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Abstract. Two minimum clique problems are considered in this study along with
some of their important subclasses. The first is the Minimum Edge-Weighted
Clique Problem (MIN-EWCP), which is the problem of finding the clique of or-
dermwith the least total weight in a complete edge-weighted graphG. The other
one is the Minimum Weighted t-partite Clique Problem (MWtCP), which is the
problem of finding the t-clique with the least total weight in a complete edge-
weighted t-partite graphG. The results show that the (1, 2)-metric MWtCP, the
σ-metric MWtCP, and the metric MWtCP are NP-hard. The general MWtCP
is inapproximable. The ultrametric variants of MWtCP and MIN-EWCP, on the
other hand, are approximable with a performance guarantee of 3

2
. These prob-

lems were explored mainly because of their potential as a computational models
of the biological problem of finding approximate gene clusters as is shown in
some related studies, particularly the Approximate Gene Cluster Discovery Prob-
lem (AGCDP ). Among the results shown in this paper is that AGCDP , when
w+ = w−, is in APX.
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1 Introduction

Combinatorial optimization is a subfield of mathematical optimization that consists of
finding an optimal object from a finite set of alternative objects with respect to some
criterion. An example of such problems is that of searching for a discrete structure of
extremal property in a given graph. Paths, cycles, spanning trees, matchings, and cliques
are just some examples of such structures. While some of these combinatorial problems
are polynomially solvable, such as the minimum spanning tree problem [10], unfor-
tunately, many are intractable. Among such problems is the Weighted Clique Problem
(WCP), which is the problem of finding a clique of a given order in a complete weighted
graph, that is of extremal weight, measured as the sum of weights of the edges included
in the said clique. Up to the most recent years, much is still being explored on the WCP
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and its variants [13, 11, 8, 6, 2]. These problems are still extensively studied because of
their important applications in different domains.

In this paper we explore the approximability properties of two clique-finding min-
imization problems. One of them is the Minimum Edge-Weighted Clique Problem
(MIN-EWCP), which is the problem of finding the clique of ordermwith the least total
weight in a complete edge-weighted graph G. The other one is the Minimum Weighted
t-partite Clique Problem (MWtCP), which is the problem of finding the t-clique with
the least total weight in a complete edge-weighted t-partite graph G.

These problems were explored because of their potential as a computational models
of the biological problem of finding approximate gene clusters[5, 7, 14–17]. Gene clus-
ters are sets of closely related genes which are arranged in close proximity with each
other, even after genome sequences have evolved in multiple events such as gene du-
plication and gene loss[9]. This problem has been formalized as the Approximate Gene
Cluster Discovery Problem (AGCDP) [12].

This paper is organized as follow. The edge-weighted clique problems are defined
in Section 2. Section 3 presents the results on the approximability properties of the
problems and of the AGCDP. Finally, Section 4 presents our conclusion.

2 Some Edge-Weighted Clique Problems

This section discusses the two clique-finding problems highlighted in this study, namely,
the Minimum Weighted t-partite Clique Problem (MWtCP) and the Minimum Edge-
Weighted Clique Problem (MIN-EWCP). Both problems involve graphs where the
edges have weights. The terms weight and cost are interchangeably used in this study.

2.1 Minimum Weighted t-partite Clique Problem

Given a positive integer t, where 1 ≤ t ≤ n, a t-partite graph is a graph Gt = (V t, Et)
whose vertex set V t can be partitioned into t different independent sets {V1, V2, . . . Vt}.
Thus, V t = V1∪V2∪. . .∪Vt and all the vertices in a partition Vi are non-adjacent for all
i ∈ I+ where 1 ≤ i ≤ t. A complete edge-weighted t-partite graph is a t-partite graph
G = (V,E, c), where cij > 0, in which there is an edge between every pair of vertices
from each pair of distinct independent sets. In this study, each partition or independent
set has m vertices. Thus, | V |= mt, making the graph G m(t − 1)-regular. Using the
Handshaking Lemma, the total number of edges in the graph G, is | E |= m

(
t
2

)
[15].

