
 

 

  

 

 

 
© The Author(s) 2024
J. Caro et al. (eds.), Proceedings of the Workshop on Computation: Theory and Practice (WCTP 2023), Atlantis
Highlights in Computer Sciences 20,
https://doi.org/10.2991/978-94-6463-388-7_20

Design and Implementation of a Parallel PTAS
for Finding Structural Motifs on Graphics

Processing Units (GPUs)

Julia Ysobel Pineda, Andrew Sopungco, and Jhoirene Clemente, PhD
jypineda@up.edu.ph, assopungco@up.edu.ph, jbclemente@up.edu.ph

Algorithms and Complexity lab
Department of Computer Science

University of the Philippines Diliman

Abstract. Protein structural motifs are recurring patterns in a set of
tertiary protein structures in the 3D form. These motifs often play cru-
cial roles in protein function, stability, and interactions. The problem is
NP-hard, but a polynomial-time approximation scheme (PTAS) offers
efficient solutions with some trade-offs. Previous work improved per-
formance by optimizing subroutines and employing parallelization. The
current study investigates further improvements using a two-level paral-
lelization approach, offloading computationally-intensive SVD operations
to GPUs while keeping the rest on CPU. The comparison between CPU
and GPU implementations is based on speedup and parallel efficiency
metrics. While the trends in results are similar, the GPU implementa-
tion exhibits significantly delayed execution times. The study provides
insights into the potential benefits of the two-level parallelization ap-
proach and offers data-driven suggestions for further advancements in
the solution. Overall, it aims to contribute to computational optimization
in bioinformatics and explore novel methods for solving the structural
motif finding problem.
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1 Introduction

1.1 (R,C)-Compact Structural Motif Finding Problem

A prominent computational problem under bioinformatics is the structural motif
finding problem, which involves identifying important patterns and functional
elements in 3D protein structures in order to gain a better understanding of the
relations between their origins, functions, and projections. By identifying motifs,
we are able to provide insights into protein folding, stability, interactions, and
functional properties.

The (R,C)-Compact Structural Motif Finding Problem as discussed in Qian
(2007) [4], is a specialized approach to identifying compact structural motifs,
especially for small and well defined ones, which is defined as follows:
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Definition 1 ((R,C)-compact motif). An (R,C)-compact motif is bounded
by the minimal ball B with a radius at most R, and at most C residues in this
ball do not belong to this motif. This ball B is referred to as the containing
ball.

Definition 2 ((R,C)-Compact Consensus Structural Motif problem).
The (R,C)-CCSM problem states that given n protein structures P1, P2, · · · , Pn,
and an integer ℓ, find an (R,C)-compact motif ui of length ℓ along with rigid
transformation τi for each Pi and a consensus structure of ℓ 3D points: q =
(q1, q2, · · · , qℓ), where qi is a point in 3D, minimizing distance function∑n

i=1 d(q, τi(ui)).

The algorithm performs rigid transformations, or rotations and translations,
on the chosen motifs, and measures an objective function that measures the
similarity in structure. Returning the combinations with the minimal distance
then allows us to identify the representative segment.

1.2 Research Problem and Objectives

The structural motif finding problem is an NP-hard problem that has a PTAS
[4]. While this provides a sufficient solution to the problem, it is still impractical
as it experiences trade-offs between speed and accuracy.

Brocka and Yap (2022) [2] successfully parallelized the non-data dependent
subroutines of the algorithm and achieved a notable speedup of up to 5 times
while retaining the quality of the solution. Recognizing the potential benefits of
parallelizing the PTAS approach, we are motivated to explore further enhance-
ments. Our research seeks to extend their work by introducing an additional step
to the existing parallel PTAS implementation on CPUs by leveraging the com-
putational capabilities of Graphics Processing Units (GPUs), in order to achieve
even faster execution times while maintaining the same solution quality. This
research provides valuable insights into the improvement in time-complexity of
the PTAS, which is crucial for evaluating its scalability and performance.

Specifically in the context of the structural motif finding problem, it studies
and analyzes a new method that could result in well-approximated solutions
computed for in a shorter amount of time as compared to previous methods.

Specific objectives involve designing a parallel implementation for the algo-
rithm on GPUs, measuring speedup and parallel efficiency, and comparing CPU
and GPU performance.

