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Abstract. Interacting with web-based interfaces is often done with a particular 

objective in mind. However, deceptive patterns could interfere with these inter-

actions by taking advantage of cognitive biases to either distract users from this 

objective or mislead them into non-ideal outcomes. These are found in cookie 

banners that nudge users to allow the tracking of their browsing patterns, infring-

ing upon the user's right to informed consent regarding matters of their privacy. 

This paper discusses the implementation of a browser extension, Ariadne, that 

counteracts this by flagging deceptive patterns in cookie banners, in effect safe-

guarding the user's right to informed consent in data collection. The current im-

plementation is divided into four units: a Naïve-Bayes model determining lan-

guage clarity (Calliope), a convolutional neural network (CNN) based on VGG-

19 determining option weight (Janus), an application programming interface 

(API) handling the classification and user reports (Dionysus), and the browser 

extension itself that allow these units to reach the user. The classifiers Calliope 

and Janus achieved respective accuracies of 85.00% and 100.00% upon unit val-

idation and 80.00% and 66.67% upon unit testing. Integration testing resulted in 

an overall average accuracy of 68.70% based on the behavior of the browser ex-

tension given selected websites as recorded by thirty (30) observers. Acceptance 

testing was done through an alpha testing questionnaire yielding positive ratings 

from thirty (30) testers. This project intends to contribute to the larger body of 

knowledge surrounding the automated detection of deceptive patterns by imple-

menting previous frameworks thereof and setting the groundwork for the creation 

of a system that can act as a toolbox of methods for the automated detection of 

deceptive patterns and corresponding methods for intervention. 
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1 Introduction 

1.1 Context and Definitions 

Deceptive patterns (also known as “dark patterns”) [13] are a tool used in digital inter-

faces to coerce users into a particular route of interaction. These refer to design choices 
deliberately meant to affect an end-user’s decision-making process [3]. On cookie
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banners, an example of these design choices would be that the option to decline cookies 
is less visible or obvious than the one to accept them [17][35]. In general, these design 
decisions either hinder the user from achieving their goal (e.g., obscuring the path of 
action to deactivate an account) or adding unnecessary outcomes in the intuitive inter-
action path thereof (e.g., automatically opting into marketing emails when trying to fill 
out an order or subscription form) – both of which result in unintended alternatives. 

Most of the literature on deceptive patterns explores its presence on cookie banners 
[17], websites [28], mobile applications [11], robots [23], advertisement [15], and 
games [46]. While examining where deceptive patterns are found provides an idea of 
what they are, Mathur et al. [29] note that it is difficult to find precise criteria that 
determine whether a pattern is deceptive. Additionally, they cite “a set of thematically 
related considerations” spanning several fields: psychology, economics, ethics, philos-
ophy, and law, among others. Their work in “What Makes a Dark Pattern…Dark?” [29] 
explores a “conceptual foundation” for deceptive patterns by going over these various 
considerations. 

This study’s contribution is three-fold – (1) the creation of a toolbox of methods for 
the automated detection and intervention of deceptive patterns as a contribution to our 
field of study, (2) the development of a browser extension that helps identify deceptive 
patterns in cookie banners as the end-product, and (3) the tool itself that helps safeguard 
everyday users’ rights to informed consent. 

1.2 Statement of the Problem 

Through deceptive patterns, users are taken advantage of through cognitive biases that 
could potentially manipulate behavior, manufacture consent, and result in unintended 
outcomes. To counteract this, the study aims to develop a browser extension that helps 
identify deceptive patterns in the form of unclear language and uneven options in 
cookie banners. This browser extension identifies the cookie banner on the website’s 
interface and flags for indicators of deceptive patterns such as a lack of clarity in lan-
guage or uneven weights between options using classifiers. Currently, the study uses a 
Naïve-Bayes classifier to identify language clarity and an image classifier built upon a 
pre-trained CNN model (VGG-19) to determine option weight. 

The study's main objective is the creation of a system that can act as a toolbox of 
methods for automated detection of deceptive patterns and intervention thereof. This 
study aims to provide everyday users with a browser extension acting as a line of de-
fense against deceptive patterns when browsing the internet, thus helping safeguard our 
right to informed consent. 

2 Review of the State of the Art 

At the time of writing, the Computer Science, Human-Computer Interaction, and Com-
puting Ethics communities are exploring interventions for deceptive patterns – includ-
ing legislation, intervention spaces, and automated detection. This study focuses on 
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automated detection of deceptive patterns on cookie banners and executing appropriate 
intervention through a browser extension. 

