complexity
Lab. Testing results showed that most user actions were working as intended,
particularly the ones specified under Section 4. These major features included
adding nodes, submitting forms, changing states, and running the simulation in
Pseudorandom and Guided modes.

Some minor features occasionally encountered bugs such as adjusting the
simulation speed, which sometimes causes the simulation to run much faster the
specified speed. In a few cases, some features do not work which requires the user
to refresh the browser to acquire the desired behavior. These are (1) selecting
synapses, (2) playing/stopping simulation, (3) saving the state of the graph when
refreshing the browser, and (4) recording choice history. The researchers infer
that these bugs are likely caused by issues in memory handling of the graphing
library used. This similar possible cause can also be traced from the results of
the stress testing below.

Stress Testing Stress testing was done to see how many visual elements (i.e.
neuron, rules, and synapses) can be rendered on the system, along with its
performance according to the number of rendered elements. This testing was
done only for the purpose of comparing the simulator’s performance from its
predecessor, WebSnapse v2. Four SN P systems were used as benchmarks. These
were the original benchmarks used by WebSnapse [7] and WebSnapse v2 [6], the
predecessors of WebSnapse Reloaded. These benchmarks are One Spike Chain
Πosc, All Spike Chain Πasc, Benchmark Complete Πbc, and Simple Complete
Πsc which are discussed below. Although the same benchmarking systems from
its predecessors were used, WebSnapse Reloaded used a different method of
testing the performance. Both WebSnapse and WebSnapse v2 measured the
number of time steps reached by the benchmarks before crashing. However,
the benchmarks given are expected to be non-halting systems. Upon testing,
the simulator displayed this same behavior. Hence, instead of measuring the
performance by the time steps, the researchers measured the time it takes for
the simulator to perform certain tasks. This was compared with the node count,
or the number of neurons present in the system being tested.

To gauge the performance of the simulator, three main tasks measuring sys-
tem performance and load management were done on each benchmark. Console

448             M. Gulapa et al.



Fig. 4. Example of (A) One-Spike Chain and (B) All-Spike Chain with 4 nodes in
WebSnapse Reloaded

timers were added to measure the time it took to complete these tasks. The
first task measures the Initial Load Time which is the time it takes to import a
system. The second task measures the Next Configuration Compute Time which
is the time it takes to compute for the next configuration. Finally, the third task
computes for the Average Re-render Time which is the time it takes to update
elements of the graph. The four systems used for stress testing are detailed as
follows:

One Spike Chain Πosc

An example of this system can be found in Figure 4 Label A. This SN P system
shows neurons connected in a unidirectional manner, with each regular neuron
containing the same single rule: a/a →; 0. For this system, only the first neuron
contains a spike. Its behavior is similar to the game “Pass The Message”, where
the message is passed one at a time. Completion of the test happens when the
spike reaches the end of the system. This happens at the time step n− 1, with
n being the total number of neurons.

All Spike Chain Πasc

It is similar to the previous Πosc except that all neurons start with a single
spike as shown in Figure 4 Label B. The recurring rule is also different, which
is a+/a →; 0, in order to facilitate continuous spiking. As mentioned in [7], the
purpose of testing this type of system was to see if the number of time steps that
can be completed was only dependent on total neuron count, or if the number
of neurons spiking at a time would serve as a factor.

Benchmark Complete Πbc

This is a fully connected graph from Figure 4 of [4]. An example is shown in
Figure 5 Label A. It contains two spiking rules: (a2)∗/a → a and (a2)∗/a2 →
a2, as shown in Figure 5 Label B, which cause non-determinism whenever the
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Fig. 5. Example of (A) Benchmark Complete System with 8 nodes, (B) each node in
Benchmark Complete, and (C) each node in Simple Complete in WebSnapse Reloaded

number of spikes in a neuron is a multiple of 2. Originally, this was used as a tool
for stress testing the parallel implementation of an SN P simulator in a GPU.
Theoretically, this system does not halt, hence the performance of the simulator
using this system is assessed by the number of time steps reached before the
simulator crashes. Due to its non-determinism, the researchers simulated this
system automatically through Pseudorandom mode.

Simple Complete Πsc

This system from [7] is a modified version of the Benchmark Complete graph
above and does not contain non-determinism. An example of a node from this
system is found in Figure 5 Label C. This was created to assess if non-determinism
also plays a role in the performance of the system.

