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Abstract. In this study, we constructed a method for obtaining information that
explains the classification results of a long short-term memory (LSTM) trained as
an intrusion detection system (IDS). The LSTM learns two types of information:
information about system accesses at each time point and time series information
across multiple time points. We extracted explanatory information to rank the
importances of these two information types. If the time series information was
considered more important, we extracted information indicating which range of
past information influenced the classification.
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1 INTRODUCTION

Deep learning (DL) can recognize features of complex data without human configura-
tion. These are being applied and improved to adapt to data with various characteristics.
In the field of cybersecurity, DL and machine learning (ML) applications have attracted
attention because of the recent increase in cyberattacks. Intrusion detection systems
(IDSs) that apply DL methods are widely used because they can process large volumes
of data logs with high classification accuracy. However, many DL-based IDSs are black
boxmodels that cannot provide a basis for their decisions. Thus, there is a need to develop
IDSs that can detect an intrusion while simultaneously providing reasons for identifying
the intrusion as a threat. For example, if an organization’s system experiences a zero-day
attack, and the IDS misclassifies the attack, the availability of explanatory information
would allow security personnel to rapidly debug and diagnose the system. Many studies
have been conducted regarding the development of explainable artificial intelligence
(XAI) for IDSs[10]. Some of these studies have included DL models that can learn
time series information as an explanatory target. However, insufficient research has been
conducted to explain how DL models capture time series information. Cyberattacks are
generally classified into two types: attacks with many time series features and attacks
with few time series features. For example, denial-of-service (DoS) and probe attacks
have time series characteristics because they make many connections to multiple hosts
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within a short period of time, whereas remote-to-local (R2L) and user-to-root (U2R)
attacks have fewer time series characteristics because the attack contents are embedded
within the data. An IDS that learns such data should be able to determine whether to use
time series features in its decisions at the time of classification. Therefore, we hypothe-
sized that more appropriate explanatory information could be obtained by determining
whether the IDS used time series features when it classified a particular log. In this
study, we focused on an LSTM as a DL model that can learn time series information,
with the objective of constructing a method for explaining IDS decisions based on time
series information. For simplicity, the LSTM used for the IDS assumed a binary model
for classifying system accesses as attacks or normal accesses. The proposed method
extracts two pieces of information for each classification: the extent to which the LSTM
focused on time series information when making its classification decision, and the time
period encompassing this focus. The proposed method is described as follows.

1. The classification accuracy of an LSTM trained on network access logs is examined
to determine when it does and does not retain memory information. If there is
a large difference in classification accuracy between these conditions, time series
information is assumed to have significantly contributed to the improvement of
classification accuracy.

2. If time series information is considered a significant contributor to LSTM classifi-
cation accuracy, the number of past logs is increased by one to identify the range of
correct decisions to be made.

To confirm the effectiveness of the method, we applied it to LSTMs configured to learn
logs in which the time series characteristics of attacks clearly appeared.

The remainder of this article is structured as follows. In Section 2, we provide
examples of LSTM applications in intrusion detection and discuss their problems. In
Section 3, we explain the position of this research in the field of explainable IDS (XIDS)
research. In Section 4, we present the details of the proposed method. In Section 5,
we describe the data and the structure of the LSTM used to evaluate the proposed
method, then present the LSTM training results. In Section 6, we apply the proposed
method to the constructed LSTM and evaluate the results. In Section 7, we discuss
the experimental results. In Section 8, we describe related research. In Section 9, we
summarize the findings of this study.

2 LSTM APPLICATIONS IN INTRUSION DETECTION AND
THEIR PROBLEMS

Muhuri et al. [9] demonstrated that LSTM can be used to construct a highly accurate
IDS. We created an IDS using the NSL-KDD dataset[3] with the LSTM configuration
presented byMuhuri et al. [9] and performed follow-up experiments. The results showed
that DoS, probe, and R2L attacks were classified at probability rates of 0.9981, 0.9889,
and 0.8185, respectively; normal accesses were classified at a rate of 0.9948. Although
classification accuracy was high, some logs were misclassified. In this case, an IDS
consisting solely of LSTM cannot provide decision criteria regarding misclassified
logs. Most existing explanatory methods focus on explaining which input features are
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considered important and do not utilize time series information. Therefore, such DL
explanatory methods cannot be used to accurately explain IDS decisions. To reliably
obtain more accurate explanations for DL models that learn time series information,
such as LSTM, explanatory methods that utilize this time series information are needed.