2.1 Automated Detection 

Soe et al. [41] posit that a unified criteria deciding whether a pattern is deceptive or not 
is a prerequisite to extensive development of methods for the automated detection of 
deceptive patterns. Despite the lack thereof, previous literature has explored the appli-
cation of existing technology to automatically detect deceptive patterns. These works 
have a shared goal of informing people when they are subjected to deceptive patterns 
and blinded due to existing cognitive bias [34]. 

The proper detection of deceptive patterns is a prerequisite to successful interven-
tion. Identifying when intervention is necessary would require knowing when deceptive 
patterns are employed and precise criteria thereof. There is a lack of consensus on what 
constitutes deceptive patterns, thus presenting another issue. 

Researchers recommend reducing the task of detecting deceptive patterns into "dis-
cerning" [41] or "characterizing" [40] features, thus breaking up the task into detecting 
individual factors of deceptive patterns. Supervised learning could be applied to each 
feature to find patterns suggesting the presence of deceptive patterns. This allows cer-
tain taxa of deceptive patterns (e.g., nagging and roach motel) to be encoded which 
would not have been possible without accounting for multiple interfaces presented in 
succession. These types have visual and textual cues necessary for proper encoding. 
Visual cues can be processed through image processing and textual cues can be pro-
cessed through natural language processing. The classifiers trained on Soe et al.’s da-
taset [40] performed with accuracy ranging from 50% to 72%, despite noting that the 
dataset was "relatively small and not well-balanced." 

Mathur et al. [28] created a corpus of websites documenting the interaction path from 
the product page to the checkout page across shopping websites through a crawler. 
Classifying the websites was done using Webshrinker, though they pointed out that 
Alexa Web Services is a viable alternative.  Product page URLs and resulting checkout 
pages’ HTML source codes were extracted and stored before being clustered into dif-
ferent taxa of deceptive patterns. This presented a mechanism in detecting deceptive 
patterns prevalent in multiple websites. 

Curley [9] proposes a framework for an application that identifies dark patterns in a 
single Web page, emphasizing the importance of using taxonomy to distinguish the 
different patterns. Curley proposes a set of definitions based on previous literature and 
separates the patterns into those that can be detected automatically, manually, or not at 
all. They propose the use of an ancillary Web page or overlays that highlight the possi-
ble presence of dark patterns on the website. They also suggest a reporting feature that 
users can use to report undetected cases of deceptive patterns. 

Developing a Browser Extension for the Automated Detection             103



3 Solution and Experiment Design 

The goal of the study is to equip users with a tool that proactively checks for the pres-
ence of deceptive patterns on websites that they visit, allowing them to take the proper 
course of action afterward. The automated detection that the browser extension will 
perform must therefore be done in a way that yields acceptable accuracy while also 
requiring minimal intervention. 

This project aims to lay groundwork on packaging detection and appropriate inter-
vention through a browser extension that detects deceptive patterns in cookie banners 
and provides users with the necessary information to take the proper course of action. 
This approach is largely based on the definitions of Mathur et al. [29], the findings and 
data set of Soe et al. [41], and the framework discussed by Curley et al. [9] where de-
ceptive patterns are shown by highlighting relevant areas in the web-based interface 
and providing an auxiliary window in the form of a browser extension’s menu for dis-
playing more information regarding the contents of the current tab and warnings shown. 

3.1 Features 

The proposed solution (1) automatically flags the use of unclear language in cookie 
banners, (2) automatically flags the use of uneven weights on options in cookie banners, 
and (3) allows users to manually report occurrences of deceptive patterns on websites 
(e.g., roach motel, price comparison prevention, disguised ads). These features were 
encased in a modular architecture to allow for future improvement and expansion for 
mechanisms used to detect and intervene with deceptive patterns. 

 
3.2 Test plan 

To evaluate the browser extension, various tests were performed to verify its function-
ality and usability. These tests aim to assess the performance of the project and its com-
ponents. 

Unit testing was done for the extension's capability to identify deceptive patterns 
from the text or image of the cookie banner. The models for language clarity and option 
weights will also be tested as units and as machine learning models. 