Provided a weight for each edge (e.g., defined as a function w : E → N), a main
problem in graph theory lies in finding a clique with maximum or minimum weight. The
MINIMUM WEIGHTED t-PARTITE CLIQUE PROBLEM (MWtCP) [15, 17] was defined
as follows:

Definition 1 (The Minimum Weighted t-partite Clique Problem (MWtCP) [17]). .
Input: a complete edge-weighted t-partite graph G = (V,E,w), where wij ≥ 0 and
| V |= n.
Question: What is the minimum weighted complete subgraph (clique) of order t in G?
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A polynomial-time approximation algorithm for MWtCP, Algorithm 1, was also
presented by Solano et. al in [17].

Input: A complete weighted t-partite graph G = ((V,E), w)
Output: a *minimum* weighted t-Clique
1. For every node x in G find the minimum weighted t− 1-star with x as the hub
or center vertex, by selecting the least-weighted edge from x to each of the
remaining t− 1 partitions
2. Find the minimum weighted t-star from the n candidate t− 1-stars in #1
3. Return the t-clique formed from the vertex set of the t− 1-star in #2

Algorithm 1: Minimum Weighted t-1 Star Algorithm for MWtCP

2.2 Minimum Edge-Weighted Clique Problem

A complete edge-weighted graph G = (V,E, c), where cij > 0, is a graph where
all the n vertices are adjacent to each other. For every vertex vi of a complete graph,
deg(vi) = n− 1 and the size of G is

(
n
2

)
.

Eremin et. al., in [6], presented a general combinatorial problem called the Weighted
Clique Problem (WCP).

Definition 2 (Weighted Clique Problem (WCP)[6]). .
Input: a complete weighted undirected graph G = (V,E, a, c), where weight functions
a : V → Q and c : E → Q, define the vertex weights and the edge weights respectively,
and a positive integer m.
Question: What is the minimum(maximum) weighted complete subgraph (clique) of the
graph G of order m?

Here, the sum Σv∈V av +Σe∈Ece is called the weight of the graph G. A variant of
WCP was further defined in [6] as the minimum edge-weighted clique problem.

Definition 3 (Minimum Edge-Weighted Clique Problem (MIN-EWCP)[6]). .
Input: a complete weighted undirected graph G = (V,E, a, c), where ai ≥ 0 and
cij ≥ 0, and a positive integer m
Question: What is the minimum weighted complete subgraph (clique) of the graph G
of order m?

It was shown that this problem is not in APX, or the class of NP optimization prob-
lems that allow polynomial-time approximation algorithms with approximation ratio
bounded by a constant.

A graph-theoretic version of Eremin’s solution to MIN-EWCP [6] using the Rows
Subset of Symmetric Matrix Problem(RSSM) Problem is Algorithm 2.
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Input: A complete graph G = ((V,E), w)
Output: a *minimum* weighted m-Clique
1. For every node x find the minimum weighted m− 1-star with x as the hub or center
vertex
2. Find the minimum weighted m− 1-star from the n candidate m− 1-stars in #1
3. Return the m-clique formed from the vertex set of the m− 1-star in #2

Algorithm 2: Minimum Weighted m− 1 Star Algorithm for MIN-EWCP

3 Some Hardness and Approximability Results

3.1 Results on Edge-Weighted Clique Problems

Some variants of edge-weighted clique problems are introduced in this section along
with some results on the computational complexity of the variants of the problems.
These variants are based on the instance of the edge weights of the input graph G. Re-
call that a complete edge-weighted t-partite graph G = (V,E,w), where wij ≥ 0 and
| V |= n. A case of MWtCP is called metric if all edge weights in G follow the tri-
angle inequality, i.e., for any distinct vertices a, b, c ∈ V , w(a, b) ≤ w(b, c) + w(a, c),
where w(a, b) is the weight of the edge (a, b). Similarly, a case of MWtCP is called
ultrametric if all edge weights inG follow the rule: for any distinct vertices a, b, c,∈ V ,
w(a, b) = max(w(b, c), w(a, c)). Moreover, we refer to a case MWtCP as σ-metric if
for any distinct vertices a, b, c ∈ V and σ ∈ Q, w(a, b) ≤ σ(w(b, c)+w(a, c)). Finally,
we refer to a case MWtCP as (1, 2)-metric MWtCP if for every edge e ∈ E,w(e) ∈
(1, 2).