3 POSITION OF THIS STUDY IN THE XIDS RESEARCH
FIELD

Neupane et al. [10] described theMLmethods used for intrusion detection and presented
XIDS classification approaches for each method. They determined that explanatory
approaches to black boxmodels can be classified as feature-based [8], perturbation-based
[12], decomposition-based [13], and hybrid [11]. Feature-based approaches explain
the extent to which each feature is involved in the output results. Perturbation-based
approaches analyze changes in output caused by perturbations. Decomposition-based
approaches primarily focus on the gradient of the model. Despite the differences in these
approaches, they share the common goal of assigning a measure of importance to the
input space. In this study, we applied a perturbation-based approach after determining
whether the model focused on time series information. Thus, in addition to information
about which features of the input are important, which is also provided by existing
explanatory methods, our approach provides information about which range of past
input is important.

4 METHODS FOR EXTRACTING EXPLANATORY
INFORMATION FROM LSTM CLASSIFICATION RESULTS

In this section, we propose methods for extracting explanatory information from LSTM
classification results. In Section 4.1, we present details of the method used to obtain
information regarding the extent to which the LSTM focused on time series information
when making classification decisions. In Section 4.2, we demonstrate how to obtain
information about the period duringwhich the LSTM focuses on time series information.

4.1 Determination of the Extent to Which the LSTM Focuses on Time Series
Information during Classification Decisions

We obtain information about the extent to which LSTM focuses on time series informa-
tion during classification decisions as follows.

(1) Using the learnedLSTMweights, a deep neural network (DNN) is created to perform
classification and we calculate the F1 value 𝐹1𝑑𝑛𝑛. We define a DNN with LSTM
weights as a DNN that has no recursive structure, using weights that have already
been learned by the LSTM. This DNN is described in detail in Appendix A. The F1
value is a classifier evaluation index for a particular classification problem, where a
larger F1 value indicates higher classification accuracy.

(2) Using the learned LSTM weights, classification is performed by the LSTM, and the
F1 value 𝐹1𝑟𝑛𝑛 is calculated.
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(3) If |𝐹1𝑑𝑛𝑛 − 𝐹1𝑟𝑛𝑛 | is less than 0.1, the time series information at the time of LSTM
classification is considered unimportant. Otherwise, the time series information
at the time of LSTM classification is considered important to the classification
decision.

In (1) and (2), the difference between the two F1 values is calculated to determine the
difference in classification accuracy between networks for which time series information
can and cannot be used in classification decisions. In (3), if the difference between the two
F1 values exceeds 0.1, the importance of time series information in LSTM classification
decisions is considered high.

4.2 Acquisition of Information about the Time Period Focused on by the LSTM

If the above method determines that time series information is important to the clas-
sification decision, the following method is proposed to obtain information about the
period of interest.

(1) We record rows of data that meet either of the following conditions.

Condition 1
The classification result obtained by a DNN with LSTM weights is a false
positive and the result obtained by an LSTM is a true negative.

Condition 2
The classification result obtained by the DNN with LSTM weights is a false
negative and the result obtained by the LSTM is a true positive.

For each of the obtained rows, we do the following.
(2) Prepare the data extracted in (1).
(3) Use the data prepared in (2) plus the previous data as an input series for the LSTM.
(4) Provide the input series to the LSTM to calculate the classification probability.
(5) Find the absolute value of the difference between the classification probability

obtained in (4) and the classification probability based on all data.
(6) If the absolute value of the difference obtained in (5) is less than or equal to 0.05,

the new LSTM input series is regarded as the range of data to be obtained. If the
absolute value of the difference is greater than 0.05, the new LSTM input series is
regarded as the data series to be input in this iteration plus the previous data series.
Return to (4).

In (1), we record the rows of data meeting the indicated conditions to extract data that
could not be correctly classified by the DNN using LSTM weights, although they were
correctly classified by the LSTM. In (3), (4), (5), and (6), the data series input to LSTM
is increased by one row to determine which input data range will result in a classification
probability close to the probability that would be obtained if all data were used as the
input series. Thus, we obtain information about the period of time focused on by the
LSTM.
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5 EVALUATION OF THE PROPOSED METHODS

In this section, we evaluate the proposed method by applying it to a trained LSTM. The
flow of the method evaluation is described in Section 5.1. In Section 5.2, we describe
the data and the structure of the LSTM used in the experiment, then determine the
classification accuracy of the LSTM network after training.