Integration testing was done through selected websites with manually labeled re-
sults for both models. This allows for the end-to-end process to be observed between 
the tested units described above. The following websites were chosen: 

• ABS-CBN at news.abs-cbn.com 
• GMA at www.gmanetwork.com 
• Manila Times at www.manilatimes.net 
• Philippine Star at www.philstar.com 

• TV5 at news.tv5.com.ph 
• Inquirer at www.inquirer.net 
• Pep.PH at www.pep.ph  
• Rappler at www.rappler.com 

104             J. H. Adorna et al.

http://www.gmanetwork.com/
http://www.manilatimes.net/
http://www.inquirer.net/
http://www.pep.ph/


 

Each of these websites were manually documented (as seen in the documentation 
repository1 at /website-photos) to have used cookie banners and are each uniform 
in locale (i.e., based in the Philippines) and purpose (i.e., news or media outlets). These 
websites were selected due to the incentive that news and media outlets have for track-
ing the browsing behavior of their demographic. 

Acceptance testing in the form of Alpha testing was conducted on Ariadne version 
0.1.2 to show usable and effective aggregation of features from this study. This test is 
intended to assess the experience of users and user-developers through a questionnaire 
aiming to evaluate the understandability, documentation, installability, learnability, 
identity, copyright and licensing, and accessibility and answer the corresponding guid-
ing questions based on the Software Sustainability Institute’s Criteria-based Software 
Evaluation [19]. For this test, users are to be given access to the website, documenta-
tion, and the browser extension itself while user-developers are provided additional ac-
cess to the repository storing the project itself2. This is to cover the insights of people 
who are engaging with the project as a browser extension to use and the insights of 
those who have the intention or capability to get involved in its development. 

4 Browser Extension 

4.1 Architecture 

The proposed solution consists of five components: 

1. Ariadne, the browser extension itself, 
2. Calliope, a model for determining language clarity (i.e., whether the language used 

in requesting consent through the cookie banner is clear or unclear and whether it 
satisfies the GDPR requirements for informed consent), 

3. Janus, a model for determining option weights (i.e., whether the cookie banner pro-
vides ample, non-coercive options for the user to agree or disagree to provide con-
sent for the use of cookies), and  

4. Dionysus, a server-side application responsible for making Calliope and Janus ac-
cessible through an HTTP API and managing reports of deceptive design that are 
sent by users of Ariadne.  

5. Olympus, which is a Web-based application that allows the public to see an overview 
of the reports of deceptive design sent to Dionysus. This component is not integral 
to the functionality of the proposed solution. 

For brevity, the component names above will be used for the rest of this paper. Fig. 
1 serves as an overview of the proposed solution and shows how these components are 
linked to one another. 

 
1  https://github.com/wsg-ariadne/docs  
2  https://github.com/wsg-ariadne 
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Fig. 1. Architecture of the proposed solution 

4.2 Ariadne, the browser extension 

Ariadne’s functionality is centered around a six-step process:  

1. Read the document object model (DOM) of the page that the user is viewing, 
2. Look for an element in the DOM tree that meets predetermined criteria for candidate 

cookie banners,  
3. Extract the text in the candidate cookie banner,  
4. Capture the cookie banner as an image,  
5. Send the extracted text and image data to Dionysus for classification by Calliope and 

Janus, and  
6. Show the classification results to the user.  

At the Look step, the browser extension considers an element to be a candidate for a 
cookie banner if its CSS properties resemble that of a “floating” element. The criteria 
for “floating” elements are discussed further in Sec. 4.2.2. If the browser does not find 
any element that matches this criteria, steps 3 to 5 in the six-step process are skipped. 
However, if a match is found, the browser proceeds to Extract the text it contains and 
Capture it as an image. 

At the Send step, text extracted from the cookie banner along with an image of the 
cookie banner are sent to models that determine whether the cookie banner has features 
indicative of deceptive patterns. There are two models in this study, Calliope and Janus, 
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where the former receives the extracted cookie banner text as input and the latter re-
ceives the cookie banner image as input. 

At the Show step, the results of the models above are displayed at the auxiliary 
screen, with a brief description of the deceptive pattern(s) that were flagged. If there 
are reports of deceptive patterns previously sent by a user for the page that the user is 
viewing, then the extension shows the number of such reports, both at the auxiliary 
screen and as a badge on the extension’s icon. 

Implementation. Ariadne is implemented according to Google’s Manifest V3 specifi-
cation for browser extensions [24], which is set to be the minimum requirement for the 
Google Chrome browser in the future [7]. Accordingly, the extension is developed to 
be compatible with versions 88 and newer of Google Chrome [6], along with other 
browsers based on the Chromium project. 

The Read and Look steps of the process mentioned in Sec. 4.2.1 are achieved through 
a script that is injected by the browser into all pages; more specifically, the script is 
allowed to load on every page whose URL matches the patterns http://*/* and 
https://*/*. This script is known as a content script in Chrome Extension parlance 
[7] and is named content.js in the extension source code. 