In [17] it was shown that the general case of MWtCP is NP-hard. This was done
by showing that there is a reduction from the Clique Problem, to MWtCP. The Clique
Problem is defined as follows :

Definition 4 (Clique Problem). .
Input: a graph G = (V,E), where | V |= n and an integer t.
Question: Does there exist a clique Q of order t in G, i.e., V (Q) = Vc where Vc ⊆ V ,
| Vc |= t and ∀u, v ∈ Vc, (u, v) ∈ E ?

Part of that proof is showing that given any instance G = ((V,E), t) of the CLIQUE
PROBLEM where V = {v1, v2, v3, . . . , vn}, a corresponding instanceG′ = (V ′, E′, w)
of MWtCP can be constructed in polynomial time. We now show that given any in-
stance G = ((V,E), t) of the CLIQUE PROBLEM as defined above, may also be used to
construct a corresponding instance in (1, 2)-metric MWtCP.

Lemma 1. An instance G′ = (V ′, E′, w) of the (1, 2)-metric MWtCP may be con-
structed from an instance G = ((V,E), t) of CLIQUE PROBLEM in polynomial time.

Proof. We define a graph G′ = (V ′, E′). We let the set of vertices V ′ = V ′1 ∪ V ′2 ∪
V ′3 ∪ . . . V ′t , where for 1 ≤ i ≤ t, and there is a copy of each vertex of V in V ′i
where for every i, V ′i = {vi1, . . . , vin}. As for the edge set, we let E′ = (vxi , v

y
j ) where
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(vi, vj) ∈ E such that ∀1 ≤ x, y ≤ t and x 6= y. Essentially, for each edge (vi, vj) ∈ E,
a complete bipartite graph Kt,t is built using the following two disjoint sets of vertices
{v1i , v2i , . . . vti} and {v1j , v2j , . . . vtj} and then remove all the edges {(vxi , vxj ) | 1 ≤ x ≤
t}.

We then set assign edge weights w(e) = 1 for all such edges e currently in E′. We
then define another edge set E∗ where E∗ = {(vxi , v

y
j ), | ∀1 ≤ x < y ≤ t; 1 ≤ i ≤

j ≤ n; (vxi , v
y
j ) 6∈ E)}, and assign each edge e ∈ E∗ a weight w(e) = 2. We then add

edges to E′ to come up with a complete t-partite graph, i.e., E′ = E′ ∪ E∗. It is clear
that the constructed graph is an instance of (1, 2)-metric MWtCP and can be done in
polynomial time. This is illustrated in Figure 1.

ut

v1 v3

v4v2

G = (V,E)

v11

V ′1︷︸︸︷

v12

v13

v14

v21

V ′2︷︸︸︷

v22

v23

v24

v31

V ′3︷︸︸︷

v32

v33

v34

G′ = (V ′, E′, w)

Fig. 1. The graph G of CLIQUE PROBLEM and the corresponding graph G′ of (1, 2)-metric
MWtCP, for t = 3, where only arcs of unit weight have been drawn; edges in E∗, which are not
shown for readability, are of weight 2.

Lemma 2. Let G = ((V,E), t) be an instance of the CLIQUE PROBLEM problem and
the corresponding graph G′ = (V ′, E′, w) of the (1, 2)-metric MWtCP obtained by
the above construction.G′ contains a t-clique of minimum cost ifG contains a t-clique.