In doing so, the GPU implementation will be tested on the same dataset used
in the previous research and shall be compared in terms of speedup and parallel
efficiency, in order to establish a valid comparison between the sequential and
CPU parallel algorithms.

The datasets utilized in the implementation and testing of the CPU parallel
PTAS from Brocka and Yap [2] served as a consistent baseline for comparing
the two parallel implementations. One of these datasets specifically focuses on
Conantokin peptides and is obtained from PepSquad (2017) [3], the primary ref-
erence for the algorithm employed. It is worth noting that this dataset comprises
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a refined or sanitized version of the original data. For a comprehensive analysis,
we will also acquire the complete dataset from the Protein Data Bank (PDB)
maintained by the Research Collaboratory for Structural Bioinformatics (RCSB
PDB).

This study aimed to explore the algorithm’s capabilities and limitations under
different conditions through a processor test, sample test, and motif length test.

2 Review of Related Literature

2.1 Parallel PTAS for Finding Compact Structural Motifs
(PepSquad, 2017; Brocka & Yap, 2022)

Kabsch’s algorithm (Algorithm 1) is a method to calculate the optimal rotation
matrix that minimizes the root mean square deviation (rMSD) of two sets of
points [9]. Since this is an integral subroutine of Qian’s (R,C)-CCSM algorithm
[4], and has been shown to be an efficient method for finding the optimal ro-
tation matrix, a revised algorithm (Algorithm 2) is used in the CPU-parallel
implementation of the root-finding algorithm.

Brocka and Yap [2] focused on the parallelization of the algorithm in order
to maximize the resources used and eventually speeding up the execution itself,
improving the runtime while keeping the same solution quality.

Using the following high-level steps of the PepSquad algorithm (Algorithm
2), Figure 1 shows the data dependency graph which visualizes the steps that
can be implemented in parallel. Numbering in parentheses are based on Qian’s
(R,C)-Compact Motif Finding Algorithm [4] and used in the proposed approach’s
new data dependency graph (Figure 2).

1. ENTRY
2. Fix P1, translate other proteins to make centers coincide (1)
3. Select a length-l compact motif u1, u2, · · · , ur where ui is a motif of some Pj

and x is the total samples (2)
4. Select a transformation τ2, τ3, · · · , τr (3)
5. Find the median for each discrete rigid transformation u (3a)
6. Find the compact motif that minimizes the cMSD distance vi where i =

1, 2, · · · , n (3b)
7. Compute the objective function c(u) (3c)
8. OUTPUT

Of these steps, steps 3, 4, 6, and 7 would be implemented in parallel. Partic-
ularly, they are the steps involving the following operations:

1. Selecting a compact motif from the protein,
2. Selecting a transformation,
3. Finding the compact motif that minimized the rMSD distance, and
4. Computing the objective function value.

Through Python’s multiprocessing library, Brocka and Yap (2022) [2] were
able to have the parallelizable processes running simultaneously on multiple CPU
cores.
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Algorithm 1 Kabsch Algorithm

1: procedure Kabsch(P1,P2)
2: Align the centroids of P1 and P2 to the origin.
3: Calculate matrix R s.t. its elements, ri,j = ΣnwnP2niP2nj

4: A=RTR
5: Calculate eigenpairs , (mk,vk), where mk’s are the eigenvalues and vk’s

are the eigenvectors.
6: Sort the eigenpairs s.t. m1 ≥ m2 ≥ m3

7: Set v3 = v1 × v2
8: Calculate ck = Rvk. Compute b1 and b2 by normalizing c1 and c2
9: Set b3 = b1 × b2

10: U = uij = Σkbkiakj
11: Compute RMSD
12: return U
13: end procedure

Algorithm 2 PepSquad Algorithm

1: procedure PepSquad(P1,P2, · · · Pn, ℓ, C, r, R)
2: Fix P1

3: for all Pi in P2,P3, · · · Pn do
4: Translate Pi to coincide its centroid with P1

5: end for
6: for all r length-ℓ(R,C)-compact motif u1, u2, · · · , ui is a substructure of

some Pj do
7: for all ui ∈ u2, · · · , ur do
8: τi = Kabsch(u1, ui)
9: end for

10: u← 1

r
(u1 + τ2(u2) + · · ·+ τr(ur))

