
 

 

 

© The Author(s) 2024
J. Caro et al. (eds.), Proceedings of the Workshop on Computation: Theory and Practice (WCTP 2023), Atlantis
Highlights in Computer Sciences 20,
https://doi.org/10.2991/978-94-6463-388-7_2

Two Heuristics for the Tree Poset Cover
Problem

Willie N. Coronel Jr1,∗, Joshua Relucio1, Ivy D. Ordanel1, Richelle Ann B.
Juayong2

1Algorithms and Complexity Laboratory, Department of Computer Science,
University of the Philippines Diliman, Quezon City, Philippines

2 Service Science and Software Engineering Laboratory, Department of Computer
Science, University of the Philippines Diliman, Quezon City, Philippines

∗wncoronel@up.edu.ph

Abstract. The Poset Cover Problem aims to find a minimum set of
posets that cover a given input set of linear orders. This problem has
practical applications in data mining, particularly in constructing di-
rected networks from sequential data. The decision version of the prob-
lem is known to be NP-hard. In this study, we focus on a variant called
the Tree Poset Cover Problem, which requires identifying a minimum set
of tree posets needed to cover a given input set of linear orders. We pro-
pose two polynomial-time heuristics, namely Heuristic 1 and Heuristic
2. Our investigation demonstrates that both heuristics consistently pro-
duce feasible solutions and can be classified as approximation algorithms.
Furthermore, we empirically evaluate the performance of Heuristic 1 and
Heuristic 2 using four datasets.

Keywords: optimization problem, partially ordered sets, heuristics, ap-
proximation

1 Introduction

In Computer Science, there exists a well-known problem in generating all topo-
logical sortings of a directed acyclic graph (DAG). This problem takes a DAG
as input and generates a set of topological sortings as its output. However, in
the Poset Cover Problem, the scenario is somewhat reversed. Here, the input
comprises a set of topological sortings, referred to as linear orders, and the goal
is to find corresponding DAG(s), which are represented as posets, that cover the
given input linear orders.

Formally, a (strict) partially ordered set or poset P = (V,<P ) is defined as
an ordered pair consisting of a finite set V and a binary relation <P⊆ V × V
that is irreflexive, antisymmetric, and transitive. An example of a strict poset is
shown in figure 1a. Two distinct elements u, v ∈ V are said to be comparable
in P , written as u ⊥P v, if and only if u <P v or v <P u. Otherwise, they are
incomparable, denoted as u ∥P v. When every pair u, v ∈ V are comparable
in <P , then the poset is a totally ordered set or a linear order. Furthermore, a

mailto:s-hagiha@photon.chitose.ac.jp
https://doi.org/10.2991/978-94-6463-388-7_2
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-388-7_2&domain=pdf


Fig. 1. Poset P, its Hasse diagram and linear extensions

linear order L = (V,<L) over the same set V is a linear extension of poset P
if and only if <P⊆<L. The set of all linear extensions of poset P is denoted as
L(P ), as shown in figure 1c.

A cover relation ≺P= {(u, v)|u <P v and there is no w ∈ V where u <P

w <P v} is a subset of <P . This relation defines the edges of the Hasse diagram
of poset P , denoted as H(P ) = (V,≺P ), as shown in figure 1b.

The Poset Cover Problem is formally defined as follows:
POSET COVER PROBLEM
INSTANCE: A set Υ = {l1, l2, ..., lm} of linear orders over the set V = {1, 2, 3, ...,
n}.
SOLUTION: A set P ∗ = {P1, P2, ..., Pk} of posets where

⋃
Pi∈P∗ L(Pi) = Υ and

k is minimum.

The Poset Cover problem has been extensively studied, and the decision
version of the problem has been proven to be NP-complete [1]. In order to
expand the knowledge about the problem, efforts in the past have focused on
exploring restricted variations of the problem and classifying which cases are in
P and which are NP -hard. One way in which the problem can be restricted is by
considering only a specific number of posets, say k. Another way is to consider
only a specific class of posets according to their Hasse diagram, such as a tree
poset. Moreover, the problem can be constrained by combining the former and
the latter ways of restricting the Poset Cover Problem. For instance, the 1-Tree
Poset Cover Problem is a restricted version because its output is k = 1 tree
poset that covers the input linear orders, if it exists. This variation has been
proven to be in P [10]. On the other hand, when the output is a set of k = 2 tree
posets, the variation is called the 2-Tree Poset Cover Problem, and this has been
shown to be in P as well [9]. However, the Tree Poset Cover Problem, where the
output is a set of minimum k-tree posets, remains relatively unexplored, and its
complexity is not yet known. Hence, the focus of this paper is on the Tree Poset
Cover Problem Formally, it is defined as follows:
TREE POSET COVER PROBLEM
INSTANCE: A set Υ = {l1, l2, ..., lm} of linear orders over the set V = {1, 2, 3, ...,
n}.
SOLUTION: A set P ∗ = {P1, P2, ..., Pk} of tree posets where

⋃
Pi∈P∗ L(Pi) = Υ

and k is minimum.