5.1 Evaluation Methods

An LSTM with high classification accuracy appropriately captures and classifies the
characteristics of the data and its appearance patterns. Thus, if the explanatory informa-
tion obtained by applying the proposed method to LSTMs trained on data with clear time
series characteristics represents the time series characteristics of the data, we conclude
that the proposed method correctly extracted explanatory information. Therefore, we
created data with clear time series characteristics and appearance patterns to evaluate
the accuracy of the proposed method. We also defined the importances of the time
series features, allowing clarification of which data had time series characteristics that
were important criteria for classification decisions. We evaluated the method used to
obtain information about the extent to which the LSTM focused on time series informa-
tion for classification decisions, as described below. If the method determines that an
NN focused on time series information at the time of classification, it also determines
whether the time series features of the training data had a high level of importance. We
evaluated the method used to obtain information about the period of time during which
an LSTM focused on time series data by examining whether an LSTM trained on data
with important time series features yielded results that required a larger range of data
for accurate classification.

5.2 Construction of the DL Network for Experiments

In this section, we describe the data used in our experiments, the structure of the LSTM,
and the LSTM training process.

Data creation Because our proposed method is intended for application to LSTM
networks used as IDSs, we created data representing the characteristics of actual cyber-
attacks, with reference to cyberattacks included in the NSL-KDD dataset[3]. According
to the UCLMachine Learning Repository[4], which publishes the KDD Cup ’99 dataset
that preceded the NSL-KDD dataset, DoS and probe attacks have time series character-
istics because they make many connections to multiple hosts within a short period of
time. Conversely, R2L and U2R attacks do not have time series characteristics because
the attack contents are embedded in the data. Therefore, we created three types of data:
data with large features, imitating R2L and U2R attacks (Data 1); data with time series
features and occurrence patterns, which imitate DoS and probe attacks (Data 2); and
data containing only time series features (Data 3). The third dataset was created to con-
firm that data comprising purely time series features can be used to obtain time series
explanations. The datasets are described in greater detail in Table 1.
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Table 1. Features of the three datasets used in experiments.

Dataset Assumed cyberattacks Data features Time series features
Data 1 R2L and U2R attacks ⊚ ×
Data 2 DoS and probe attacks ⃝ ⃝
Data 3 Time series features × ⊚

The contents of each rowof each dataset are shown inTable 2. Each row is represented
by a 16-digit binary number, where a hyphen indicates that the number was randomly
chosen from 0 or 1. Rows added to represent normal system access logs consisted of
numbers with all digits randomly chosen from 0 or 1, without time series characteristics.
Rows added to represent attack logs consisted of either large or small amounts of time
series characteristics. This design allowed the use of two networks to evaluate the
proposed method: one that does not focus on time series features in the data occurrence
patterns and one that slightly focuses on these patterns. Rows of attacks were identified
as attacks in which 1s and 0s are recorded alternately (e.g., row 1 in Table 2) and attacks
in which the last four digits from the left are 0s; the 7th, 10th, and 13th digits are 1s;
and the remaining digits are randomly chosen from 0 or 1 (e.g., row 2 in Table 2).

Table 2. Contents of each row.

Row name Description Data
Normal row Random - - - - - - - - - - - - - - - -
Attack row 1 1s and 0s appear alternately 1010101010101010
Attack row 2 Fixed number of specific digits 0000 - - 1 - - 1 - - 1 - - -

In the construction of Data 1, an attack row is added with a probability of 0.25 and
a normal row is added with a probability of 0.75. Thus, attack rows 1 and 2 shown in
2 are regarded as Data 1-1 and Data 1-2, respectively. In the construction of Data 2,
two states are considered: normal and attack. In the normal state, a normal row is added
with a probability of 1 − 0.05; a transition to the attack state occurs at a probability of
0.05. In the attack state, an attack row is added with a probability of 0.9; a normal row
is added with a probability of 1 − 0.9. After the attack row is added with a probability
of 0.9 for 16 rows, it always returns to the normal state. Attack rows 1 and 2, along with
a random case, are regarded as Data 2-1, Data 2-2, and Data 2-3, respectively. In the
construction of Data 3, a sine wave is added in every cycle; each cycle changes its period
or adds noise with a probability of 0.3. These datasets are described in greater detail in
Appendix B.

