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Abstract. Functional reactive programming (FRP in short) abstracts
values that change over time as time-varying values and the timing of
responses as events. Using these abstractions, reactive systems are de-
scribed as data flows between time-varying values and the occurrence
of events. In this paper, we propose TEFRP, a functional reactive pro-
gramming language for embedded systems in which the data flow of
time-varying values can be switched at each periodic timing. The ability
to switch the update method at each time facilitates the description of
systems in which the responses change over time. Such systems include,
for example, programs that display received data by turning LEDs on
and off, and communication protocols that perform fixed pre-processing
and post-processing. TEFRP treats the time from the start of execution
as an event. Although events in typical FRP are assumed not to occur at
the same time, time descriptions may include the same timing. TEFRP
allows logical combinations of periodic timings and actively uses such
overlaps to improve descriptiveness. This paper also discusses methods
of converting logical combinations to simpler forms.

Keywords: functional reactive programming, periodic task, event-based
programming

1 INTRODUCTION

A reactive system returns responses to periodic or interrupted inputs. This re-
action can be an immediate response to an input, a grouping of multiple inputs,
or a sequential response to an input. Reactive systems can be implemented by
polling, callbacks, or setting up interrupt handlers. However, these techniques
complicate the control flow of the system and fragment the description of the
tasks performed at each hour. Functional reactive programming (FRP in short)
is a technique in which the control flow for response is derived from the data
flow. FRP has a wide range of applications, including animation, GUI, robotics,
and embedded systems [3, 2, 9, 8, 4].

In FRP, values that change with time, such as inputs, outputs, and internal
states, are abstracted as time-varying values. By describing the data flow of
time-varying values in a functional manner, a computation can be constructed
to reflect changes occurring in the inputs to the outputs. In other words, FRP
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makes it possible to construct a system that guarantees responsiveness without
specifying complex control flows.

Time-varying values represent continuously changing values, but in an actual
system, changes occur only at specific times. Events are used to represent the
timing of such changes and responses. Time-varying values are processed in
response to the handling of each event. FRP, where events are used explicitly,
assumes that events do not occur at the same time. To avoid glitches, which are
data races on time-varying values, when two events occur at the same time in an
actual system, they are decomposed into two events and updated sequentially.

If there are input and output devices with different periods, the events driv-
ing each device are created independently. Consider the case where the value
from an input is divided and used for the output. Assume that the number of
output divisions is constant for one reading of the input. In this case, the events
for the input and the events for the output must be synchronized in terms of
their backward/forward relationship and period. However, since they are gener-
ated independently, there is a possibility that the next input may be processed
without outputting the expected number of times due to the accumulation of
slight deviations (jitter), or conversely, the next output may be processed before
the next input is received. To ensure that the number of outputs is maintained, it
is necessary to generate events with time shifts so that the cycles do not overlap,
and to synchronize the shift in the generation time of each event. This method,
however, requires consideration of whether or not the same problem will occur
for each existing device when another device is added. In an environment where
events are fired internally within a program, it is easy to synchronize the timing
of event generation, thus avoiding the problem. However, when the number of
kinds of events increases, the order of firing must be determined based on the
dependencies among time-varying values.

In this paper, we propose an FRP language, TEFRP, which assumes that
events are generated by time from the start of the system. Hereafter, events that
occur due to the passage of time are called time events, and a description that
refers to one or more time events is called a time description. TEFRP is based
on Event-driven FRP [16] and Emfrp [13], and describes an update process for
each time description in each time-varying value. This mechanism can be ap-
plied to the description of sequential responses that are output sequentially at
each time, in addition to considering input/output cycles. Different time descrip-
tions may refer to the time events occurring at the same time, but in contrast
to asynchronous events in most FRPs, these events represent the same event.
Taking advantage of this, time descriptions in TEFRP use logical combinations
to achieve flexibility.

The contributions of this paper are as follows

– We propose a mechanism to switch to a different update process for each
time event. While the entire reactive system can be described declaratively,
it is also easy to describe a system that shows sequential responses.
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– By specifying the update timing, we provide a mechanism to check whether
the access to the current or previous value is valid. This ensures that appro-
priate initialization is performed without using dummy values.

– We provide a method for converting a time description written using logi-
cal combination into a simplified form. The converted form consists only of
constant time or periodic timing, and there is no logical combination at all.
This conversion allows for easy scheduling while ensuring the descriptiveness
of the surface language.