8             W. N. Coronel et al.



In solving the different variations of the Poset Cover Problem such as the
Tree Poset Cover Problem, there are essentially three different ways to go about
it. The first way is through an exact algorithm where the goal is to find an
optimal solution for any given input set of linear orders [13]. The second way
is by developing an approximation algorithm where the goal is to only find a
feasible solution, albeit not necessarily optimal, for any given input [4]. The
third way is through a heuristic algorithm where the objective is to find a good
solution that is not necessarily feasible nor optimal. A previous study on the
2-Poset Cover Problem [11] presented three different polynomial-time heuristics.
While these heuristics were able to accurately solve a significant majority of
the random instances they were tested on, they encountered failures in a small
number of cases.

In our study, we developed two heuristics for the Tree Poset Cover Problem,
namely Heuristic 1 and Heuristic 2. We also proved that both heuristics can be
considered as approximation algorithms as they always return a feasible solution
for any given input set of linear orders.

2 Definition of Terms

In this section, we introduce and define the concepts and notations that are
utilized throughout the discussion of the study.

Definition 1. ancestors(v,P). [8]
Given a poset P = (V,<P ) and v ∈ V , the ancestors(v, P ) is the set of
elements in poset P that precedes v, i.e., ancestors(v, P ) = {a ∈ V |a <P v}.

Definition 2. cover [8]
The term cover is used in many instances for different objects in the discus-
sion. Given two elements u, v ∈ V of poset P , we say that u covers v if and
only if u ≺P v. In this instance, (u, v) are also said to be cover pairs in P.
Given a set of linear orders Υ and poset P , we say that P covers Υ if and
only if L(P ) = Υ .
Given a set of linear orders Υ and a set of posets P ∗, we say that P ∗ covers
Υ if and only if

⋃
Pi∈P∗ L(Pi) = Υ .

Definition 3. Tree Poset [8]
A tree poset P = (V,<P ) is a poset whose Hasse diagram is a rooted directed
tree with each non-root node being covered by exactly one node.

Definition 4. tree node depth(v, P). [10]
The tree node depth is the distance of the node v from the root node and
is given by the formula tree node depth(v, P ) = |ancestor(v, P )|. The root
itself has zero tree node depth.

Definition 5. depth(P). [10]
The depth(P ) for a tree poset P is the length of the longest path from the
root node or

depth(P ) = maxv∈V {tree node depth(v, P )}.

Two Heuristics for the Tree Poset Cover Problem             9



Definition 6. Heuristic Algorithm [2]
A heuristic algorithm is defined as a technique which seeks good (i.e., near
optimal) solutions at a reasonable computational cost without being able to
guarantee feasibility or optimality, or even in many cases to state how close
to optimality a particular solution is.

Definition 7. Approximation Algorithm. [4]
An approximation algorithm for an optimization problem is an algorithm
that provides a feasible solution whose quality does not differ too much from
the quality of an optimal solution.

Definition 8. Approximation Ratio based on empirical data We define
approximation ratio (based on empirical data) as the ratio between approx-
imation solution and optimal solution, i.e.

Approximation Ratio =
|approximation solution|

|optimal solution|

3 Methodology

3.1 Development of Heuristics

In this study, we attempted to develop a polynomial-time algorithm that solves
the Tree Poset Cover Problem. In the course of finding a solution, we were able
to devise two heuristics that have been proven to be approximation algorithms
(to be discussed in section 4)

The first heuristic was developed based on the technique of combining posets
[5–7]. On the other hand, the second heuristic was developed by utilizing an
existing O(mn)-time algorithm for the 1-Tree Poset Cover Problem [10].

3.2 Test Case Generation

To assess the effectiveness of the developed heuristics, various test cases were
generated. Input files containing linear extensions of tree posets were created,
with the number of vertices (n) ranging from 3 to 6 and a chosen upper bound
of the number of posets (k). Due to machine limitations, n and k were restricted
to certain values. The input files consisted of random or exhaustive cases.

Two methods were used to generate the input files. The first method was
exhaustive, involving all possible sets of tree posets for a specific n and k. The
second method combined exhaustive and random approaches. For large values of
n and k, all input test cases from k to k − 1 were exhaustively generated, while
the remaining cases were randomly generated.

Four separate input files, each representing a different set of test cases, were
used in the study. Figure 2 provides details about these input files, including the
number of vertices, the maximum number of tree posets, the generation method,
and the total count of generated test cases.