One Spike Chain vs All Spike Chain Upon testing the first two benchmarks
Πosc and Πasc, Figure 6 shows how the number of neurons affects the amount
of time it takes to load a system. This is due to the initial rendering of image
objects of the LATEX representation of rules and node labels. Furthermore, the
time it took for All Spike Chain systems to load are slightly higher than that of
One Spike Chain systems which suggests that the number of rules in a system
also affects its initial load time. Essentially, larger systems take longer to ini-
tially load in the simulator. For the computation time of the next configuration,
Figure 7 shows an almost linear trend for both benchmarks. This suggests that
as more neurons are added, the computation time for All Spike Chain systems
moves farther away from that of One Spike Chain and that the number of spiking
neurons affect the computation time for the next configuration. Finally, for the
re-render time, both systems show increasing trends. This means that simulta-
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neous spiking does not result in any significant difference in the re-render time
between the two different systems.
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Fig. 6. Load time for importing Spik-
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Fig. 7. Configuration Computation
time for Chain Systems

Benchmark Complete vs Simple Complete

Initial loading for Benchmark Complete Πbc systems showed higher com-
pletion time compared to Simple Complete Πsc systems as shown in Figure 8.
This follows the same conclusion from comparing the spike chain systems above,
wherein it states that larger systems take longer to initially load in the simula-
tor. Both complete graphs were able to load systems with 4 nodes in less than
100 ms. Meanwhile, loading Πsc with 64 nodes lasted for 1 second while loading
Πbc with the same number of nodes lasted 1.3 seconds. It is also worth noting
that a 1000-node chain system has a total of 999 edges while the 64-node com-
plete system has 4032. This suggest that the number of edges in the graph also
possibly influences the time it takes to initially load it to the system. For the
Next Configuration Compute Time, Πsc remains constant with 1 ms to 2.4 ms
while Πbc displayed a sharp increase from 4 ms with 8 nodes to more than 800
ms with 16 nodes, being completely unable to run the simulation at 32 nodes.
The same behavior by Πbc can be seen in the plots for Average Re-render Time
in Figure 9.

This suggests two things: (1) the use of non-deterministic rules affects the
computation time and (2) the number of synapses affects the computation time.
This also suggests a potential for optimization of the current implementation of
the matrix representation, especially for systems with non-determinism.
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4.7 Comparison with Other Tools

The first two benchmarking systems in Section 4.6 were used in WebSnapse
Reloaded to compare its performance with WebSnapse v2. Unlike in the previ-
ous section, this section measured the performance of WebSnapse Reloaded in
time steps as it was done in WebSnapse v2. It should be noted that the plots for
WebSnapse Reloaded in the following figures do not represent the number of time
steps it took for the simulator to crash. Due to the non-halting behavior of the
benchmarking systems, we observed that WebSnapse Reloaded also displayed
some non-halting behaviors during testing. Because of this, the researchers de-
cided to manually stop the simulation once a system reaches the number of time
steps equivalent to the number of neurons. It can be noted however that the
simulator is able to go beyond these numbers and the researchers were not yet
able to determine the maximum time steps for both One Spike Chain and All
Spike Chain systems. The highest value acquired so far reaches at least 100,000
time steps for the Simple Complete system with 10 neurons.

Extensive testing of WebSnapse Reloaded has demonstrated its ability to
surpass the limitations of previous versions of WebSnapse. As shown in Figure
10 and Figure 11, WebSnapse v2 peaks at 149 time steps at 150 neurons [6].
Meanwhile, WebSnapse Reloaded was able to sustain an increasing trend up
until 1000 neurons.

WebSnapse Reloaded surpassed its predecessors in simulating the Spike
Chain systems and was able to accommodate a much higher number of sim-
ulation steps. It was also able to load more neurons for the Simple Complete
system, simulating 64 neurons as compared to 32 neurons in the tests done by
its predecessors. The researchers were successful in implementing the compu-
tational model, that is the matrix representation for SN P systems. It showed
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Fig. 10. Πosc Simulated Steps on Web-
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Fig. 11.Πasc Simulated Steps on Web-
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low compute times for the next configuration, ranging from 1 ms to 4ms for the
Spike Chain systems of up to 100 neurons, and 1 ms to 2 ms for the Simple Com-
plete systems of up to 64 neurons. However, results show an exception for the
Benchmark Complete with 32 neurons, where WebSnapse Reloaded displayed
its limitation to simulate the system. This can be traced to a possible bottle-
neck in computing for systems with non-determinism. Thus, the creation of an
alternative method to obtain a pseudorandom generation of the decision vector
is thereby suggested.

5 Case Studies

To further understand the capabilities of the software, several SN P systems will
be covered to explain its core features. These tests were used as simple tests for
correctness that check the simulator’s capability to handle non-determinism and
closed neurons with correct outputs. This section discusses three problems that
can be solved by SN P systems and explains the results generated by WebSnapse
Reloaded.