11: for i in 1...n do
12: Find (R,C)-compact motif of length ℓ, vi of Pi and the optimal rigid

transformation τi
′
that minimizes d(u, τi

′
(vi) using Kabsch’s Algo-

rithm.
13: c(u)← Σn

i=1d(u, τi
′
(vi))

14: end for
15: end for
16: return u, vi, τi

′
that minimizes c(u)

17: end procedure
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Fig. 1. Brocka & Yap (2022)’s Data Dependency Graph

2.2 On GPUs

GPUs, when compared to CPUs appear to be more fit for tasks designed to
be run in parallel. This is evident when examining the basic CPU and GPU
architecture.

As the CPU is more concerned with control and communication between
hardware and software, we see that only a few processing/compute units are
present, with a majority of the die allocated to cache. On the other hand, GPUs,
since they are not concerned with the main control, have more compute units
present, each with their own cache and control.

Gupta (2011) [7], among other studies, have been able to show that GPU
parallel implementations can perform better than CPU multiprocessing. They
showed it in an Application on Natural Language Processing, a field which also
sees great help from GPU implementations of their algorithms.

Given what we know about the structural motif finding problem, as well as
the significant amount of speedup brought about by introducing parallelization of
the PTAS, implementing its algorithm on GPUs may give us promising results.
By implementing our parallel algorithm with GPUs, we may achieve an even
higher speedup given its parallel processing capabilities.
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2.3 Computing RMSD using GPUs (Barrios, 2021)

Barrios (2021) [1] implemented Kabsch’s algorithm (Algorithm 1) for computing
rMSD using NVIDIA CUDA, mainly hoping to maximize the representation
of the input in Kabsch’s algorithm as well as to compute the values needed
more efficiently. Since Kabsch’s algorithm makes use of matrices and matrix
multiplication repeatedly, they can be better represented by GPUs, which are
designed to be able to handle 3D or matrix representations. This is very relevant
to our main objective, which is to implement a structural motif finding algorithm
that employs Kabsch’s algorithm as a subroutine in GPUs. Referencing this
study, we can implement a more complete version of Kabsch calculations (since
this did not implement the square root of a matrix) and implement it as a part
of the entire algorithm.

3 Parallel PTAS on GPUs

3.1 Parallel Algorithm

The previous CPU parallelization study implemented the entirety of the motif
finding algorithm using Python’s multithreading library. The approach taken by
the CPU parallel scheme uses multiple threads to implement the non-dependent
points of the algorithm. They applied these on the 3 identified parallelizable
parts of the algorithm as seen in Figure 1:

1. Selecting compact motifs (Step 2)

2. Selecting transformations (Step 3)

3. Computing for the optimal transformations (Step 3b-3c)

Thus, a two-level approach was adopted: the SVD segment is offloaded to
the GPU, while the remaining sections of the algorithm are maintained in par-
allel execution on the CPU. The code responsible for the SVD operation was
transferred to the GPU utilizing the cuSOLVER library provided by NVIDIA,
thereby enabling efficient and effective execution on the GPU architecture.

In the two-level parallelization scheme, steps 4 and 6 (which involve Kabsch’s
algorithm and are hereby referred to as steps 3 and 3b in Figure 2) are executed
in GPU due to their computational intensity. Instead of parallelizing the entire
algorithm, the focus was on the singular value decomposition (SVD) operation,
which resides within a subroutine involving matrix multiplication with superpo-
sition and is a crucial process for factoring a matrix into three distinct matrices,
providing insights into their linear transformations.
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Fig. 2. Data Dependency Graph of the Two-Level Approach

3.2 Theoretical Analysis

To assess the performance of the CPU-GPU parallel implementation, the results
are gauged based on measures of speedup and parallel efficiency.