10             W. N. Coronel et al.



File Vertices (n) Max. Tree Generation Method Test
Posets (k) Cases

File 1 3 3 Exhaustive 63

File 2 4 3 Exhaustive 25,084

File 3 5 4 Random 100,000

File 4 6 2 Random 100,000

Fig. 2. The four input files used in this study

3.3 Examining the Performance of the Heuristics

To determine the accuracy of the heuristics developed, an analysis script was
created. This script is responsible for evaluating each test case per input file
against a heuristic. For each test case, both the optimal and the heuristic solution
were recorded based on the results of the analysis in a text file. Furthermore,
the script also logged the feasibility and optimality of the solution provided by
the heuristic. This included determining whether the solution was feasible and
optimal, feasible but non-optimal, or infeasible.

At the end of each text files, a summary – which includes the total number
of inputs, the total number of feasible heuristic solutions, the total number of
optimal heuristic solution, and the approximation ratio (based on empirical data)
– is recorded.

4 Results

4.1 Theoretical Results

In this section, we discuss the two formulated heuristics - Heuristic 1 and Heuris-
tic 2. We begin by exploring the theoretical outcome for each heuristic, and then
proceed to the empirical result in section 4.2.

Heuristic 1. A trivial solution to the Tree Poset Cover Problem is the input set
of linear orders itself since every linear order is a tree poset. However, it would be
more satisfactory if we find tree posets that cover more linear orders. With this,
we can start the solution with the given set of linear orders as tree posets. Then,
what is left to do is to iteratively improve the solution by combining tree posets
into a single tree poset such that the resulting tree poset generates all the linear
extensions of the tree posets being combined. The following existing lemmas and
theorem provide the condition as to when we can combine two posets into one
poset.

Lemma 1. [5] Given posets P1 = (V,<P1) and P2 = (V,<P2), if <P1⊆<P2 ,
then L(P2) ⊆ L(P1).

Lemma 2. [5] Given posets P1 = (V,<P1
) and P2 = (V,<P2

), if there exist
pairs (a, b) ∈<P1 and (b, a) ∈<P2 such that <P1 \{(a, b)} =<P2 \{(b, a)}, then

Two Heuristics for the Tree Poset Cover Problem             11



Algorithm 1: First Formulated Heuristic to the Tree Poset Cover Prob-
lem (Heuristic 1)

Input : A set Υ = {L1, L2, ..., Lm} over V = {1, 2, ..., n}
Output: A set of tree posets where P = {P1, P2, ...Pk} such that

L(P ) = L(Y ) and k is minimum
1 P ∗ ← GEN TREE POSET (Υ )
2 if P ∗ ̸= null then
3 return P ∗

4 P ∗ ← {L1, L2, ..., Lm}
5 Ptree ← ∅
6 isCombined = true
7 while isCombined do
8 isCombined← false
9 while |P ∗| > 0 do

10 currentPoset← P ∗[0]
11 Remove P ∗[0] in P ∗

12 hasPair ← false
13 for i← 0 to |P ∗| do
14 combinedPoset← CombinePoset(currentPoset, P ∗[i])
15 if combinedPoset ̸= null and

L(combinedPoset) = L(currentPoset) ∪ L(P ∗[i]) then
16 Ptree ← Ptree ∪ {combinedPoset}
17 Remove P ∗[i] in P ∗

18 hasPair ← true
19 isCombined← true
20 break

21 if hasPair = false then
22 Ptree ← Ptree ∪ currentPoset

23 P ∗ ← Ptree

24 Ptree ← ∅
25 return P ∗

Fig. 3. First Formulated Heuristic to the Tree Poset Cover Problem

(a, b) and (b, a) are cover pairs in P1 and P2, respectively, i.e., (a, b) ∈≺P1
and

(b, a) ∈≺P2
.

Theorem 1. [5] Given posets P1 = (V,<P1
) and P2 = (V,<P2

), if there exists
at most one pair {a, b}, a ̸= b such that (a, b) ∈≺P1

and (b, a) ∈≺P2
and <P1

\{(a, b)} =<P2
\{(b, a)}, then there exists a poset P3 = (V,<P3

) where <P3
=<P1

\{(a, b)} =<P2 \{(b, a)} and L(P3) = L(P1) ∪ L(P2).

Theorem 1 formalizes the first case for which we can combine posets. Addi-
tionally, we have observed that there are tree posets that can be combined even
if the number of binary relations of the tree posets being combined are unequal.