Proof. Let Vc, where Vc ⊆ V , be the vertex set of the t-clique in G. A correspond-
ing solution, a minimum-weighted t-partite clique, may be constructed in (1, 2)-metric
MWtCP, having the vertex set V ′c , where V ′c ⊆ V ′. If edge (vi, vj) ∈ E is part of the
t-clique in G, then (vxi , v

y
j ) ∈ E′, ∀1 ≤ x, y ≤ t and x 6= y. Thus, if edge (vi, vj) is

part of the t-clique in G then (vpi , v
q
j ) ∈ E′ where 1 ≤ p ≤ t and q = p+1 if p < t and

q = 1 otherwise. We note that ∀1 ≤ p ≤ t, w(vpi , v
q
j ) = 1. Furthermore, a t-clique in G

will result in a t-clique in G′ whose total weight is
(
t
2

)
and it is minimum total weight

any t-clique could have.
ut
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Lemma 3. Let G = ((V,E), t) be an instance of the CLIQUE PROBLEM problem and
the corresponding graph G′ = (V ′, E′, w) of the (1, 2)-metric MWtCP obtained by
the above construction.G contains a t-clique ifG′ contains a t-clique of minimum cost.

Proof. Suppose we have a t-clique in G′ whose total weight is
(
t
2

)
. We note that each

edge is of unit weight. For every vertex vxi ∈ V ′c , we add the vertex vi as part of Vc.
By Lemma 1, for all vertices vxi ∈ V ′c , i and x are unique. Thus, for all vertices

vi ∈ Vc, i is also unique. Furthermore, since the weight of each edge (vpi , v
q
j ) in the

t-clique of minimum weight is 1, then each pair of vertices (vi, vj) ∈ Vc are adjacent
in G. Thus, Vc forms a clique in G.

ut

Theorem 1. The (1, 2)-metric variant of MWtCP is NP-hard.

Proof. Lemma 1 shows the mapping of the instances of the Clique Problem to the
(1, 2)-metric MWtCP. It was also shown in Lemma 2 that a solution the CLIQUE
PROBLEM can be used to obtain a solution to the (1, 2)-metric MWtCP, while the
converse is shown in Lemma 3. Thus, the (1, 2)-metric MWtCP is also NP-hard.

ut

Theorem 2. The σ-metric and the metric variants of MWtCP are NP-hard.

Proof. It is shown in Theorem 1 that the (1, 2)- metric MWtCP is NP-Hard. However,
since the instances in the (1, 2)-metric MWtCP are also instances of the σ-metric as
well as the metric variants of MWtCP, then the reduction of the Clique Problem to these
variants of MWtCP to prove their hardness may use the same mapping of instances
from the Clique Problem to instances of the (1, 2)-metric MWtCP. This is illustrated
in Figure 2. Therefore, the σ-metric and the metric variants of MWtCP are NP-hard as
well. ut

We now show that there is no efficient approximation algorithm with a constant perfor-
mance guarantee for the general case of MWtCP.

Theorem 3. General MWtCP is inapproximable.

Proof. We first note that the Clique Problem is a decision problem which cannot be
decided in polynomial time, unless P = NP .

Suppose there is an efficient approximation algorithm M , with an approximation
ratio ρ for any instance I of MWtCP, for some ρ > 1. Thus M can obtain a t-clique in
polynomial time with respect to |I| such that the weight of the solution is upper bounded
by ρ · OPT (I). Let K = t(t−1)

2 , following from a proof direction in [6]. From an
instance of the Clique Problem (G = (V,E), t), we construct a corresponding instance
I of MWtCP, using the same construction in Lemma 1, defined by the complete t-
partite graph G′ = (V ′, E′, w), this time, with the following edge weight assignment

wij =

{
1, if e ∈ E,
ρK, otherwise
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Fig. 2. Mapping of instances of the Clique Problem to the 1-2 metric-MWtCP

.
Therefore, if G has a t-clique, then OPT (I) = K, else OPT (I) > ρK. The assign-
ment of edge weights wij , the value K and the performance guarantee ρ imply that
M will always return the optimal clique for MWtCP. It also consequently implies the
polynomial time solvability of the Clique Problem, and that P = NP .