The content script waits for five seconds after the page finishes loading, then creates 
a copy of all the <div> elements on the page. Among those elements, the script looks 
for those that are floating, which is characterized as elements that: 

• have a CSS z-index above the default of 0, and 
• have their CSS position set to either fixed, absolute, or sticky. 

Elements that match these criteria proceed to the Extract step. Here, the script creates 
a copy of the cookie banner’s text content in a variable named divText, using the 
.innerText JavaScript property [30]. The extracted text is converted to lowercase 
for easier matching. The script then attempts to match the words cookies, consent, or 
trackers within divText. If a match is found, the script proceeds to the Capture and 
Send steps. 

The Send step consists of two phases: one for the extracted text and another for the 
captured image. Both phases are done by a service worker script named background.js 
that runs in the background and waits for input from every instance of the content script 
that has been injected in every tab. Each input to the service worker is a JavaScript 
Object Notation (JSON) object with two keys: the first, action, is a string that deter-
mines the type of input, and the second, args, is a dictionary that contains the neces-
sary data for the worker to process the input. For instance, in the first phase of the Send 
step, the content script will tell the service worker to feed divText to Calliope. 

The Capture step is made possible by the html2canvas3 JavaScript library, which 
allows for converting an arbitrary element or set of elements on a Web page to canvas 
data, which can then be saved as an image. Using this library, the content script captures 

 
3  https://html2canvas.hertzen.com/ 
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the cookie banner as image data in a variable named screenshot and tells the service 
worker to forward the data to Janus. 

The service worker forwards these requests to Dionysus, the server-side application 
responsible for calling Calliope and Janus, through an HTTP POST request. Dionysus 
will then reply with JSON objects containing the results from both models. This is fur-
ther discussed in Sec. 4.5. The content script will then tell the service worker to change 
the extension icon’s badge to purple if either model flags the input data for deceptive 
design. A notice is also visible in Ariadne’s menu stating whether deceptive design was 
found on the page.  

4.3 Calliope, the language clarity model 

Enabling the flagging of deceptive patterns through the browser extension are models 
that aim to discern whether components of the cookie banner show features of deceptive 
patterns or not. The first of these models is Calliope, the language clarity model which 
aims to determine whether the language used in a cookie banner is clear or unclear in 
requesting consent for the use of cookies. 

Implementation. Calliope is implemented through a Naïve-Bayes classifier trained on 
data from websites and previous studies describing cookie banners based on their com-
pliance to GDPR standards of informed consent. The data points used to train Calliope 
were collected from various websites discussing examples of General Data Protection 
Regulation (GDPR) compliant and non-compliant cookie banners4 and the repository5 
of Soe et al. [40]. 

These data points were manually labeled by the proponents of this study as seen in 
the repository6 at /data Each data point is labeled either GOOD or BAD depending on 
whether the cookie banner text employs deceptive patterns or not, based on the criteria 
from both the EU’s GDPR guidelines for cookie banners and Philippine data privacy 
laws, particularly Republic Act No. 10173. This criteria on what constitutes language 
clarity in cookie banners is as follows: 

1. Explicit indication of a request of consent for non-essential cookies 
2. Enumeration of specific purposes for cookie usage and collection of data 
3. Referencing additional resources on how to access collected data, customize prefer-

ences, refusal or changing of preferences, or other auxiliary information and func-
tions relating to cookie banners.  

 
4  https://www.cookieyes.com/blog/gdpr-cookie-consent-banner-examples/  

https://www.enzuzo.com/learn/the-best-cookie-banner-examples-weve-seen-in-2022  
https://www.vice.com/en/article/m7epda/its-bad-design-on-purpose-why-website-cookie-
banners-look-like-that  
https://blog.didomi.io/en/marketing-15-examples-cookie-banners-brands 

5  https://github.com/videoworkflow/cookiepopup 
6  https://github.com/wsg-ariadne/calliope 
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The data set in the repository has a dedicated column of reasons that provide the justi-
fications of the proponents in labeling at /data/data.pdf. A comma-separated 
value (CSV) file containing the manually assigned labels and text can be viewed in the 
repository for Calliope and is read as its training data. 

The data set from the work of Soe et al. [40] includes various forms of cookie notices 
in image format. The proponents filtered the data set to only contain images that resem-
bled cookie banners. Then, optical character recognition was used to extract the text in 
the image. The extracted text was manually corrected to be free of any typographical 
errors and the text appearing as options on the cookie banners were removed for uni-
formity. 