12             W. N. Coronel et al.



Algorithm 2: Combine Poset

1 <P3=<P1 − <P2

2 <P4=<P2 − <P1

3 if | <P1 | = | <P2 | then
4 if | <P3 | ̸= 1 or | <P4 | ̸= 1 then
5 return null
6 (a, b)←<P3

7 (c, d)←<P4

8 if a ̸= d or b ̸= c then
9 return null

10 <P←<P1 − <P3

11 else if | <P3 | > 1 and | <P4 | > 1 then
12 return null
13 else
14 if | <P3 | = 1 then
15 (a, b)←<P3

16 if (b, a) /∈<P4 then
17 return null
18 if <P1 \{(a, b)} ⊆<P2 \{(b, a)} then
19 <P=<P1 − <P3

20 else if | <P4 | = 1 then
21 (a, b)←<P4

22 if (b, a) /∈<P3 then
23 return null
24 if <P2 \{(a, b)} ⊆<P1 \{(b, a)} then
25 <P=<P2 − <P4

26 if <P is a Tree then
27 return P

Fig. 4. CombinePoset subroutine

Consider tree posets P4 = (V,<P4
) and P5 = (V,<P5

) where

<P4
= {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}

<P5
= {(1, 2), (1, 3), (1, 4), (2, 3), (4, 2), (4, 3)}

Let (a, b) = (2, 4). Notice that when we remove {(a, b)} from <P4
and {(b, a)}

from <P5
, <P4

becomes a subset of <P5
. From Lemma 1, it must be the case

that L(P5) ⊆ L(P4). Therefore, there must be a tree poset, say P6 = (V,<P6
)

where <P6
=<P4

\{(2, 4)} and L(P6) ⊇ L(P4) ∪ L(P5). We can also verify that
the linear extensions that P6 generates is equal to the union of L(P4) and L(P5).

L(P4) = {1234, 1243}
L(P5) = {1423}
L(P6) = {1234, 1243, 1423}

Indeed, L(P6) = L(P4) ∪ L(P5).

Two Heuristics for the Tree Poset Cover Problem             13



The caveat here is that there are instances where the resulting combined
tree poset generates a linear extension that is not contained in either of the two
posets being combined. Take for example the following posets P7 = (V,<P7) and
P8 = (V,<P8) where

<P7
= {(1, 2), (1, 3), (1, 4), (2, 3)}

<P8
= {(1, 2), (1, 3), (1, 4), (3, 2), (3, 4)}

Let (a, b) = (2, 3). When {(a, b)} is removed from <P7 , and {(b, a)} is removed
from <P8

, the former becomes a subset of the latter. Again, from Lemma 1, it
must be the case that L(P8) ⊆ L(P7). However, these two posets cannot be
combined into a single tree poset, say P9 = (V,<P9

) where <P9
=<P4

\{(2, 3)}
because P9 generates an extra linear extension 1432 that is not contained in
either L(P4) or L(P5). The following corollary formalizes the second case in
which there exists an opportunity to combine two tree posets into a single one.

Corollary 1. Given posets P1 = (V,<P1) and P2 = (V,<P2), if there exists
at most one pair {a, b}, a ̸= b, such that (a, b) ∈<P1 and (b, a) ∈<P2 , and <P1

\{(a, b)} ⊆<P2
\{(b, a)}, then there exists a poset P3 = (V,<P3

) where <P3
=<P1

\{(a, b)} and L(P3) ⊇ L(P1) ∪ L(P2).

Proof. Since <P3⊆<P1 and <P3⊆<P2 , by Lemma 1, it must be the case that
L(P1) ⊆ L(P3) and L(P2) ⊆ L(P3). Hence, L(P3) ⊇ L(P1) ∪ L(P2). ⊓⊔

Theorem 2. Heuristic 1 always returns a feasible solution to the Tree Poset
Cover Problem in O(m3n2), and is therefore classified as an approximation al-
gorithm.

Proof. The output of Heuristic 1 is the set P ∗. Lines 1 to 3 verify if the in-
put set of linear orders has a generating tree poset, that is, the aforementioned
lines check whether the input can be covered by a single tree poset or not. The
GEN TREE POSET function in line 1 represents the algorithm in [10]. However, if
the input does not have a generating tree poset, P ∗ will contain all the input lin-
ear orders as tree posets. From this, P ∗ is already a feasible solution to the Tree
Poset Cover Problem. To improve the solution, the algorithm iteratively com-
bines two tree posets into a single tree poset. Two tree posets can be combined
if the resulting poset is a tree poset that generates exactly the linear extensions
of the posets being combined. The function CombinePoset combines posets Pi

and Pj based on two conditions: (1) Theorem 1 [5]; and (2) Corollary 1. How-
ever, as explained earlier, there are instances in condition (2) where the resulting
poset generates an extra linear extension. To rectify this, we have added an extra
condition in line 15 in Algorithm 1 that checks whether the resulting combined
poset generates exactly the linear extensions of the two posets being combined or
not. Furthermore, the CombinePoset subroutine also ensures in line 26 that the
resulting poset is a tree poset. Hence, P ∗ is a feasible solution to the Tree Poset
Cover Problem. Furthermore, Heuristic 1 always returns a feasible solution, and
is considered to be an approximation algorithm.

14             W. N. Coronel et al.



Now, we determine the running time complexity of the algorithm. The Com-
binePoset subroutine in line 14 runs in O(n2) since | <P1

| = | <P2
| is O(n).