Determination of time series feature importance When defining the importance of
time series features, the data features and time series features are expressed as numerical
scores. Concerning the data characteristics, data using row 1 of the attack are given a
score of 3, data using row 2 of the attack are given a score of 2, data with a randomly
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selected attack row are given a score of 1, and data constructed using a sine wave
are given a score of 0 because these data are meaningless. Concerning the time series
characteristics, data with intermittent attacks are given a score of 0 because they have
no time series information, data with intensive attacks are given a score of 2, and data
constructed using a sine wave are given a score of 3. The difference between the score
of the time series feature and the score of the data feature is regarded as the importance
of the time series feature for each datum. Data with positive importance values for time
series features are assumed to have important time series features. The characteristics
of each dataset are summarized in Table 3, where scores of 3, 2, 1, and 0 are indicated
by ⊚, ⃝, △, and ×, respectively.

Table 3. Data features for each row of the three datasets.

Data Time series Importance of
Data row features features Time series features
Data 1-1 ⊚ × -3
Data 1-2 ⃝ × -2
Data 2-1 ⊚ ⃝ -1
Data 2-2 ⃝ ⃝ 0
Data 2-3 △ ⃝ 1
Data 3 × ⊚ 3

LSTM configuration and training The hyperparameters of the LSTM are shown in
Table 4. The learning rate was changed to 0.001 at 50% of the epoch and then to 0.0005 at
75% of the epoch; its initial value of 0.01 is desirable in most cases, and reduction of the
learning rate is undesirable as learning progresses [1]. The dropout rate was set to 0.01
and the activation function was set to a sigmoid function. Optimization methods were
trained using the stochastic gradient descent (SGD) and Adam optimizers, respectively;
the optimization method that showed adequate learning progress was selected. The
number of epochs was set to 10. The batch size was set to 1 because LSTM constructed
using the tf.Keras module requires training and testing batch sizes with similar lengths;
thus, the batch size during training must be set to 1 to match the batch sizes used in
testing and application. The loss function was the cross-entropy error function, which
is used in binary classification; the number of neurons was set to 50, and the number of
layers was set to 3 to achieve DL.
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Table 4. Hyperparameters of the long short-term memory (LSTM) method. SGD, stochastic
gradient descent.

Hyperparameter Set value
Learning rate 0.01, 0.001, 0.0005
Dropout rate 0.01
Activation function Sigmoid
Optimizer Adam, SGD (In Data 2-3 and 3)
Epochs 10
Batch size 1
Loss function Cross entropy error
Number of neurons 50
Number of layers 3

The LSTM was trained with each dataset created as input. The first 80% of each
dataset was used as training data, and the remaining 20% was used as test data. The
accuracy of the data is shown in Table 5. The index attached to the network name
represents the index of the trained data. The trained LSTM was able to classify all data
with high accuracy.

Table 5. Data accuracy and confusion matrix values.

Network name Accuracy Precision Recall F1 value
Network 1-1 1.00 1.00 1.00 1.00
Network 1-2 0.98 0.99 1 0.99
Network 2-1 1.00 1.00 1 1.00
Network 2-2 0.99 0.99 1.00 0.99
Network 2-3 0.99 0.91 0.79 0.88
Network 3 0.78 0.89 1 0.88

6 EVALUATION OF THE PROPOSED METHOD

In this section, we present results obtained through application of the proposed method
to the LSTM networks described in Section 5, then evaluate the results.

6.1 Method for Obtaining Information about the Extent to Which the LSTM
Focused on Time Series Information during Classification Decisions

Experimental results The value of 𝐹1𝑟𝑛𝑛 for LSTM classification was compared with
the value of 𝐹1𝑑𝑛𝑛 for DNN classification using LSTM weights. The results are shown
in Table 6.
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Table 6. F1 value comparison between LSTM classification and DNN classification using LSTM
weights.

Network 𝐹1𝑑𝑛𝑛 𝐹1𝑟𝑛𝑛 |𝐹1𝑟𝑛𝑛 − 𝐹1𝑑𝑛𝑛 |
Network 1-1 0.97 1.00 0.03
Network 1-2 0.89 0.99 0.10
Network 2-1 0.98 1.00 0.02
Network 2-2 0.90 0.99 0.09
Network 2-3 0.11 0.88 0.77
Network 3 0.07 0.88 0.81

Table 4 shows the results of judging the importance of time series information during
classification according to the difference in 𝐹1 values 7.

Table 7. Importance judgment results for each method.

Network Importance judgment
Network 1-1

Time series information is unimportantNetwork 1-2
Network 2-1
Network 2-2
Network 2-3 Time series information is importantNetwork 3

Evaluation Next, we investigated whether information obtained by applying the pro-
posed method to the trained LSTM network was able to classify LSTM networks trained
on data with time series features in the data occurrence patterns and LSTM networks
trained on data without time series features. The judgment results obtained by applying
the method (Table 7) are mapped to the importance of time series information (Table
3) in the trained data in Table 8. These results show that a network trained on data with
positive importance values for time series features requires a time series to classify an
attack/non-attack. Thus, the proposed method can be applied to trained LSTM networks
to determine the importance of memory information in LSTM classification.