The combined data set was loaded into a Python notebook from the CSV file as a 
pandas dataframe before being standardized to remove punctuation. The string, 
representing the banner text, was also divided into a list of words for easier processing 
through the classifier training done with nltk. 

Further standardization was done by making all letters lowercase before assessing 
for features that the classifier needs to consider when processing documents. The fea-
ture extractor takes five of the most frequently used words and uses these to learn how 
to predict the label of documents. 

Classifiers using nltk call for the use of a training and a testing set, thus only using 
a subset of the data set and using the rest to assess the accuracy at the training phase. 
As seen in /logs/logs.txt the accuracy of the classifier at training is 76.25%. The 
classifier is then saved using pickle5 for further use, deployment, and evaluation. 

4.4 Janus, the option weight model 

Soe et al. [41] discuss the numerous ways in which the cookie banner may be repre-
sented (i.e., image, text, and features) and the limitations each representation has. One 
of the benefits of using an image to represent the cookie banner is that it considers the 
layout in which these options could appear. The second classifier enabling the flagging 
of deceptive patterns through the browser extension is Janus, an option weight model 
which aims to determine whether the option to provide or deny consent to the use of 
cookies are fairly displayed on a cookie banner. 

Implementation. Janus is implemented as an image classifier that determines whether 
an image of a cookie banner employs deceptive patterns in the form of either obscuring 
or removing the option to deny consent. This classifier is based on the VGG-19 model 
that classifies images into the following classes: 

• ABSENT, indicating that the option to refuse cookies is not at all on the interface, 
• WEIGHTED, indicating that the option to refuse cookies is made less obvious, less 

visible, or more tedious to select than the option to accept it, and 
• EVEN, indicating that the options to accept and refuse cookies appear on the cookie 

banner and are equally obvious.  
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The photos used to train Janus were collected from the repository7 of Soe et al. [40]. 
These data points were manually labeled by the proponents of this project as seen in 
the repository8 at janus/data. Each data point is labeled either ABSENT, 
WEIGHTED, or EVEN depending on the way the options are presented on the interface. 
The data can be viewed in the repository at /data sorted into a folder for each label. 

The data set from the work of Soe et al. [40] includes various forms of cookie notices 
in image format. The proponents filtered the data set to only contain images that resem-
bled cookie banners before manually sorting them into the folders. 

The classifier pre-processing and training follows the procedure detailed on a guide 
from Analytics Vidhya [43], implementing image classification on custom data sets. 
The data set in /data is then split into the training set (n = 60, evenly divided across the 
classes), its subset validation set (n = 12, evenly divided across the classes), and a test-
ing set (n = 6, evenly divided across the classes). These images were then placed into 
the directory /final-dataset into their corresponding subdirectories /final-
dataset/train for the training set, /final-dataset/val for the validation 
set, and /final-dataset/test for the testing set. This implementation makes use 
of a pre-trained CNN model, VGG-19, and takes a color image of 224 × 224 pixels to 
classify into one of three categories. This means that prior to its re-training, all the im-
ages need to be resized to the specifications of VGG-19 and turned into a numpy array 
representation of the resized image. The training, validation, and testing sets were all 
put into their corresponding arrays of numpy array representations and labels. 

To customize VGG-19 into Janus, the last layer needs to be changed according to 
accommodate the three classes for the project. The adam optimizer was used to auto-
matically decide the optimal learning rate. Implementing EarlyStopping to stop 
training once validation loss increases provide a way to preempt overfitting. The model 
was trained for ten (10) epochs and yielded an accuracy of 66.67% and loss of 0.8632 
at the final performance graph found in /logs/logs.txt.  

 
Fig. 2. Graph of Accuracy  

over Training of Janus 

 
Fig. 3. Graph of Loss  
over Training of Janus 

 
7  https://github.com/videoworkflow/cookiepopup 
8  https://github.com/wsg-ariadne/janus 
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4.5 Dionysus, the classification and reporting API 

Machine learning models such as Calliope and Janus require a certain level of perfor-
mance and storage allocation from a host system to execute at an acceptable speed. The 
Janus model, for instance, is available as a set of files that take up around eighty meg-
abytes, but the libraries required to run it such as TensorFlow take up hundreds of meg-
abytes. Although the Janus model was found to take only a few seconds to classify each 
cookie banner image during testing, it was also found to take around three to four giga-
bytes of memory during runtime. 