Definition 3 (Speedup). Speedup measures the ratio of performance of a pro-
cess with and without the improvement, which in this case is the running time
using CPUs and GPUs, allowing us to see the relative improvement generated
by the usage of GPUs.

speedup =
cpu running time

cpu-gpu running time

Definition 4 (Parallel efficiency). Parallel efficiency shall be measured in
relation to the number of processors used by dividing the obtained speedup and
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number of processors used. This will allow us to see how much computing capacity
is actually used by the implementation.

parallel efficiency =
speedup

number of processors

The CPU parallel implementation improved the overall performance of the
sequential algorithm by reducing the time complexity by a factor of the number of
processors used. By offloading a subroutine to the GPU, the number of processors
is magnified, resulting in a greater improvement in time complexity. The original
algorithm has a time complexity of O(m2n+ n3), where n represents the size of
the matrix [6], and is dominated by the computationally heavy SVD operation,
which can be accelerated on the GPU. However, data transfer between the CPU
and GPU introduces additional overhead, and the algorithm’s efficiency depends
on the balance between GPU parallelization speedup and data transfer overhead.

3.3 Empirical Results

All tests were conducted on Google Colab, with the following CPU and GPU
hardware specifications:

CPU: Intel Xeon CPU
(2.20 GHz), 8 Cores

12 GB RAM

GPU: NVIDIA T4 (CUDA ver 12.0)
2560 CUDA Cores
320 Tensor Cores

16 GB GDDR6 VRAM

The relevant parameters modified during testing were the following:

1. Sample size (r)
2. Processor size (num processors)
3. Motif length (BENCHMARK LENGTH )
4. Maximum ball size (b)

Each test was done on both the CPU parallel and CPU-GPU parallel im-
plementations, ensuring consistency by using the same parameters across both
approaches.

Sample Tests The research aimed to investigate the algorithm’s capability to
handle larger datasets by increasing the number of samples. The Conantokin
dataset, consisting of 1,521 samples, was used for the experiments, varying the
sample size from 2 to 5. As expected, larger sample sizes led to longer test dura-
tions. However, the CPU-GPU implementation showed inefficiency in handling
tests with larger sample sizes, especially when the sample size (r) exceeded 3.
The average completion time for the CPU-GPU parallel implementation was
approximately 5 times longer than the CPU parallel implementation (Figure 3).
Specifically, the SVD operation, offloaded to the GPU, took 1000-4000 times
longer to execute compared to the CPU parallel implementation (Figure 4).
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Fig. 3. Comparison of Completion Time for Increasing r Value
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Fig. 4. Comparison of Average SVD Time for Increasing r Value

Processor Tests The study also investigated the system’s ability to handle
larger computational loads by distributing the workload among multiple proces-
sors. The test measured the speedup and parallel efficiency achieved from this
distribution, both before and after integrating the GPU. The experiments used
the Conantokin dataset with 1,521 samples, but only less than 600 (40% or less
of the samples) were evaluated. The results showed no significant trend in the
execution time within this limited sample range (Figure 5).
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Fig. 5. Comparison of Completion Time for Increasing Number of Processors

Fig. 6. Comparison of Completion Time for Increasing Number of Processors Using
The Full Conantokin Dataset
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Motif Length Tests The study conducted additional processor tests (Fig-
ure 6) using the complete Conantokin dataset with 173,085 samples (BENCH-
MARK LENGTH = 3), similar to the approach of [2]. The results indicated a
notable improvement when transitioning from 1 to 5 processors, with a consistent
trend between 10 and 15 processors. However, the CPU-GPU implementation
had considerably longer execution times, which led to the inability to complete
the remaining tests within the allocated time frame.

Based on our observations from the initial sparse sample and processor tests,
we conducted additional experiments to evaluate the algorithm’s performance
with varying motif lengths. Using the restricted Conantokin dataset, we tested
motif lengths from 1 to 7. Comparing the runtime of the CPU and GPU imple-
mentations, the CPU-GPU parallel approach still took approximately 5 times
longer than the strictly-CPU parallel implementation. As we increased the motif
length, fewer samples fit the constraints of the (R,C)-compact structural motif
finding algorithm, resulting in decreased overall runtime (Figure 7).

Fig. 7. Comparison of Motif Length and Runtime for both CPU and GPU

However, when examining the individual calls to the SVD function, the time
required to perform the SVD operations did not exhibit significant improve-
ments with increasing motif lengths. Instead, it remained relatively consistent
throughout the testing and decreased only when the number of evaluated sam-
ples decreased (Figure 9).