Table 8. Judgment results for each method.

Network Judgment result Importance of time series features
Network 1-1

Time series characteristics not required

-3
Network 1-2 -2
Network 2-1 -1
Network 2-2 0
Network 2-3 Time series characteristics required 1
Network 3 3
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6.2 Method for Obtaining Information about the Time Period Focused on by the
LSTM

Experimental results The proposed method was applied to an LSTM network trained
on each dataset. The mean, standard deviation, minimum, first quartile, median, third
quartile, and maximum values of the obtained ranges are summarized in Tables 9 and
10 for all data that met conditions 1 and 2, respectively. Values were rounded to the third
decimal place.

Table 9. Statistical results for the range extracted from data meeting condition 1. Max, maximum;
Min, minimum; SD, standard deviation.

Dataset Number of datasets Mean SD Min First quartile Median Third quartile Max
Data 1-1 310 2.20 0.54 2 2 2 2 5
Data 1-2 1090 2.30 0.48 2 2 2 3 4
Data 2-1 294 2.30 1.10 2 2 2 2 19
Data 2-2 1648 2.18 0.40 2 2 2 2 5
Data 2-3 730 3.58 2.61 2 2 3 3 25
Data 3 25 10.72 1.21 10 10 11 11 16

Table 10. Statistical results for the range extracted from data meeting condition 2.

Dataset Number of datasets Mean SD Min First quartile Median Third quartile Max
Data 1-1 0 - - - - - - -
Data 1-2 0 - - - - - - -
Data 2-1 0 - - - - - - -
Data 2-2 0 - - - - - - -
Data 2-3 5917 5.51 4.37 2 3 4 6 38
Data 3 793 15.13 4.32 7 12 15 18 24

Evaluation of results To evaluate the proposed method, we attempted to obtain results
in which networks trained on data with more important time series features require a
larger range of data for accurate classification. We selected the third quartile of each
measure as the size of the range of input series that would allow each network to
accurately classify each piece of data. Data that met condition 1 are data that correctly
classified normal data after the addition of time series information. The third quartile
column of Table 9 shows that data with a time series feature importance value of 0 or
less can be correctly classified using approximately 3 rows of data. In contrast, data with
positive importance values require a larger range of data; thus, Data 2-3 and 3 were
accurately classified using approximately 4 and 11 rows of data, respectively. This result
is consistent with the importance of time series characteristics. Data that met condition 2
are data that correctly classified attack data after the addition of time series information.
As shown in Table 10, there were no data meeting condition 2 for which the importance
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of time series information was less than 0. This result is reasonable considering that
the attack data were accurately classified even without time series information; those
data contained significant characteristics. In contrast, some data that met condition 2 had
positive importance values for time-series features. The range of the extracted series was
larger for Data 3 than for Data 2-3. Because the importance values of time series features
were greater in Data 3 than in Data 2-3, this result is consistent with the importance of
time series features. Overall, these results confirm that the proposed method can be used
to obtain correct information.

7 DISCUSSION

In this section, we discuss and interpret the evaluation results for the proposed method.
In Section 7.1, we discuss the method used to obtain information about the extent to
which the LSTM focused on time series information during classification decisions.
In Section 7.2, we discuss information obtained through our evaluation of the method.
In Section 7.3, we discuss information obtained regarding the time period focused on
by the LSTM. In Section 7.4, we discuss challenges involved in applying the proposed
method to IDS.

7.1 Methods for Obtaining Information about the Extent to Which the LSTM
Focused on Time Series Information during Classification Decisions

In this study, a threshold of 0.1 was specified for the difference in 𝐹1 values used
to determine whether time series information was focused on by the LSTM. Because
the network classification results were appropriate (Table 7), we conclude that this
threshold was appropriate for the data utilized in this study. However, to determine the
most appropriate threshold, exhaustive examination is needed concerning the effects
of threshold alteration on the resulting accuracy. In the proposed method, if the 𝐹1
difference is below the threshold, the time series information is considered unimportant;
however, if some data can be successfully classified by adding time series information,
it is meaningful to explain the results obtained by learning the time series information.
The threshold should be regarded as a guide, such that even if the network is below the
threshold value, a comprehensive judgment should be made via the proposed method if
time series information can be obtained. Although the 𝐹1 value was used for evaluation
in this study, this choice depends on the characteristics of the data to be classified. For
example, when every attack row is classified as an attack, the recall ratio should be used
for evaluation.