In the interest of positive user experience, the proponents opted to make a single 
running instance of both Calliope and Janus available through an HTTP API called 
Dionysus, instead of packaging both models inside the Ariadne browser extension in-
stallation file to run locally. The Dionysus API was also written to incorporate func-
tionality for user-submitted reports, both to aid in improving model accuracy and for 
logging deceptive design patterns that cannot be detected by either model. 

Implementation. Dionysus is written in Python for consistency with the Calliope and 
Janus models. It is a Flask9 application that comes bundled with instances of Calliope 
and Janus, both of which are loaded into memory at launch. Furthermore, the applica-
tion is packaged as a Docker image10, in the interest of making Dionysus, Calliope, and 
Janus easy to redistribute and deploy [5][39]. 

Dionysus listens for HTTP requests on endpoints that are prefixed with /api/v1. 
The endpoints will be discussed with the assumption that they are prefixed as such, and 
that they expect and return JSON objects during operation. The full details of the API, 
including the format of these requests, are available at the project repository. The end-
points that concern Calliope and Janus, the classification models, are as follows:  

• /classify/text which accepts cookie banner text as input, feeds that input to 
Calliope, and returns the result in the form of a Boolean value called is_good. A 
value of true indicates that the language used in the cookie banner text is clear, and 
a value of false indicates that it is unclear. 

• /classify/image which accepts image data as input, feeds that input to Janus, 
and returns the result in the form of a string called classification. This string may 
have the value "WEIGHTED" if the cookie banner in the image might have weighted 
options, "EVEN" if the options are not weighted, and "ABSENT" if Janus could not 
see the option decline on the cookie banner. 

It is possible for Ariadne to misidentify an element and potentially transmit sensitive 
text and image data to Dionysus for classification. For this reason, Dionysus does not 
store data sent to the endpoints above, and the input and result data for every detection 
request are lost from the server after the request is fulfilled. 

Curley et al. [9] discuss the shortcomings of automated detection against the various 
forms of deceptive patterns and identify a reporting feature to fill the gap. This feature 

 
9  https://flask.palletsprojects.com/ 
10  https://docs.docker.com/get-started/ 
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is used to compensate for the fact that some deceptive patterns cannot be automatically 
detected, so users must do it manually and share the report to other users. For this rea-
son, Dionysus also has endpoints for accepting and returning reports of deceptive pat-
terns made by users: 

• /classify/report, for submitting feedback on automated detections, i.e., re-
ports on whether Calliope or Janus correctly or incorrectly flagged the Web page for 
deceptive design. 

• /reports, for returning an overview of the most recent user-created reports, in-
cluding information on the top reported Web page and the total number of reports, 
and accepting user-created reports of deceptive patterns, including free-form data 
that allows users to describe deceptive patterns aside from unclear language and un-
even options. 

• /reports/by-id, for obtaining the details of a report using its unique ID as-
signed in the /reports endpoint. These details include the kind of deceptive pattern, 
the timestamp of the first time a Web page was reported for having this deceptive 
pattern, and the number of times the Web page was reported for having that decep-
tive pattern. 

• /reports/by-url. supplying Ariadne with that data, accepting the page’s URL 
as input, and returning the appropriate report counts as output for Ariadne’s menu 
(Fig. 4). 

These reports are stored in a PostgreSQL database, which is also running in a Docker 
container created using the official PostgreSQL image11. It was mentioned that Olym-
pus, the fifth component of our proposed solution, can show a publicly viewable sum-
mary of reports sent to Dionysus. This is made possible by the /reports endpoint. 
Together, Dionysus, Olympus, and the database run together as an orchestrated set of 
services using the Docker Compose tool12. 

 
Fig. 4. Ariadne’s extension menu, showing the report counts for a Web page. 

 
11  https://hub.docker.com/_/postgres 
12  https://github.com/docker/compose 
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5 Results and Discussion 

As discussed, the study's objective is to create a system capable of acting as a toolbox 
of methods for the automated detection of deceptive patterns and intervention methods 
by providing everyday users with a browser extension. This browser extension, Ari-
adne, acts as a line of defense by flagging indicators of deceptive design such as the use 
of unclear language and uneven options through the classifiers Calliope and Janus, re-
spectively.  

 
5.1 Results 

Ariadne was evaluated through the unit testing of Calliope and Janus, integration testing 
on eight (8) pre-selected websites and two (2) websites chosen by testers, and ac-
ceptance testing through the evaluation of thirty (30) alpha testers, six (6) of which were 
user-developers and the rest being users. 