The system assumed for TEFRP in this paper is a soft real-time embed-
ded system, and the time required to process each time-varying value update
is assumed to be sufficiently short relative to the overall cycle. Therefore, the
scheduling of tasks is assumed to be simple, with all tasks having the same
priority.

The paper is organized as follows. In Section 2 we describe a motivating ex-
ample, and in Section 3 we describe this example in TEFRP. In Section 4 we
discuss the syntax, semantics, and limitations of TEFRP. Section 5 discusses
methods for converting definitions into equivalent, simple programs. Compar-
isons with related studies are made in Section 6 and the paper is summarized in
Section 7.

2 MOTIVATION

Using an existing reactive programming library, REScala [11], we describe an
example program using time events and present its problems. Here, we consider
an example that outputs an input value as a bit-by-bit true/false value. This
output value is used, for example, to correspond to the ON/OFF of an LED.
For simplicity, let the input value be an 8-bit integer and read every 5 s. Also,
we assume that the output is performed 8 times every 500 ms, starting with the
lower to upper bits, and then false is performed as a 1-second interval. Such a
system is described as Listing 1.

The input is held in signal input through event e1. The signal bit is doubled
each time an event e2 fires, thereby changing the position of the filter. The output
is represented by the signal output, which changes along with the change in bit.
However, if event e3 is fired with true, bit is set to be false. This expresses the
state after all bits have been output.

In this program, the output changes as e2 or e3 fires. The reason that the
firing of e3 in line 17 is after the firing of e2 is that if it fires before this, output
will instantaneously become true if the most significant bit of the input is
1 and the least significant bit is 0. When the value output externally is used
to control a physical device such as a motor, such an instantaneous change in
value may cause abnormal actuation or degradation. The firing order of events
is adjusted to prevent this, but sufficient care must be taken regarding the order
when multiple events are desired to occur simultaneously. In addition, when an
output is changed by multiple events, it becomes difficult to follow at what time
the change occurs.
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1 // reactive part
2 val e1 = Evt[Int]() // input event
3 val input: Signal[Int] = e1.latest(0)
4 val e2 = Evt[Unit]() // output event
5 val f = (x:Int) => if (x == 128) 1 else (x*2)
6 val bit = e2.iterate(128)(f)
7 val e3 = Evt[Bool]() // waiting
8 val wait = e3.latest(true)
9 val output = Signal {

10 !wait && (input.now / (bit())) % 2 > 0
11 }
12 // event part
13 while (true) {
14 Thread sleep 1000
15 e1.fire(sense()) // get input
16 e2.fire() // 1st bit
17 e3.fire(false)
18 Thread sleep 500
19 for(_ <- 2 to 8) { // 2nd to 8th bit
20 e2.fire()
21 Thread sleep 500
22 }
23 e3.fire(true)
24 }

Listing 1. Bitwise integer output in REScala

3 TIMING AS AN EVENT

This section describes the example in the previous section written in TEFRP.
The formal grammar and other details are discussed in the next section. The
program described is like Listing 2.

1 module Bitwise
2 in input { 5s * @n + 1s } : Int
3 out output { 500ms * @n + 1s
4 but not(5s * @n + 5500ms) } : Bool
5

6 node bit : Int = {
7 5s * @n + 1s => 1;
8 500ms * @n + 1500ms
9 but not(5s * @n + 5s or 5s * @n + 5500ms)

10 => bit@last * 2;
11 }
12 node output : Bool = {
13 5s * @n + 5s => false;
14 500ms * @n + 1s but not(5s * @n + 5500ms)
15 => (input / bit) % 2 > 0;
16 }

Listing 2. Bitwise output in TEFRP

The structure of the TEFPR program is similar to that of Emfrp [13], but the
update expressions are written for each time event, as in Event-driven FRP [16].
Like Emfrp, TEFRP also declares time-varying values with the keyword node.
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Therefore, from now on in this paper, time-varying values in TEFRP will be
referred to as node.

A program is composed of modules (module), which declare input nodes (in)
and output nodes (out). Input and output nodes contain an time description that
represents the time event at which the update is to take place. For example, the
input node (line 2) declares a time description that represents reading from after
start 1 s (1s) to after 5 s (5s * @n). Note that @n used in the time description is
interpreted as an integer greater than or equal to 0. Time descriptions in TEFRP
are not limited to such simple cycles, but can also include the logical conjunction
and disjunction of multiple descriptions, as well as the description of exclusions.
The output, output node (lines 3–4), is updated every 500ms starting from the
start1 s, but not every 5 s starting from the5500ms (but not(...))1.