Determining if a pair is in <P1 or <P2 is just O(1) since the two posets can be
stored in a (0, 1)-Matrix. Moreover, the CombinePoset is called in three loops –
one for-loop and two outer while-loops. The inner for-loop runs in O(m) since
|P ∗| ∈ O(|Y |) and |Y | = m. On the one hand, the inner while-loop runs until P ∗

is empty, thus, in the worst case scenario it runs O(m). On the other hand, the
outer while-loop runs until isCombined is false. In the worst case, the loop runs
in O(m). Therefore, the running time complexity of the algorithm is O(m3n2).

⊓⊔

Heuristic 2. Heuristic 2 uses the One Tree Poset Cover Problem algorithm
in [10], which is aptly referred to as OneTreePoset in this section, where the
input is a set of linear orders Υ and the output is a tree poset that covers Υ , if
there exists any.

Figure 6 contains the pseudocode of the heuristic algorithm. It works by
iterating a modified version of the OneTreePoset in lines 2-21 until all the input
linear orders in Υ are covered. For each iteration h, we check if linear orders
L1 to Lh in Υ can be covered by a single tree poset. If the said linear orders
have a generating tree poset, we push it to Ptree and remove the covered linear
orders from Υ , so that in the next iteration, the algorithm will find a tree poset
that would only cover the remaining linear orders. The outermost loop will only
terminate once the cardinality of Υ drops to 0, that is, all linear orders in Υ have
already been covered.

To illustrate Algorithm 3, consider the following input:

Υ = {12345, 12354, 12435, 13245, 13254, 13524, 14253, 14523, 14532,
15342, 15423, 15432}

In the first iteration of the outermost for loop, h = 12 (see figure 5). With
this, the algorithm will try to construct a single tree poset that could possibly
cover linear orders L1 up to L12 via lines 9 to 17. Observe that the constructed
tree poset would be P = (V,≺P ) where ≺P= {(1, 2), (1, 3), (1, 4), (1, 5)}. Line
18 checks whether L(P ) is equal to the set containing L1 up to L12. Verify that
the linear extensions of the poset P is not equal to the set {L1, L2, . . . , L12}.
In the next iteration, h becomes 11. The constructed tree poset for linear or-
ders L1 to L11 would still be P . However, the linear extensions that P gen-
erates are still not equal to Υ [: 11]. The algorithm will continue on iterating
and finding a tree poset that would exactly cover a subset of Υ . At h = 6,
the linear orders that we are trying to construct a tree poset on are Υ =
{12345, 12354, 12435, 13245, 13254, 13524}. Verify that the constructed tree poset
for this set of linear orders will be P1 = (V,≺P1

) where ≺P1
= {(1, 2), (1, 3), (2, 4),

(3, 5)}. At this point, the set of linear extensions that P1 generates is equal to
linear orders L1 to L6. Hence, the algorithm will append poset P1 to the variable
Ptree and remove the linear orders in Υ that were already covered by the poset.
The algorithm then breaks out of the outermost for loop.

Two Heuristics for the Tree Poset Cover Problem             15



Since Υ still has linear orders contained in it, the algorithm will continue
on finding a tree poset that would cover each linear order. At this point, we
have h = 6 because there are 6 linear orders left in Υ . Specifically, this iter-
ation will work on Υ = {14253, 14523, 14532, 15342, 15423, 15432}. The algo-
rithm will eventually construct a tree poset P2 = (V,≺P2

) where ≺P2
= {(1, 4),

(1, 5), (4, 2), (5, 3)}. Verify that P2 covers the 6 remaining linear orders. In sum-
mary, Ptree = {P1, P2} where

≺P1
= {(1, 2), (1, 3), (2, 4), (3, 5)}

≺P2
= {(1, 4), (1, 5), (4, 2), (5, 3)}

Note that L(P1)∪L(P2) = Υ , hence the output of the algorithm for the given
input is a feasible solution, and optimal at that.

Fig. 5. Sample input for Heuristic 2

The following lemmas and theorem paved a way for devising Heuristic 2.

Lemma 3. [10] LOWER AND UPPER LIMITS OF AN ELEMENT RANK
IN A TREE POSET LINEAR EXTENSION. Given a tree poset P = (V,<P ),
and an element v ∈ V , if i = |ancestor(v, P )|+1 and j = i+|incomparable(v, P )|,
then i ≤ rank(v, l) ≤ j, ∀l ∈ L(P ).

Lemma 4. [10] Consider a tree poset P = (V,<P ) and v ∈ V . ∀k ∈ {i, i +
1, . . . , j} where i and j are the minimum and maximum ranks, respectively, of v
from Lemma 3, ∃l ∈ L(P ) such that rank(v, l) = k

Lemma 5. [10] Consider a tree poset P = (V,<P ), two distinct elements u, v ∈
V , and a linear extension l ∈ L(P ). Let i = |ancestor(v, P )| + 1 (min rank in
Lemma 3). If rank(v, l) = i and rank−1(i− 1, l) = u, then u ≺P v.