Unit testing. Both classifiers were separately tested. Classifier evaluation metrics, spe-
cifically accuracy, precision, recall, and the F-score were also computed. These values, 
summarized in Table 1, are indicators of different facets of the classifier’s performance. 
To clarify, a positive or relevant event refers to the presence of deceptive patterns. Re-
calling that Calliope classifies whether unclear language is used or not and Janus clas-
sifies whether uneven banners are used. For Calliope, this means that a cookie banner 
being labeled BAD pertains to a positive. Similarly, a cookie banner being labeled 
WEIGHTED or ABSENT pertains to a positive. 

Table 1. Summary of classifier evaluation metrics on Calliope and Janus 

  Calliope Calliope Janus Janus 
Metric Formula Validation Testing Validation Testing 

Accuracy, 
binary 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  85.0% 80.0% 100% 66.67% 

Accuracy, 
3 classes 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  - - 91.67% 55.56% 

Precision 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 0.9000 0.6000 1.0000 0.6667 

Recall 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑎𝑐𝑡𝑢𝑎𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 0.8182 1.0000 1.0000 0.8090 

F-score 2 1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙4 0.8571 0.7500 1.0000 0.7273 

 
The accuracy for validation is consistently higher than that of testing. This is to be 

expected because validation is conducted with samples from the training data set while 
testing is conducted with samples that the model has not previously seen. As seen in 
Table 1, there are two rows for Accuracy, particularly for Janus. Accuracy (Binary) 
refers to whether the classifier can tell when a sample contains deceptive patterns or 
not while Accuracy (3 Classes) refers to whether Janus is able to correctly assign its 
three labels to the samples. Precision and recall are indicators of how well the classifier 
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can detect relevant or positive events, referring to the use or presence of deceptive pat-
terns. From these metrics, one could see that Calliope’s performance in validation and 
Janus’ performance in testing could be improved. 

Integration testing. The end-to-end process was tested through the observation of Ar-
iadne’s behavior on eight (8) selected websites (as seen in the documentation reposi-
tory13 at /website-photos) with manually labeled results for both models. The following 
websites, along with two (2) websites of the observer’s choice were taken as samples 
for integration testing. A summary of the expected behavior and corresponding labels 
for each of the websites is seen in Table 2. The expected labels indicate the predicted 
label of Janus and Calliope from the unit level since the objective of integration testing 
is to see how the system performs end-to-end. 

Table 2. Selected websites and their corresponding labels and expected flags 

 Expected label Expected flags 
Website Calliope Janus Unclear 

language 
Uneven 
weights 

ABS-CBN BAD EVEN ✓ - 
TV5 BAD EVEN ✓ - 

GMA 
Network GOOD WEIGHTED - ✓ 

Inquirer BAD WEIGHTED ✓ ✓ 
Manila Times BAD EVEN ✓ - 

Pep.PH GOOD WEIGHTED - ✓ 
Philippine 

Star BAD WEIGHTED ✓ ✓ 

Rappler GOOD EVEN - - 
 
The thirty (30) observers were tasked to install Ariadne, record whether the website’s 

cookie banner was displayed, and then record the corresponding flags raised by Ari-
adne. Shown in Table 3 are their findings. 

Table 3. Summary of observed behavior from Ariadne for selected websites 

 Banner presence Flags raised 
Website Displayed Not 

displayed None Unclear 
language 

Uneven 
weights 

ABS-CBN 26 4 6 24 16 
TV5 29 1 4 26 9 

GMA 28 2 18 11 11 

 
13  https://github.com/wsg-ariadne/docs/tree/main/website-photos 
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Network 
Inquirer 4 26 27 3 2 
Manila 
Times 29 1 4 25 15 

Pep.PH 28 2 4 0 26 
Philippine 

Star 27 3 7 23 6 

Rappler 8 22 26 4 0 
 
Instances logged to have no displayed banner are to be deducted from the number of 

readings that indicate neither unclear language nor uneven weights were found on the 
interface to deduplicate the records. The accuracy is computed as the number of correct 
predictions is divided by the total number of predictions. In this case, the occurrence of 
a particular flag (i.e., none, unclear language, and uneven weights) is given by the quo-
tient of the occurrences of the flag and the total number of samples with a banner dis-
played. From this, the accuracy is the % occurrence of flag if that flag is expected (i.e., 
ticked in Table 2) and 100% − % occurrence of flag otherwise. A summary of these 
values can be seen in Table 4, which shows volatility in its recorded performance across 
observers and across websites. 