Lines 6 through 11 and 12 through 16 describe the definitions of bit and
output, respectively. Both definitions have two types of time descriptions. If
multiple time descriptions are written, the update process is performed according
to the first-match policy. For example, in the definition of output, for time events
that start at 5 s and after every 5 s, the second description (line 14) also matches,
but TEFRP will use the first description (line 13), which makes the value of
output be false.

The bit@last in line 10 refers to the result of updating bit in the previous
time event. This operator can be used not only for the time-varying value that
is about to be updated but also for other time-varying values. However, two
conditions are necessary for the use of @last. One is that the target node must
be updated at the time event being updated so that it makes sense to read one
previous update. The other is that one previous update must exist so that a valid
value can be obtained. Both can be easily checked with the SMT solver since the
conditions can be expressed in the form of integer linear constraints based on the
time description. Similarly, the combination of the time description used in the
output node (lines 2–3) and the time description used in the node declaration
(lines 13–14) is equivalent, which is also expressed as an integer linear constraint.
The detailed constraint expressions are described in Section 4.3.

4 TEFRP

This section provides a formal discussion of the syntax and the semantics of
TEFRP.

4.1 Syntax

Figure 1 shows the syntax of TEFRP.
T is a metavariable that represents a time description. T can express a de-

scription that directly specifies a time or periodic timing (AT ), as well as a

1 Note that the time descriptions in the output nodes of the module are redundant
and will be omitted when the processor is implemented
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C : Constant integer values
ID : Identifier
M ::= module in N∗ out N∗ D
N ::= ID{ T } : Type
D ::= node ID : Type = { U+ }

U ::= T => E;

T ::= AT | T or T | T and T | T but not(T)
AT ::= CT | CT*@n+CT
CT ::= C us | C ms | C s

E ::= C | ID | ID@last

| ...

Fig. 1. The syntax of TEFRP

combination of the two by logical combination. Periodic timing is described as
a linear expression with one variable @n as an integer greater than or equal to
0. In the logical combination, not is allowed only in conjunction in a way that
restricts the timing of something, rather than at an arbitrary point. It represents
an exception to the underlying timing but does not represent all other (possibly
continuous) times.

The module has several constraints.

1. A reference to another node in an update expression at each node is called
a dependency. Dependencies between nodes must not be circular.

2. To reference a node, the referenced node must have been updated at least
once at the same time or earlier.

3. To use the @last operator to refer to the previous value (the value before the
update) of a node, the referenced node must have been updated at the same
time. Also, it must have been updated at least once before that for ensuring
existence of the previous value.

4. The time description described as an output node in the module must rep-
resent the same time event as the combination of time descriptions used in
the node definition.

The first constraint is verified by performing a topological sort of the reference
relationships of the nodes in the program as an ordinal relationship. By using
the order obtained in this way as the update order of the nodes, it can be
guaranteed that the dependent node is always updated before the dependent
source is updated. The second to fourth constraints are discussed in Section 4.3
because they involve the semantics of the time description.

4.2 Semantics

First, we define the semantics for time descriptions. The semantics of a time
description is expressed in terms of a set of times. In the semantics defined here,
all times are expressed in microseconds (us), and those using ms or s are converted
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[[C us]]C = C
[[C ms]]C = C × 1000
[[C s]]C = C × 1000000
[[CT ]]A = {[[CT ]]C}
[[CT 1*@n+CT 2]]A = {C2, C1 + C2, C1 × 2 + C2, . . .}

where C1 = [[CT 1]]C, C2 = [[CT 2]]C
[[AT ]]T = [[AT ]]A
[[T1 or T2]]T = [[T1]]T ∪ [[T2]]T
[[T1 and T2]]T = [[T1]]T ∩ [[T2]]T
[[T1 but not(T2)]]T = [[T1]]T\[[T2]]T

Fig. 2. The semantics of time descriptions

Algorithm 1 The semantics for a node definition (Us is a list of update de-
scriptions)

1: function node behavior(Us)
2: Result = ∅ ▷ A set of pairs of time and update expressions
3: Used = ∅ ▷ A set of time already allocated in Result
4: foreach T => E ∈ Us do
5: Ts = [[T ]]T\Used
6: Result = Result ∪map(t 7→ (t, E),Ts)
7: Used = Used ∪ Ts
8: end for
9: return Result
10: end function

to constant times 1000 or 1 million, respectively. The function representing the
semantics of the time description, shown in Fig. 2, has a different subscript for
each syntax.