Lemma 6. [10] The number of cover relations of a tree poset P = (V,<P ) is
given by | ≺P | = |V | − 1.

16             W. N. Coronel et al.



Algorithm 3: Second Formulated Heuristic to the Tree Poset Cover
Problem (Heuristic 2)

Input : A set Υ = {L1, L2, ..., Lm} over V = {1, 2, ..., n}
Output: A set of tree posets where P = {P1, P2, ...Pk} such that

L(P ) = L(Y ) and k is minimum
1 Ptree ← ∅
2 while |Υ | > 0 do
3 for h← m to 1 do
4 minRank ← an array with size n and initialized to 0
5 numCoverRelation← 0
6 ≺P← ∅
7 for i← 2 to n do
8 for j ← 1 to h do
9 v2 ← rank−1(i, lj)

10 if minRank[v2] = 0 then
11 v1 ← rank−1(i− 1, lj)
12 ≺P←≺P ∪{(v1, v2)}
13 minRank[v2]← i
14 minRank[v1]← i− 1
15 numCoverRelation← numCoverRelation+ 1

16 if numCoverRelation = n− 1 then
17 break

18 if V ERIFY (P, Υ [: h]) then
19 Ptree ← Ptree ∪ P
20 Υ ← Υ [h :]
21 break

22 return Ptree

Fig. 6. Second Formulated Heuristic to the Tree Poset Cover Problem

Theorem 3. Heuristic 2 always returns a feasible solution to the Tree Poset
Cover Problem in O(m3n), and is therefore classified as an approximation algo-
rithm.

Proof. Heuristic 2 is basically just an iteration of a slightly modified version of
the OneTreePoset algorithm. The OneTreePoset algorithm guarantees that it
can generate a single tree poset for a set of linear orders that have a corresponding
generating tree poset. That is, given an input set of linear orders, say Υ , the
aforementioned algorithm can output a tree poset P such that L(P ) = Υ .

Now, what is left to show is that the modified version of
OneTreePoset algorithm in lines 2-21 is correct, i.e, L(P ∗) = Υ where P ∗ is the
output set of tree posets generated by the algorithm.

First, we show that OneTreePoset is correct. From Lemma 4, for any v2 ∈
V , ∃l ∈ L(P ) such that rank(v2, l) = i and i is minimum. From Lemma 5,
if rank(v2, l) is minimum, then its preceding adjacent element in l, say v1 =
rank−1(i − 1, l), covers v2, i.e., (v1, v2) ∈≺P . Furthermore, by definition of a

Two Heuristics for the Tree Poset Cover Problem             17



tree poset, every non-root element is covered by exactly one distinct element.
Thus, all the elements in the cover relation can be determined from the set of
linear orders. This is also verified in line 16 with the formula given in Lemma 6.

For every iteration k, Pk is constructed from linear orders L1 up to Lh of Υ . If
L(Pk) is equal to {L1, L2, . . . , Lh}, we append Pk to Ptree and the linear orders
are removed from Υ to ensure that the construction of new tree posets will only
be based on the remaining uncovered linear orders. Otherwise, we decrement
h by 1 and construct a new tree poset that covers the linear orders L1 to Lh.
This will go on until we arrive at a tree poset that generates exactly the same
linear extensions as {L1, L2, . . . , Lh}. Once we generate a tree poset that covers
a subset of Υ , the algorithm proceeds to the next iteration k + 1 to find a new
tree poset that would cover the remaining linear orders. The outermost loop will
then terminate once all linear orders in Υ are covered. Hence, Heuristic 2 always
returns a feasible solution, and is considered to be an approximation algorithm.

Finally, we determine the time complexity of Heuristic 2. The initialization
of array in line 4 runs in O(n)-time. The outer while loop contributes O(m)-time
to the complexity since |Υ | = O(|Υ |) and |Υ | = m. The for loop in line 3 runs in
O(m), while the for loops in lines 7 and 8 run in O(n) and O(m), respectively.
Lastly, the verification in line 18 runs in O(mn)-time [3,12]. Hence, the running
time complexity of the entire algorithm is O(m3n). ⊓⊔

4.2 Empirical Results

In this section, we discuss the analysis of Heuristic 1 and Heuristic 2 when sub-
jected to testing using the input files described in figure 2. It was demonstrated
in section 4.1 that Heuristic 1 and Heuristic 2 have been proven to be approx-
imation algorithms. Hence, it can be expected that for any input set of linear
orders, both heuristics can generate a set of tree posets that covers the input.

Figure 7 shows a summary of the approximation ratios of Heuristic 1 and
Heuristic 2 when tested against input file 1, file 2, file 3, and file 4. Note that
the calculated approximation ratios are based solely on empirical results and do
not account for the theoretical ratios.