Table 4. Summary of accuracy rates for integration testing on Ariadne 

 Accuracy (%) 
Website Calliope Janus 

ABS-CBN 92.31 38.46 
TV5 89.66 68.97 

GMA Network 60.71 32.29 
Inquirer 75.00 50.00 

Manila Times 86.21 48.28 
Pep.PH 100.00 92.86 

Philippine Star 85.19 22.22 
Rappler 50.00 100.00 

Average 79.88 57.51 

Acceptance testing. Alpha testing was conducted to evaluate the usability and effec-
tiveness of the aggregation of features from this study. The thirty (30) alpha testers, 
consisting of six (6) user-developers and fifteen (15) users answered a questionnaire 
about the understandability, documentation, installability, learnability, identity, copy-
right and licensing, and accessibility of Ariadne. The alpha testers provided feedback 
in the form of Likert scale ratings, the averages of which are presented in Table 5.  
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Table 5. Average Likert scale ratings from alpha testers 

Criterion Rating (5) 
Understandability 4.2700 
Documentation 4.6150 

Installability 4.8045 
Learnability 4.7857 

Identity 4.5190 
Copyright & Licensing 4.8133 

Accessibility 4.9667 

5.2 Recommendations 

Future developments could work on improving its components through expertise in 
machine learning and particular portions of the technology stack used to address the 
limitations and shortcomings of Ariadne version 0.1.2 as documented in this paper. 

Ariadne. Because there is no standardization for the user interface of a cookie consent 
banner, as observed by Soe et al. [40][41], it is difficult to develop a tool that can pro-
grammatically determine whether a Web page employs deceptive patterns.  

Computer vision techniques such as perceptual hashing and saliency mapping could 
be used instead of scraping the Web page for cookie banners. This could both simplify 
and increase the accuracy of the Read and Look steps of the browser extension’s pro-
cess, especially in Web pages that contain many HTML elements that the content script 
would have to sift through. 

Calliope and Janus. On the unit level, improving the performance of both Calliope 
and Janus involves providing larger, high-quality data [28][35] and setting the ground-
work by establishing firm criteria on what constitutes deceptive patterns [29]. Current 
and future efforts on a unified definition on deceptive patterns and taxonomy thereof 
are likely to provide clarity in future iterations of the models. Current and future devel-
opments in legislation [12] surrounding the data privacy [22], the use of cookies, and 
informed consent in the context of web-based interfaces could also help guide the cre-
ation of stricter, more deterministic criteria regarding deceptive patterns on cookie no-
tices [40]. The transformation of the image to a square is also an issue because the 
resulting images may not include the text on the buttons at all. The nature of VGG-19 
only accepting 224 × 224-pixel images present a limitation to Janus’ performance. 
Since cookie banners are often long rectangles, the necessary resizing causes a loss of 
discernible features on the interface. Looking for alternative, less resource-demanding, 
pre-trained models that can process rectangular images to base Janus upon would be 
ideal for future iterations. The proponents were unable to devote significant time to 
exploring alternatives due to the study’s priority being the creation of an overall system 
hosting the models, allowing for future work to be more targeted in improving individ-
ual components. 
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Dionysus. The handling of user reports through Dionysus would benefit from the de-
velopment of a non-intrusive method to attribute reports to the user that submitted it to 
make it possible to request for the access or deletion of their data. 

Ariadne informs the user of the presence of deceptive design by (1) turning the ex-
tension badge purple and (2) displaying a purple banner in the extension menu. This 
behavior is triggered by either a BAD result from the Calliope model, which means that 
the language of the cookie banner is unclear, or a WEIGHTED result from the Janus 
model, which means that the options for managing consent are not evenly presented on 
the cookie banner. Janus, however, also returns an ABSENT result if an option to de-
cline cookies was not detected. Future iterations of Dionysus should include a separate 
label for classification of cookie banners with no visible options. 

Although Dionysus does not require reports to contain information that could poten-
tially identify someone, these reports are still user-generated content, and therefore 
there should be a way for a user to request deletion of their content. Created reports are 
not tied to a user, as Ariadne does not require the user to log in or otherwise identify 
themselves before use, but since IDs are created for every report, future work could 
include a way for a user to see the IDs for their reports and request deletion of these 
reports through the Olympus interface. 

The proponents set out to lay down the groundwork of a toolbox for interventions 
against deceptive design that is accessible through a browser extension. Despite short-
comings and volatile accuracy rates seen in integration testing, this goal was accom-
plished to the extent that unit tests have demonstrated satisfactory performance of the 
language clarity model, Calliope and acceptable performance of the option weight 
model, Janus. Its performance was also found to be satisfactory and acceptance tests 
have demonstrated a positive evaluation among testers. 
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