7.2 Evaluation of Methods Used to Obtain Information about the Extent to
Which the LSTM Focused on Time Series during Classification Decisions

In this section, we summarize and discuss information obtained by comparing the LSTM
classification results with the classification results for DNN using LSTM weights. We
calculated the change in each value of a confusion matrix obtained through LSTM clas-
sification by LSTM and by DNN using the LSTMweights (Table 11). When the network
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was trained on data that contained large features, true positive rows did not increase,
whereas true negative rows increased when time series information was considered
during classification. Thus, for data that already show high classification accuracy us-
ing a DNN with LSTM weights, the use of LSTM may lead to fewer false positives.
Some networks also showed a decrease in the number of true positives or true negatives
during LSTM classification, indicating that for some data, the addition of time series
information reduces the accuracy of the classification decision. Therefore, we conclude
that the improvement in classification accuracy achieved by switching from DNN-based
classification using LSTMweights to LSTM-based classification is not simply the result
of additional time series information. Future research should examine why the inclusion
of time series information resulted in incorrect classification results.

Table 11. Comparison of confusion matrix values.

Network True positive True negative False positive False negative
Network 1-1 -16 +310 -310 +16
Network 1-2 0 +1090 -1090 0
Network 2-1 0 +295 -295 0
Network 2-2 -1 +1648 -1648 +1
Network 2-3 +5848 +686 -686 -5848
Network 3 +771 -172 +172 -771

The proposed method focused on the process by which LSTMs learn time series in-
formation from input data, thereby investigating the influence of time series information
on LSTM classification results. Some DL networks are able to learn time series infor-
mation, such as [5], which is a modified LSTM, and Gated Recurrent Unit (GRU)[2].
The proposed method may also be applicable to these DL networks.

7.3 Method for Obtaining Information about the Time Period Focused on by the
LSTM

In this study, the absolute value of the difference in classification probabilities was set
to a threshold of 0.05, which allowed determination of the time period focused on by
the LSTM. Because information extracted during the method evaluation was considered
appropriate, as described in Section 6.2, we conclude that a threshold value of 0.05 is
appropriate for the datasets created in this study. However, to determine the optimal
threshold, the effects of threshold alteration on the accuracy of the method should be
exhaustively tested. The proposed method has some limitations. It is based on past
information that focuses on the shortest range of data that meets each condition. For an
LSTM trained on data requiring long, complex memory, the classification probability
may decrease when a longer series is classified as input; it may increase again when an
even longer series is input. Because the proposed method does not consider such cases,
it may be unable to extract specific data ranges. The identification of such ranges is a
topic for future research.
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7.4 Challenges in IDS Applications

When applying the proposed method to IDS at runtime, it is important to maintain
a high processing speed. To obtain insights into the processing time of the proposed
method, we measured the time required to calculate all data in Data 3 that met condition
2, using a method for obtaining information about the time period focused on by the
LSTM. Approximately 636 s of processing time were required for 793 rows of data.
Thus, if all rows were processed at the same rate, each row would require approximately
0.8 s of processing time. For actual IDS applications, it is unrealistic to require 0.8 s
of processing time each time a system access is considered an attack; these accesses
occur on a continual basis. Therefore, it is preferable to construct a system in which
new calculations are performed in parallel. If the reduction of execution time is more
important than the accuracy of the method, it is effective to increase the range for
calculation by two or three rows, rather than increasing the range by one row as in the
proposed method.

8 RELATED RESEARCH

Many previous studies have utilized DL for IDS, including Muhuri et al. work[9], in
which an IDS was run using LSTM with a genetic algorithm (GA) for feature selection.
The LSTMwas used to classify the types of attacks, and the results were compared with
the output of several other ML models; the classification accuracy of LSTM using the
GA model was far superior to the other tested models. The use of Transformer as an
IDS was also recently explored [7]. Research is also underway concerning other XAI
approaches for DL models. Ying et al. [14] proposed a method to explain decisions
made by graph neural networks (GNNs); the method was able to indicate important
graph structures and nodes with important predictive roles in the model. Additionally,
there are several LSTM variants, including one with a peephole connection [5] and GRU
[2].