Therefore, the general case of MWtCP is inapproximable. Thus, if there exists a
polynomial time approximation algorithm with an arbitrary fixed approximation per-
formance guarantee of ρ > 1 for the general case of MWtCP, then P = NP .

ut

Though the general case of MWtCP was shown to be inapproximable, it has also
been shown [17] that certain variants of the problem may be approximable by narrow-
ing the case of inputs. Algorithm 1 has been presented as a 2-approximation algorithm
for the metric case of MWtCP.

We now show the performance guarantee of Algorithm 1 in the ultrametric case of
inputs. The more precise characterization of the problem instances presented here com-
pared to that in a previous study [17] promises a more accurate performance guarantee.

Theorem 4. Algorithm 1 is a 3
2 -approximation algorithm for the ultrametric case of

MWtCP.

Proof. Given a complete graph G with positive edge weights, we define as Q as the
optimal t-clique or the t-clique of minimum weight as seen at the left part of Figure
3. We let e be the number of edges of the t-clique, thus e =

(
t
2

)
, having the weights

w1, w2, w3, . . . we. We let Q′ be the solution or the t-clique returned by Algorithm 1

30 G. Solano et al.



whose edges have the weights w′1, w
′
2, w

′
3, . . . , w

′
e, seen at the right part of Figure 3.

We also let Q∗ be the minimum-weighted (t − 1)-star in G, shown as the subgraph of
Q′ with dashed edges.

Fig. 3. The optimal t-clique Q and the solution Q′ in graph G by Algorithm 1 for t = 5

We also note that

cost(Q′) =
e∑
i=0

w′i

=
t−1∑
i=0

w′i +
e∑
i=t

w′i

thus,

cost(Q′) = cost(Q∗) +
e∑
i=t

w′i (1)

and

cost(Q∗) ≤ 2

t
· cost(Q). (2)

We also note that the average cost of an edge in Q∗ is

cost(Q∗)

t− 1
(3)
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In obtaining the performance guarantee of Algorithm 1 for the ultrametric case of
inputs, we wish to obtain an upper bound for cost(Q′). In other words, what is being
asked here is a charaterization of the instance when solution returned by Algorithm 1
is the largest for the ultrametric case of inputs. Given that for all edge weights in G,
for any distinct vertices a, b, c,∈ V , w(a, b) = max(w(b, c), w(a, c)), this instance
happens when there are only two values for the edge weights in Q∗, i.e. the edges
that have less weight will have w′i = cost(Q∗)

t−1 − δ, while the edges that have larger

weight will have w′i =
cost(Q∗)
t−1 + δ. Since all the edges in G are non-negative, then

0 ≤ cost(Q∗)
t−1 − δ. This gives us an upper bound on δ, that is:

δ ≤ cost(Q∗)

t− 1
. (4)

Given the instance mentioned, of the
(
t−1
2

)
edges in Q′ \Q∗, because of the ultrametric

property, half of the edges in Q∗, which have the less cost, cause a clique of order t−12
to be formed in Q′ \ Q∗ having the same total cost. Thus, the number of edges with
cost cost(Q∗)

t−1 − δ is (t−1)(t−3)
8 , while the number of edges with cost cost(Q∗)

t−1 + δ is(
t−1
2

)
− (t−1)(t−3)

8 .

Because the set of edges with less cost will even out the part of the set of edges with
larger cost, the number of edges with the average cost cost(Q

∗)
t−1 is (t−1)(t−3)

4 , while the

number of edges with cost cost(Q
∗)

t−1 + δ is (
(
t−1
2

)
− (t−1)(t−3)

4 ).