5.1 Even Positive Integer Generator

Predecessors of WebSnapse Reloaded used this SN P system to test the non-
determinism capabilities of the simulator. This same system is used on Web-
Snapse Reloaded to test its capability to handle non-determinism. Its formal
definition can be found on Figure 1 of [26]. The result of this system is obtained
by computing the distance between the two 1s in the output spike train.

Running the simulator in Pseudorandom Mode allows the system to select
which rule to execute at each corresponding timestep. A sample run displays a
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result after 9 ticks, which is the value 105102 in the output neuron. Ignoring the
two trailing zeroes, this translates to a distance of 6 between the two 1s, giving
us a result of the positive even integer 6. Running the simulator in Guided
Mode transfers the control of selecting the rule to the user. When the system
encounters non-determinism, a pop-up screen lets the user select which rule to
execute for each node containing non-determinism. Selecting the rule without
delay allows the system to run another cycle while selecting the rule with delay
causes the system to halt. For the sample execution, the researchers first selected
the rule without delay, followed by selecting the rule with delay. This sequence
of selections resulted in a system that halted after 7 ticks with output spike
train 103102. Ignoring the two trailing zeroes, this translates to a distance of 4
between the two 1s, giving us a result of the positive even integer 4. This shows
the capability of WebSnapse Reloaded to handle non-determinism correctly.

Test Case No Delay With Delay Expected Actual

subset sum(∅, 7) - - Non-halting Non-halting

subset sum([1, 2, 3], 5) [2, 3] [1] Halting Halting

subset sum([1, 2, 4, 8], 15) [1, 2, 4, 8] ∅ Halting Halting

subset sum([1, 3, 5], 2) - - Non-Halting Non-Halting

subset sum([5], 5) [5] ∅ Halting Halting

subset sum([9], 6) - - Non-Halting Non-Halting

Table 2. Results of Subset Sum Test Cases on WebSnapse Reloaded

5.2 Subset Sum

The Subset Sum problem tests the ability of the simulator to handle rules with
delay. As defined in Section 4.1, nodes that execute a rule with delay is considered
closed for the duration specified by the delay. While in this state, the node should
not be able to send a spike. The main reference for this problem is found in Figure
3 of [17] which shows a standard, non-uniform solution to Subset Sum. Slight
modifications were applied to accommodate specific input values. Subset Sum
takes two inputs: a list of integers L and a sum s. The system halts if and only
if there exists a subset of L whose sum is s. If N is the number of subsets of
L whose sum is s, then the probability of halting in Pseudorandom Mode is
N
2|L| . Running in Guided Mode helps with acquiring a deterministic result. In
Guided Mode, the system is expected to halt when a subset S of L whose sum
is s executes the rules without delay and the complement S′ executes the rules
with delay. Table 2 reflects the results of running the Subset Sum test cases in
WebSnapse Reloaded Guided Mode.
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The first test case was expected to not halt because there exists no subset
∅ that sums up to 7. The second test case, on the other hand, contains a subset
that satisfies the requirements of the problem. Given that 2 + 3 = 5, c2 and
c3 corresponding to values 2 and 3 were set to execute the rule without delay.
Meanwhile, c1 corresponding to 1 was set to execute the rule with delay. These
results from Table 2 show that WebSnapse Reloaded was able to run instances
of the Subset Sum as expected, therefore displaying its capability to handle rule
delays correctly.

5.3 Multiples of k Generator

Closed neurons in an SN P system are not only unable to send spikes for the
duration of its delay, but should also be unable to receive incoming spikes from
other connected neurons [26]. This was among the limitations of WebSnapse v2.
Upon testing, it was observed that closed neurons continued to receive spikes
from connected nodes even before the delay ended. Given this, the researchers
aimed to resolve this in WebSnapse Reloaded.

To test the simulator’s implementation of closed neurons, SN P systems that
generate multiples of k were used by the researchers. This system was obtained
from fellow researchers Tim Kristian Llanto and Joshua Amador who designed
the system.

The researchers first ran the systems generating multiples of 3 in Guided
Mode. At time step 8, neurons 1 and 2 are closed as shown in Figure 12. Since
neuron 1 only has delay equals 1 remaining, it will fire one spike neighboring
neurons at the next tick. At time step 9, neuron 1 opens and fires its spike to
neurons 2 and 3. Neuron 3 received this spike. However, during this time, neuron
2 is still closed for one more time step and thus, no changes were made to its
number of spikes. The same behavior was also observed for neuron 3 when it
becomes closed at time step 10. After selecting the terminating rule, the system
was able to halt at time step 14 with the result 101110. Ignoring the trailing
zeroes and computing the distance between two 1s gives us the result of integer
12, which is a multiple of 3. Proving that WebSnapse Reloaded was able to
handle closed nodes correctly.