9 CONCLUSION

In this study, we explored the application of LSTM as a DL model that can learn time
series information to construct and evaluate an explanatory method for the inclusion of
time series information in system access log classification. The method was evaluated
using LSTM networks trained on data with obvious time series characteristics to obtain
information regarding the extent to which the LSTM focused on time series information
during classification decisions and to obtain information about time periods focused on
by the LSTM. We defined the importance of time series features in the created datasets
and examined whether information obtained by the model after training was consistent
with the actual importance of the time series features. The evaluation results showed that
the proposed method is effective. The findings of this study represent a first step toward
the identification of decision criteria for DL networks that can learn time series data
and provide a foundation for configuring XIDSs with high accuracy, enabling security
personnel to accurately and quickly respond to cyberattacks.
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A LSTM AND DNN USING LSTMWEIGHTS

LSTM

LSTM is a network proposed by Hochreiter[6] that uses recurrent neural network (RNN)
units with a modified structure capable of handling long-term memory. The calculation
of the LSTM unit at time 𝑡 uses the hidden state ℎ𝑡−1, comprising the output from
the LSTM unit at the previous time 𝑡1, plus the value of the memory cell 𝑐𝑡 , which is
prepared to hold past memory. The input gate 𝑖 and output gate 𝑜, with unique weights
𝑤𝑖 , 𝑤𝑜, respectively, are introduced for calculations of the input to and output from
the LSTM unit, respectively, to learn how much past and current information should
be retained. These improvements allow proper learning of dependencies between long-
term data. Equation (1) is used to calculate the output of the LSTM unit, where 𝑡 is the
time, x is the input vector, W is the weight matrix, and 𝑏 is the bias. If 𝑓 is the output
of the forgetting gate, 𝑔 is the output of the acquiring gate, which obtains the newly
remembered content; 𝑖 is the output of the input gate, 𝑜 is the output of the output gate;
𝑐 is the output of the memory gate; and ℎ𝑡 is the output from the LSTM unit. These
values are calculated using the following formula.

𝑓𝑡 = 𝜎(x𝑡Wx 𝑓 + ℎ𝑡−1Wh 𝑓 + 𝑏 𝑓 )
𝑔𝑡 = tanh(x𝑡Wx𝑔 + ℎ𝑡−1Wh𝑔 + 𝑏𝑔)
𝑖𝑡 = 𝜎(x𝑡Wx𝑖 + ℎ𝑡−1Wh𝑖 + 𝑏𝑖)
𝑜𝑡 = 𝜎(x𝑡Wx𝑜 + ℎ𝑡−1Wh𝑜 + 𝑏𝑜)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑔𝑡 ⊙ 𝑖𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡 )

(1)

The ⊙ denotes the element-by-element product of the matrix. Note that the input x𝑘𝑡 to
the LSTM cell in the 𝑘th layer (𝑘 = 1, 2, . . . , 𝐾) when the LSTM is multilayered into
𝐾 layers is the output ℎ𝑘𝑡 from one previous layer. When training data are input into the
LSTM network using the LSTM cell composed above, and learning is conducted such
that the error between the output from the network and the correct answer is minimized,
the weightsWx andWℎ are adjusted to appropriately represent the overall data; the time
series information of the data are adjusted to appropriately represent the overall data.

DNN with LSTM weights

In this study, we used LSTM without recursive processing, which we termed a DNN
with LSTM weights. The formula used to calculate the output from the neuron of a
DNN with LSTM weights is equivalent to Equation 1 when ℎ𝑡−1 = 0 and 𝑐𝑡−1 = 0.
Because this approach does not include memory information, the network does not have
a forgetting gate. The output from a DNN neuron using LSTM weights is calculated as
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follows.

𝑔𝑡 = tanh(x𝑡Wx𝑔 + 𝑏𝑔)
𝑖𝑡 = 𝜎(x𝑡Wx𝑖 + 𝑏𝑖)
𝑜𝑡 = 𝜎(x𝑡Wx𝑜 + 𝑏𝑜)
𝑐𝑡 = 𝑔𝑡 ⊙ 𝑖𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡 )

(2)

B DEFINITION OF TRAINING DATA

In this section, we describe training data used in the evaluation.

Definition of Data 1 Each state that creates a row in Data 1 is defined as follows.

– 𝑆0 · · · Initial state.
– 𝑆𝑛1 · · · Normal state. Add one normal row.
– 𝑆𝑎1 · · · Attack state. Add one attack row.