Heuristic File 1 File 2 File 3 File 4

Heuristic 1 1.0 1.10 1.43 4.18

Heuristic 2 1.0 1.01 1.30 1.63

Fig. 7. Summary of the Approximation Ratio of each heuristic on each input file

Heuristic 1. Heuristic 1, when tested against file 1, was able to achieve an
approximation ratio of 1.0. To determine why this is the case, let us investigate
the structure of inputs contained in the file. All input linear orders in file 1
contain n = 3 vertices, which are sorted in increasing order. In a tree poset

18             W. N. Coronel et al.



P = (V,<P ) where |V | = 3, there can only be two structures depending on
the depth of the tree poset: (1) When depth(P ) = 1, the number of linear
extensions that P generates is two. Specifically, the two linear extensions that
it generates – L1 = (V,<L1) and L2 = (V,<L2) – differ only by a single pair in
terms of binary relation, i.e. there exists a pair (a, b) ∈<L1

and (b, a) ∈<L2
such

that <L1
\{(a, b)} =<L2

\{(b, a)}. By Theorem 1, the two linear extensions
can be combined into a single tree poset, say P3 = (V,<P3

) where <P3
=<L1

\{(a, b)} =<L2 \{(b, a)} and L(P3) = L1 ∪ L2; and (2) When depth(P ) = 2,
there is only one linear extension that P generates, and can trivially be covered
by a tree poset that is a linear order itself. Therefore, Heuristic 1 will always
return an optimal solution to the Tree Poset Cover Problem when the input
contains n = 3 vertices.

For input files 2 and 3, Heuristic 1 was able to achieve an approximation ratio
close to 1. The heuristic can successfully cover any input that can be covered
by a single tree poset through the use of the OneTreePoset algorithm [10].
However, for other inputs that cannot be covered by a single tree poset, there
are some traps that the heuristic fall into. In input file 2, one of the cases where
the heuristic was not able to return an optimal solution is when multiple tree
posets are needed to cover the input and one or more of the tree posets P
with depth(P ) = 1 is needed to cover the input. Generalizing, as the number
of vertices increased, it can be observed that when one of the tree posets P is
needed to cover the given input and depth(P ) < |V | − 2, the heuristic always
returns a feasible but not optimal solution. It is also important to note that as
the number of vertices increase, the structure of inputs also varies greatly. As a
result, when depth(P ) ≥ |V | − 2, the heuristic guarantees an optimal solution.
However, this is not the case for input files 3 and 4 due to the variation of
structure of inputs.

Aside from the depth of the tree posets needed to cover a given input, the
ordering of the input linear orders also affects the resulting output. There are
instances where some tree posets are better combined with other sets of tree
posets instead of the tree poset subsequent to them. However, once these tree
posets are already combined with other tree posets based on their ordering, they
can no longer be combined to a better set that will return an optimal solution.

Heuristic 2. Similar to Heuristic 1, Heuristic 2 achieved an approximation
ratio of 1.0 for File 1. This is due to the structure of inputs contained in the
file. As previously discussed, there are only two structures of tree posets when
|V | = 3: depth(P ) is valued 1 or 2. In either case, Heuristic 2 guarantees an
optimal solution since both cases can be covered by a single tree poset.

Heuristic 2 was able to achieve better approximation ratio values as com-
pared to Heuristic 1. One of the factors that causes feasible but not optimal
solutions for Heuristic 2 is the way linear orders are grouped and represented
into one poset. Similar to Heuristic 1, the ordering of the input linear orders
affects the output. Looking at a specific input, in figure 8, the linear extensions
covered by tree poset P1 are non-sequential when sorted alphanumerically. The

Two Heuristics for the Tree Poset Cover Problem             19



tree poset P1 from the optimal solution covers linear extensions 1234, 1243, and
1423. However, the heuristic cannot produce the same tree poset because it con-
sidered the subsequent linear extension 1342 instead of 1432. Since the heuristic
determined that the linear extension 1342 cannot be grouped with linear exten-
sions 1234 and 1243, the heuristic was not able to produce the same tree poset
P1. As a result, the heuristic produces a feasible but not optimal solution. If the
input had been arranged as Υ = {1234, 1243, 1423, 1342}, the heuristic would
have provided an optimal solution. Based on this observation, it can be deduced
that certain input sets may have optimal solutions that consist of non-sequential
linear extensions. However, Heuristic 2, which constructs tree posets based on
the sequential ordering of linear orders, is unable to consider such cases.

Fig. 8. Tree Posets with non-sequential linear extensions

Additionally, we have observed that there are input sets which have optimal
solutions that have intersecting linear extensions. Consider, for instance, the
input set of linear orders depicted in Figure 9, where the optimal solution consists
of two tree posets with an intersecting linear extension – 1324. Since Heuristic
2 removes linear orders from Υ that have already been covered by a tree poset,
the heuristic is guaranteed to always return a feasible, non-optimal solution to
input sets characterized by optimal solutions with intersecting linear extensions.