6 Final Remarks

WebSnapse Reloaded optimized use of storage by implementing the client-server
architecture. Through this, computations and displays are now in separate lay-
ers, making it easier for future developers to extend, modify, and maintain the
simulator. Furthermore, it was successful in correctly implementing the matrix
representation for SN P systems by passing all of the test cases for correctness
and resolving a computation error that existed in WebSnapse v2 in handling
closed neurons. However, a bottleneck was found in simulating systems with
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Fig. 12. Time step 8 of an SN P system that generates multiples of 3

non-determinism in Pseudorandom mode, and future research is recommended
to revise the algorithm.

WebSnapse Reloaded improved the user experience by reaching feature par-
ity with WebSnapse v2, with minor differences in input file format, user guides,
and tutorial mode. The user interface was improved using Vue.js and G6, simpli-
fying task execution, adding new features, and maximizing the workspace area
for simulation. However, limitations were found in G6, and it is recommended to
explore other graphing libraries or integrating WebGL to further optimize the
front-end aspect of the simulator. General and stress testing were mostly done
manually, and it is suggested to utilize automated testing technologies.

Recommendations from WebSnapse [7] may also be revisited as many of
their insightful suggestions on user experience and architecture were not yet im-
plemented by the researchers. Among these recommendations include (1) allow-
ing users to create patterns for the rules before running the simulation in Guided
Mode, (2) providing a computation tree to view the history of the number of
spikes, and (3) creating a custom rule input parser to support more variants of
SN P systems. Adding new features may also be explored for ease of use. Among
these are adding an option to apply Pseudorandom and Guided Modes on a
node-by-node basis; and allowing the execution of steps that focuses only on a
specific set of nodes, skipping the time steps when these selected nodes are idle.

Additionally, leveraging the advantages of the client-server architecture, it
is highly recommended to develop dedicated APIs for other variants of SN P
Systems and integrate support for them into future iterations of WebSnapse
Reloaded. These notable variants encompass Homogenized SN P Systems by
[18] and NSNP Systems by [12], which our colleagues from the UPD-ACLab
have been actively researching as well.
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Finally, WebSnapse Reloaded has attained most of its initial goals in creat-
ing a visual simulator for SN P systems with client-server architecture on the web
for both beginners and experts. With this, we look forward to future researchers
and developers who wish to further optimize the system, utilize its potential,
and extend it to other variants towards a centralized SN P system simulator on
the web.
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8 Appendix

Algorithm 1 Compute Indicator Vector at step k

Input: Decision Vector Dv(k), Delayed Indicator Vector DIv(k), Delay Status Vector
DSv(k)

Output: Indicator Vector Iv(k)

1: procedure getIndicatorVector
2: for i← 0 to m do
3: Ivi ← (Dvi ∨DIvi) ∧ ¬DSvi
4: end for
5: return Iv
6: end procedure

Algorithm 2 Compute Delayed Indicator Vector at step k

Input: Delayed Indicator Vector Dv(k−1), Indicator Vector Iv(k), Decision Vector
D(k), Delay Status Vector DSv(k)

Output: Delayed Indicator Vector DIv(k)

1: procedure getDelayedIndicatorVector
2: for i← 0 to m do
3: DIvi ← (DIvi ∧ ¬Ivi) ∨ (Dvi ∧ ¬DSvi)
4: end for
5: return DIv
6: end procedure
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Algorithm 3 Get Next Configuration

Input: Configuration Vector C(k), Status Vector St(k), Indicator Vector Iv(k), Spiking
Transition Matrix M

Output: Configuration Vector Iv(k)

1: procedure getNextConfiguration
2: NG← STv
3: for i← 0 to m do
4: for j ← 0 to n do
5: NGi ← NGi + (Ivi ×Mij)
6: end for
7: end for
8: for i← 0 to n do
9: Ci ← Ci + (Sti ×NGi)
10: end for
11: return C
12: end procedure

Algorithm 4 Compute Delay Status Vector at step k

Input: Decision Vector Dv(k), Delayed Indicator Vector DIv(k), Rule Delay Vector
RDv

Output: Delay Status Vector DSv(k)

1: procedure getDelayStatusVector
2: m← COUNT (rules ∈ Π)
3: DSv ← [0]1×m

4: for each (i, delayed) ∈ DIv do
5: if delayed then
6: n← getMappedNeuron(i)
7: rules← getMappedRules(n)
8: for each r ∈ rules do
9: DSvr ← DSvr − 1
10: end for
11: end if
12: end for
13: for each (i, decision) ∈ Dv do
14: if decision then
15: delay ← RDvi
16: n← getMappedNeuron(i)
17: rules← getMappedRules(n)
18: for each r ∈ rules do
19: DSvr ← delay
20: end for
21: end if
22: end for
23: return DSv
24: end procedure
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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