The probability model for Data 1 is shown in Figure 1. From the initial state, it transitions
to state 𝑆𝑎1 with a probability of 0.25 and to state 𝑆𝑛1 with a probability of 1 − 0.25.
Subsequently, it continues to transition from each state to state 𝑆𝑎1 with a probability
of 0.25 and to state 𝑆𝑛1 with a probability of 1 − 0.25. Thus, Data 1 comprises data
generated according to the rule that an attack row is added with a probability of 0.25 and
a normal row is added with a probability of 0.75. For each type of attack row, Data 1-1
and Data 1-2 were created within Data 1. Attack rows added to Data 1-1 were designated
attack row 1, and attack rows added to Data 1-2 were designated attack row 2. The attack
rows added to each dataset are shown in Table 12.

Fig. 1. Probability model for Data 1.
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Table 12. Characteristics of each dataset

Dataset Row of attack
Data 1-1 1010101010101010
Data 1-2 0000 - - 1 - - 1 - - 1 - - -

Definition of Data 2 Each state that creates rows in Data 2 is defined as follows.

– 𝑆0 · · · Initial state.
– 𝑆𝑛2 · · · Normal state. Add one normal row.
– 𝑆𝑎2 · · · Attack state. Continue until 16 rows are added. During this state, an attack

row is added with a probability of 0.9 and a normal row is added with a probability
of 0.1.

The probability model for Data 2 is shown in Figure 2. From the initial state, it transitions
to state 𝑆𝑎2 with a probability of 0.05 and to state 𝑆𝑛2 with a probability of 1 − 0.05.
Subsequently, it transitions from state 𝑆𝑛2 to state 𝑆𝑎2 with a probability of 0.05; from
state 𝑆𝑎2 , it always transitions to state 𝑆𝑛2 . State 𝑆𝑎2 continues until 16 rows of data are
added, during which an attack row is added with a probability of 0.9 and a normal row
is added with a probability of 1 − 0.9. Thus, Data 2 is generated according to the rule
that it will transition to the attack state with a probability of 0.05 and will always return
to the normal state after the attack row is added, with a probability of 0.9 for 16 rows.
Within Data 2, the data were defined by the type of attack row, creating Data 2-1, Data
2-2, and Data 2-3. Attack rows added to Data 2-1 were designated Attack Row 1, and
attack rows added to Data 2-2 were designated Attack Row 2. In Data 2-3, a random
16-digit binary number is generated when the state changes to 𝑆𝑎2 , and a line of attack
is processed as a line of attack in state 𝑆𝑎2 . The attack rows added to each dataset are
shown in Table 13.

attacknormal

Fig. 2. Probability model for Data 2.
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Table 13. Characteristics of each dataset

Data Row of attack 𝑝𝑎1

Data 2-1 1010101010101010 0.05
Data 2-2 0000 - - 1 - - 1 - - 1 - - - 0.05
Data 2-3 - - - - - - - - - - - - - - - - 0.05

Definition of Data 3 Each state that creates rows in Data 3 is defined as follows.

– 𝑆0 · · · Initial state.
– 𝑆sin 2𝜋 · · · Normal state. Add the value of 𝑦 in 𝑦 = 1 + sin 2𝜋𝑥

100 with 100 rows per
period, converted to 16-digit binary numbers, as rows.

– 𝑆sin 8𝜋 · · · Attack state. Add the value of 𝑦 in 𝑦 = 1 + sin 8𝜋𝑥
100 with 25 rows per

period, converted to 16-digit binary numbers, as rows.
– 𝑆𝑛𝑜𝑖𝑠𝑒 · · · Noise generating state. Add a row with a randomly chosen decimal

number in the range [0, 2] converted to a 16-digit binary number.

The probability model for Data 3 is shown in Figure 3. From the initial state, there is
always a transition to state 𝑆sin 2𝜋 . From state 𝑆sin 2𝜋 , it transitions to state 𝑆sin 8𝜋 with a
probability of 0.5; from state 𝑆sin 8𝜋 , it transitions to state 𝑆sin 2𝜋 with a probability of
0.99. From state 𝑆sin 2𝜋 or state 𝑆sin 8𝜋 , it transitions to state 𝑆𝑛𝑜𝑖𝑠𝑒 with a probability of
0.3; from state 𝑆𝑛𝑜𝑖𝑠𝑒, it transitions to state 𝑆sin 2𝜋 or state 𝑆sin 8 𝑝𝑖 with a probability of
1 − 0.3. Thus, Data 3 is generated according to the rule that sin waves are added every
cycle, and the period of the sin wave is changed every cycle or noise is added with a
probability of 0.3.

Fig. 3. Probability model for Data 3.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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