Upon further analysis of the runtime, we discovered that data transfer had
a substantial impact. On average, each call to the SVD function required 0.13
seconds to transfer data between the CPU and GPU, which accounted for ap-
proximately one-third of the time required to execute the SVD subroutine on
the GPU (Figure 10).
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Fig. 8. Comparison of Evaluated Samples and Total Runtime for both CPU and GPU

Fig. 9. Average SVD Time for both CPU and GPU

Fig. 10. Average SVD Time for both CPU and GPU, including Transfer Time per call
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Speedup and Parallel Efficiency Comparing the overall execution time of the
CPU parallel and CPU-GPU parallel implementations, an approximate speedup
of 0.2 was attained. More detailed results can be seen in Tables 1 and 2,

Table 1. Completion Time Speedup

Parameter Value Speedup Average Speedup

r
2
3

0.1552607937
0.2254195354

0.1903

BENCHMARK LENGTH

1
2
3
4
5
6
7

0.1979660559
0.2031934411
0.2021070214
0.1908049001
0.200978614
0.1667725823
0.0949347671

0.1795367688

Table 2. SVD Time Speedup

Parameter Value Speedup Average Speedup

r
2
3

0.000931075589
0.000206634649

0.000568855119

BENCHMARK LENGTH

1
2
3
4
5
6
7

0.0001036505625
0.0004974319093
0.0001680972508
0.0001969677823
0.0001480508308
0.0001602075774
0.001146433981

0.0003458342706

In terms of parallel efficiency, no conclusive results could be attained due to
the limitations in testing. Comparing the individual runtimes of processor tests
done on the restrictive dataset, which resulted to no apparent trend in results,
Table 3 shows values for speedup and parallel efficiency attained.

Comparison and Analysis Overall, the results showed a similar trend to those
attained by Brocka and Yap [2]. However, the two-level parallelization scheme
resulted in runtimes that were 5x longer than the CPU parallel implementation,
if using the same parameters. Consequently, resource constraints did not allow
for the testing of the GPU code on larger samples.

In general, GPUs utilize a larger number of computing cores compared to
CPUs, allowing for effective parallel processing. When incorporating GPUs into
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Table 3. Speedup and Parallel Efficiency on Processor Test

No. of Processors CPU GPU Speedup Parallel Efficiency
1 6.8749 32.0213 0.2146977168 0.2146977168
3 5.39655 26.6909 0.2021868877 0.06739562922
5 5.9499 30.46045 0.1953319797 0.03906639593
7 5.19925 30.9804 0.1678238499 0.0239748357
9 6.4091 33.8557 0.1893063797 0.02103404219
11 5.60785 36.64435 0.153034506 0.01391222782
13 6.5239 37.129 0.1757090145 0.01351607804
15 5.2729 43.03905 0.1225143213 0.00816762142
17 6.40855 50.3756 0.1272153582 0.007483256366

the parallelized CPU code, the combined computing power of both CPU and
GPU cores is maximized. However, as the number of computing units increases,
the runtime scales up accordingly, resulting in an amplification of the observed
results.

GPUs are well-suited for parallel computing due to their numerous CUDA
cores, which are smaller and less powerful individually but are available in greater
quantities, allowing for handling more concurrent threads. However, for smaller
inputs that do not require as many processors, the benefits of GPU parallelization
may not outweigh the disadvantages.

4 Conclusion and Recommendations

The study’s findings indicate that further investigation is needed to reach con-
clusive results. While the data collected provides valuable insights into the in-
corporation of GPUs and their impact on speedup and parallel efficiency, it does
not offer a definitive answer to the research question. This opens up opportu-
nities for future research to delve deeper into the topic and explore additional
factors that can contribute to a more conclusive understanding.

Improvements in code design are crucial to efficiently distribute the work-
load across available CPU and GPU cores, ensuring proper task assignment
and synchronization. Minimizing data transfer between CPU and GPU, while
considering system overhead, can further enhance computational efficiency. Al-
though no single approach for efficient SVD on GPUs was identified, potential
strategies include leveraging GPU parallelizing libraries like PyTorch and Ten-
sorFlow, or adopting scheduling strategies like batch processing to maximize
GPU resources. Resource sharing in Google Colab may limit full utilization of
GPU power. Future research could explore specialized or more powerful GPU
hardware to accelerate testing and evaluate performance differences.

Despite disparities in GPU and CPU code performance, the research jour-
ney has provided valuable insights that, through further experimentation and
optimization, could lead to desired algorithm improvements.
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