5 Conclusion

In this study, we have formulated two heuristics to the Tree Poset Cover Problem
– Heuristic 1 and Heuristic 2. We have also shown that for any input instance
of the problem, both algorithms always return a feasible solution in O(m3n2)

20             W. N. Coronel et al.



Fig. 9. Tree Posets with intersecting linear extension

and O(m3n), respectively. Hence, the two heuristics formulated can be classified
as approximation algorithms. Based on time complexity, Heuristic 2 is more
efficient. The first heuristic was developed based on the technique of combining
posets while the second heuristic was developed by utilizing an existing O(mn)-
time algorithm for the 1-Tree Poset Cover Problem [10].

Furthermore, we have tested each heuristic on four different input files and
determined how close the heuristic solution is to the optimal solution by getting
the approximation ratio based on the empirical data. Based on empirical results,
Heuristic 2 provides a better quality of solution than Heuristic 1 does. This su-
periority stems from the fact that Heuristic 2 adopts a top-down approach, iter-
atively constructing a tree poset using all linear orders, and iteratively removing
the last linear order if the constructed tree poset does not cover the current input
subset, whereas Heuristic 1 focuses only on improving the solution by combin-
ing compatible tree posets. In addition to an existing condition for combining
posets, we have identified another case where it is possible to combine two tree
posets into a single one.

Future studies on this topic can focus on finding the approximation ratio of
the two algorithms. The devised approximation algorithms, albeit polynomial,
can still be slow in practice. Thus, future work can also focus on enhancing the
efficiency of Heuristic 1 by addressing the component that currently requires
O(m3) time. One potential avenue for improvement is exploring the possibility
of combining posets in groups larger than two, as opposed to the conventional
approach of combining only two posets. This could potentially reduce the time

Two Heuristics for the Tree Poset Cover Problem             21



complexity and enhance the overall performance of the heuristic. The efficiency of
Heuristic 2 can also be improved by addressing the same component that incurs
O(m3) time and determining if it can be efficiently be done without iteratively
constructing a tree poset that could potentially cover a subset of the input.

6 Acknowledgments

Willie N. Coronel Jr would like to express heartfelt gratitude to the Department
of Science and Technology - Science Education Institute (DOST-SEI) for their
unwavering support throughout this research study.

References

1. Heath, L. S., Nema, A. K. (2013). The poset cover problem.
2. Rayward-Smith, Vic Osman, Ibrahim Reeves, Colin Simth, G.. (1996). Modern

Heuristic Search Methods.
3. Fernandez, P. (2008). On the complexities of the block sorting and poset cover

problems (Doctoral dissertation, PhD thesis, Ateneo de Manila University).
4. Hromkovič, J. (2013). Algorithmics for hard problems: introduction to combinato-

rial optimization, randomization, approximation, and heuristics. Springer Science
& Business Media.

5. Ordanel, I., Adorna, H. (2017). Two Approximation Algorithms for the Poset
Cover Problem. In Proceedings of the 17th Philippine Computing Science Congress
(PCSC 2017) (pp. 179–184).

6. Ordanel, I., Adorna, H. (2018). Optimal Deterministic Algorithm for Hammock
(2, 2)-Poset Cover Problem. Philipp J Sci, 147(7), 733-748.

7. Ordanel, I., Adorna, H., Clemente, J. (2019). Approximation of two simple varia-
tions of the Poset Cover Problem. In Theory and Practice of Computation: Pro-
ceedings of Workshop on Computation: Theory and Practice WCTP2017 (pp. 1-
14).

8. Ordanel, I., Fernandez Jr, P., Adorna, H. (2019). On Finding Two Posets that
Cover Given Linear Orders. Algorithms, 12(10), 219.

9. Ordanel, I., Fernandez Jr, P., Adorna, H. (2021). A polynomial time algorithm for
the 2-Poset Cover Problem. Information Processing Letters, 169, 106106.

10. Ordanel, I. D., Fernandez, P. L. (2011). Reconstructing a Tree Poset from Linear
Extensions. Philippine Information Technology Journal, 4(2).

11. Sanchez, G. A., Fernandez, P. L., Vergara, J. P. (2014). Some heuristics for the
2-poset cover problem. Philippine Computing Journal, 9, 26-32.

12. Tan, M. J. (2010). Polynomial-time solutions to three poset cover problem varia-
tions (Doctoral dissertation, Ateneo de Manila University).

13. Tahami, H., Fakhravar, H. (2022). A literature review on combining heuristics and
exact algorithms in combinatorial optimization. European Journal of Information
Technologies and Computer Science, 2(2), 6-12.

22             W. N. Coronel et al.



Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Two Heuristics for the Tree Poset Cover Problem             23

http://creativecommons.org/licenses/by-nc/4.0/

	TwoHeuristicsfortheTreePosetCoverProblem