The update process of a node is performed by computing the corresponding
update expression at the time obtained from the semantics of the time descrip-
tion. The set of time and expression pairs is defined as the node’s behavior. The
algorithm to obtain the behavior from the update expressions is as shown in
Algorithm 1. Considering the first-match policy, we add the semantics of the
previous time description, excluding the time whose behavior is already deter-
mined from the semantics of the previous time description.

The semantics of expressions are omitted in this paper because they are
straightforward. The module operates by determining the order of nodes based
on their dependencies and performing update processing according to the be-
havior of each node over time. As with Emfrp, the input is implemented in the
form of externally defined functions that are called by the timing described in
TEFRP.
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4.3 Constraints for Modules

Here we describe the constraints on modules listed in the section 4.1. The con-
straints of a time description in a module are in the form of whether any given
time represented by the time description is in a (dis)equal relationship with any
of the times represented by the other time descriptions. Therefore, we define the
predicate P that represents the existence of a time in the set of times represented
by time description T that is in binary relation R with time t, as follows.

P (CT , t, R) = [[CT ]]C R t
P (CT 1*@n+CT 2, t, R) = ∃n.[[CT 1]]C ∗ n+ [[CT 2]]C R t
P (T1 or T2, t, R) = P (T1, t, R) ∨ P (T2, t, R)
P (T1 and T2, t, R) = P (T1, t, R) ∧ P (T2, t, R)
P (T1 but not(T2), t, R) = P (T1, t, R) ∧ ¬P (T2, t, R)

Assume the following construction for node n, which refers to node m. Note
that for the discussion on the previous value, we assume that the m in line 5 is
m@last.

1 node n = { node m = {
2 T1 = · · · ; T ′

1 = · · · ;
3 · · · ; · · · ;
4 Tx = · · · ; T ′

y = · · · ;
5 T = · · · m · · · ; }
6 · · · ;
7 }

Consider the case of a reference to node m for line 5 of this n. This update
description is chosen at time t, which means that t does not match any of T1 to
Tx, but T does. Thus, this is represented by

∧
¬P (Ti, t,=) ∧ P (T, t,=). Since

we only need to guarantee that m is updated in the past or at the same time
under these conditions, we only need t to match any of T ′

1 to T ′
y. In other words,

the whole is represented by ∀t.(
∧

¬P (Ti, t,=) ∧ P (T, t,=)) ⇒
∨

P (T ′
j , t,≤).

Similarly, it is sufficient to inspect the conditions on the previous value, one
whose consequent part is

∨
P (T ′

j , t,=) and the other whose consequent part is∨
P (T ′

j , t, <). Since these are in the category of Presburger arithmetic and the
quantifiers are hardly nested, it is possible to decide its validity in a reasonable
time.

5 Serializing time descriptions

Because of the mixture of various time descriptions in the node definitions, it is
not so easy to know when the next update at a given point in time will be, and
by which expression. Since TEFRP is intended for embedded systems, it is not
appropriate to use complex calculations to determine the next time. Here, we
give a method, serialization, to convert a node definition containing an arbitrary
time description into a definition with simple time descriptions that behave in
the same way. A simple time description here consists of AT alone in Figure 1.
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Algorithm 2 Serialized phase and period

1: function timing(T )
2: if T = CT then
3: return ([[CT ]]C , 1)
4: else if T = CT 1* @n +CT 2 then
5: return ([[CT 2]]C , [[CT 1]]C)
6: else if T = T1 or T2 or T1 and T2 or T1 but not(T2) then
7: (phase1, period1) = timing(T1)
8: (phase2, period2) = timing(T2)
9: return (max(phase1, phase2), lcm(period1, period2))
10: end if
11: end function
12:
13: function max timing(Us)
14: period = 1
15: phase = 0
16: foreach T => E ∈ Us do
17: (phaseT , periodT ) = timing(T )
18: period = lcm(period , periodT )
19: phase = max(phase, phaseT )
20: end for
21: return (phase, period)
22: end function

The entire periodic time descriptions behave cyclically by the least common
multiplier of their respective periods. Therefore, the result of serialization is a
set of copies of each update description for each phase, with the period fixed to
the least common multiplier. This ensures that the behavior is identical to the
meaning of the original update description

In Algorithm 2, the phase until the periodic behavior is shown, and the period
at that time is calculated. Then, in Algorithm 3, the update descriptions with
constant times before the periodic behavior and the time events that started in
the earlier phases before the periodic behavior is entered are expanded. Simi-
larly, in Algorithm 4, the phases of the update descriptions performed in the
periodic behavior are expanded. Finally, Algorithm 5 generates the serialized
update descriptions from the phases generated by the above algorithms. To real-
ize the first-match policy, the phases that have already been generated are kept
(lines 9 and 12), and they are excluded before generating corresponding update
descriptions (lines 7 and 10).

We describe these algorithms using bit in Listing 2 as an example. From
now on, for the sake of readability, the values returned by each algorithm will be
described as time instead of numerical values representing microseconds. For 5

s * @n + 1s and 500ms * @n + 1s but not(5s * @n + 5s or 5s * @n + 5500ms),
the timing function in Algorithm 2 returns (5 s, 1 s), (5 s, 5500ms) respectively.

The constants function of Algorithm 3 is applied with this result. The func-
tion enumerates the time that occurs before 5500ms, so applying it to 5s * @n
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Algorithm 3 Constant phase extraction

1: function constants(phase, T )
2: result = ∅
3: if T = CT then
4: result = {[[CT ]]C}
5: else if T = CT 1* @n +CT 2 then
6: c = [[CT 2]]C
7: while c ≤ phase do ▷ Enumerate time that occurs before phase
8: result = result ∪ {c}
9: c = c+ [[CT 1]]C
10: end while
11: else if T = T1 or T2 then
12: result = constants(phase, T1) ∪ constants(phase, T2)
13: else if T = T1 and T2 then
14: result = constants(phase, T1) ∩ constants(phase, T2)
15: else if T = T1 but not(T2) then
16: result = constants(phase, T1)\constants(phase, T2)
17: end if
18: return result
19: end function

Algorithm 4 Periodic phase extraction

1: function periodic(phase, period , T )
2: result = ∅
3: if T = CT 1* @n +CT 2 then
4: c = [[CT 2]]C
5: while c ≤ phase do ▷ Calculate the first time after phase
6: c = c+ [[CT 1]]C
7: end while
8: while c ≤ phase + period do ▷ Enumerate time that occurs in one period
9: result = result ∪ {c}
10: c = c+ [[CT 1]]C
11: end while
12: else if T = T1 or T2 then
13: result = periodic(phase, period , T1) ∪ periodic(phase, period ,2 )
14: else if T = T1 and T2 then
15: result = periodic(phase, period , T1) ∩ periodic(phase, period , T2)
16: else if T = T1 but not(T2) then
17: result = periodic(phase, period , T1)\periodic(phase, period , T2)
18: end if
19: return result
20: end function
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Algorithm 5 Serializing node definition

1: function normalize(Us)
2: (phase, period) = max timing(Us)
3: result = [ ]
4: usedConsts = ∅ ▷ A set of phases allocated as constant timing
5: usedPhases = ∅ ▷ A set of phases allocated as periodic timing
6: foreach T => E ∈ Us do
7: consts = constants(phase, T )\usedConsts
8: result = result ++mapL(p 7→ (p us => E), consts)
9: usedConsts = usedConsts ∪ consts
10: phases = periodic(phase, period , T )\usedPhases
11: result = result ++mapL(p 7→ (period us*@n+p us => E), phases)
12: usedPhases = usedPhases ∪ phases
13: end for
14: return result
15: end function

+ 1s returns only 1 s, while applying it to 500ms * @n + 1s but not(5s * @n +

5s or 5s * @n + 5500ms) returns 1 s, 1500ms, 2 s, 2500ms, 3 s, 3500ms, 4 s and
4500ms. The reason why 5 s and 5500ms are not included in the latter is that
they are excluded from the whole because the description under but not returns
these times. With these results, in lines 7–9 of the Algorithm 5, 1 s is chosen
from the former, and the rest from the latter.

Similarly, Algorithm 4 enumerates the times that occur between 5500ms and
10 500ms. It returns 6 s for the former and 6 s, 6500ms, 7 s, 7500ms, 8 s, 8500ms,
9 s and 9500ms for the latter. In lines 10–12 of Algorithm 5, 6 s is selected from
the former and the rest from the latter.

By serializing whole of Listing 2, both bit and output are expanded in period
5 s and phase to period 5500ms, as shown in Listing 3. Note that Algorithm 5
converts everything to microseconds, but here it is written in seconds or mil-
liseconds for readability.

The serialization procedure allows all time descriptions to be expressed either
in constant times with no period or in time descriptions with the same period
but different only in phases. As a result, the obtained time descriptions do not
overlap and are not affected by the first-match policy, so it is permissible to
reorder the sequence phase by phase. This means that the next time event to be
updated can be easily computed.

The serialized definitions produce the same set in terms of the behavior de-
fined by Algorithm 1. The usedConsts and usedPhases in Algorithm 5 correspond
to Used in Algorithm 1. Therefore, before and after the serialization of a sin-
gle time description, the behavior and the time of exclusion are preserved. This
shows that the overall behavior is preserved. The formal proof is a subject for
future work.
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1 node bit : Int = {
2 1s => 1; 1500ms => bit@last * 2;
3 2000ms => bit@last * 2; 2500ms => bit@last * 2;
4 3000ms => bit@last * 2; 3500ms => bit@last * 2;
5 4000ms => bit@last * 2; 4500ms => bit@last * 2;
6 5s * @n + 6s => 1; 5s * @n + 6500ms => bit@last * 2;
7 5s * @n + 7000ms => bit@last * 2; 5s * @n + 7500ms => bit@last * 2;
8 5s * @n + 8000ms => bit@last * 2; 5s * @n + 8500ms => bit@last * 2;
9 5s * @n + 9000ms => bit@last * 2; 5s * @n + 9500ms => bit@last * 2;

10 }
11 node output : Bool = {
12 5s => false; 1s => (input / bit) % 2 > 0;
13 1500ms => (input / bit) % 2 > 0; 2000ms => (input / bit) % 2 > 0;
14 2500ms => (input / bit) % 2 > 0; 3000ms => (input / bit) % 2 > 0;
15 3500ms => (input / bit) % 2 > 0; 4000ms => (input / bit) % 2 > 0;
16 4500ms => (input / bit) % 2 > 0;
17 5s * @n + 10s => false; 5s * @n + 6s => (input / bit) % 2 > 0;
18 5s * @n + 6500ms => (input / bit) % 2 > 0;
19 5s * @n + 7000ms => (input / bit) % 2 > 0;
20 5s * @n + 7500ms => (input / bit) % 2 > 0;
21 5s * @n + 8000ms => (input / bit) % 2 > 0;
22 5s * @n + 8500ms => (input / bit) % 2 > 0;
23 5s * @n + 9000ms => (input / bit) % 2 > 0;
24 5s * @n + 9500ms => (input / bit) % 2 > 0;
25 }

Listing 3. The serialized program in Listing 2

6 RELATED WORKS

One feature of TEFRP is that it exhibits different behavior for each time event
for a single time-varying value. Event-driven FRP (E-FRP) [16], which this re-
search refers to, describes multiple update expressions for each time-varying
value. Events in E-FRP are based on interrupts, and each event does not occur
simultaneously. Since TEFRP is based on time as the basis of events, each time
description may refer to the same time. This differs from E-FRP in that it uses
the first-match policy in terms of semantics, and discusses flexibility through
logical combination and feasibility through serialization in terms of descriptive-
ness.

Yampa [5] is one of the arrowised FRP libraries. The switch combinator used
in this library switches the expression to be updated by an event. Similar com-
binators are also implemented in Hailstorm [12], an arrow-based FRP language.
These also realize a different update process for each event for time-varying
values. On the other hand, the overhead of pattern matching for events is not
small.

From a different perspective, Watanabe’s context-oriented programming [6]
extension of Emfrp [17] provides the ability to change the update method, called
layers. In addition, an extension for automata to synchronous dataflow language
Lustre [1] allows switching the method of updating variables in each state of the
automaton. Since these functions do not switch for a single time-varying value,
it is difficult to follow the behavior of a single time-varying value. On the other
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hand, TEFRP switching is forced on a single time-varying value. While this
makes it easier to track a single time-varying value, it also causes the problem
that the description is distributed when multiple time-varying values switch their
behavior simultaneously for the same time event.

One FRP library that describes cycles over real-time is Hae [14]. This library
directly describes the update period of time-varying values, so there is no need
to fire time events externally as in TEFRP. The generated runtime defines the
behavior based on the cycle. TEFRP has similar features but allows for more
flexible descriptions, such as the ability to combine cycles with time descriptions.

EvEmfrp [15] is an FRP language that describes the update timing of time-
varying values as cycles or interrupts. The update timing in EvEmfrp is described
only for input and output time-varying values, while other time-varying values
are inferred based on dependencies from inputs and outputs. This is in contrast
to TEFRP, which requires that all time-varying values be given update timings
explicitly. On the other hand, TEFRP allows multiple update expressions for a
time-varying value, whereas in EvEmfrp, there is one update expression for a
time-varying value. As a result, EvEmfrp has a syntax that controls the update
timing to be inferred, such as a notation for referring to time-varying values that
are updated at different times. Thus, there is a tradeoff between the amount
of description and complication in TEFRP and EvEmfrp. Although there is an
interrupt in the update timing in EvEmfrp, it is considered possible to implement
a similar mechanism in TEFRP. Implementation of the mechanism is a future
issue.

One language that uses real-time for embedded systems is, for example,
Timed C [7]. Timed C can describe not only soft real-time but also hard real-
time systems. In this respect, it is a language with a strong focus on scheduling.
However, its scheduling is not based on state dependencies. In this respect, to
implement two tasks that are independent of each other but share a state, it is
necessary to carefully describe the temporal transitions of the tasks to avoid data
races. On the other hand, however, it is possible to be very flexible in describ-
ing the scheduling. For example, limited to soft real-time, users can themselves
describe the switching between skipping the next cycle by receiving the time be-
yond the deadline, performing the cycle from there, reducing the waiting time for
the next one, and so on. We would like to consider extending the time description
to express these functions in real-time systems in TEFRP.

7 CONCLUSIONS

We proposed TEFRP, a language that allows defining time-varying values with
different update processing for time events. TEFRP is based on the assumption
of soft real-time embedded systems, and update processing is performed using
the elapsed time from the start of the system as the event. The description
of elapsed time can be made by combining multiple patterns. In this paper,
we showed that the description can be converted into a simple pattern. This
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property allows the next time event to be executed to be determined with little
or no time calculation at runtime.

The TEFRP in this paper assumes a generous task density. It is assumed
that all time-varying value update processes are completed before the time when
another time-varying value update is next performed. Although this paper does
not analyze this assumption, it is necessary to analyze the worst-case execution
time of the update process at each time to guarantee this assumption. Since each
update process is relatively simple, it is relatively easy to introduce an analysis
of the worst-case execution time. However, since the number of clocks required
for each step of the computation, and even the frequency, differs depending on
the environment, (approximate) modeling that provides a correspondence with
real-time will be a difficult part of the research.

Also, TEFRP does not consider asynchronous events at all. Introducing the
event itself is relatively straightforward since it is enough to introduce an in-
terruption as a time event. For events that occur in the middle of the update
process, the update process for the event can be postponed or the update pro-
cess can be reset, as in P-FRP [18]. In either case, there is no major difference
from the system introduced in this paper, except that interrupts are assumed.
On the other hand, asynchronous events may change the time of periodic tasks.
Considering a system in which the state is initialized by a button, the cycle is
readjusted according to the timing of the button press. To support such a sys-
tem, we would consider introducing a description of time events based on the
occurrence of asynchronous events in the TEFRP.

There are multiple possibilities for enhancing the expressive capabilities of
TEFRP. Similar to Emfrp, the output node of a module could be used as a
node definition. However, rather than simply reusing definitions, we would like
to be able to change phases and cycles of update processes in the module. It is
possible to make the time description flexible by allowing constant parameters
to be defined in the module. However, the constraints explained in Section 4.3
cannot be described as linear integer constraints. It will be necessary to discuss
how to handle them. In addition, since the definition of the node array [10]
uses indices as constants, we can easily convert a time series data sequence
(serial data) into an array data sequence (parallel data) by using this for time
description. We plan to introduce this method in parallel.
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