Thus,

e∑
i=t

w′i =

[
(t− 1)(t− 3)

4
· cost(Q

∗)

t− 1

]
+

[(
t− 1

2

)
− (t− 1)(t− 3)

4

]
·
[
cost(Q∗)

t− 1
+ δ

]
(5)

= t−3
4 · cost(Q

∗) +
[
(t2−2t+1)

4

]
·
[
cost(Q∗)
t−1 + δ

]
Also,

cost(Q′) = cost(Q∗) +
t− 3

4
· cost(Q∗) +

[
(t− 1)2

4

]
·
[
cost(Q∗)

t− 1
+ δ

]
(6)

Furthermore, given Equation 2 and the upper bound of δ

cost(Q′) ≤ 2
t · cost(Q) + t−3

4 ·
2
t · cost(Q) + t−1

2 ·
2
t · cost(Q)
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≤
[
4+t−3+2t−2

2t

]
· cost(Q)

≤
[
3t−1
2t

]
· cost(Q)

≤
[
3
2 −O( 1t )

]
· cost(Q)

Algorithm 1 is therefore a 3
2 -approximation algorithm for the ultrametric case of

MWtCP

ut

Corollary 1. The ultrametric case of MIN-EWCP is also 3
2 -approximable.

Proof. Both Algorithms 1 and 2 approximate the minimum weighted clique by finding
the minimum weighted star. The only difference is that Algorithm 1 considers partitions
and thus tries to get a candidate star by obtaining the minimum-weighted edges incident
from a node in a given partition to each of the other t− 1 partitions, whereas Algorithm
2 simply obtains the minimum-weightedm−1 edges. Thus, if the orderm of the clique
of interest in MIN-EWCP is equal to t, thenQ∗ is the minimum weighted t−1, andQ′

is the solution t-clique returned by both algorithms derived from Q∗. Thus, the exact
same proof shown in Theorem 4 also shows that Algorithm 2 is a 3

2 -approximation
algorithm for MIN-EWCP.
. ut

We just showed that the weight of the clique returned by Algorithm 1 is at the worst
case 3

2 that of the optimal solution for the ultrametric case of inputs. We note that this
case happens when the cost of each of the

(
t−1
2

)
edges that make up Q′ \ Q∗ is equal

to the sum of cost of the two edges in Q∗ it forms a triangle with, and when half of the
edges Q∗ common edge weight and the other half also have a common edge weight.

It was already mentioned that Algorithm 1 was presented is a 2-approximation al-
gorithm [17] for the metric case of MWtCP. Clearly, the metric MWtCP is in APX.
We now use this property of MWtCP to show that a related problem in the area of
gene cluster discover is also in APX. This is the Approximate Gene Cluster Discovery
Problem (AGCDP).

3.2 The Approximate Gene Cluster Discovery Problem (AGCDP)

A formalisation for the problem of gene cluster discovery was provided by Rahmann
and Klau as the Approximate Gene Cluster Discovery Problem (AGCDP) [12]. A set
of genomes is represented as G = {g1, g2, . . . , gt} where each gi has length ni ∈ Z+.
A linear interval J i in a genome gi is an index set which can either be empty or J i =
{j, j + 1, ..., k}, which can also be denoted as J iji,ki where 1 ≤ ji ≤ ki ≤ ni. The
gene content G(J ij,k) of a linear interval J ij,k in genome gi is the set of unique genes
contained in that interval.

In their study, they defined the AGCDP the following double minimization problem.
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Problem 1 (The Approximate Gene Cluster Discovery Problem (AGCDP) [12]). Given
the gene universe U = {0, 1, . . . , N}, a set of genomes G = {g1, g2, . . . , gt}, a positive
constant D or size range [D−, D+], and the cost of missing or additional genes in
an interval represented by integer weights w− and w+, identify the set of genes X
where X ⊂ U , 0 /∈ X , D− ≤ |X| ≤ D+ or |X| = D and a set of linear intervals
J = {J iji,ki}, ∀ i such that the cost function

cost(X, J) =
t∑
i=1

[(w− · |X \G(J iji,ki)|) + (w+ · |G(J iji,ki) \X|)] (7)

is minimum.

Rahmann and Klau also provided an integer linear programming formulation of
this problem in the said paper. In another study, this time by Cabunducan et. al., it was
shown that this problem is NP-hard [3]. A proposed transformation of AGCDP as a
graph minimization problem has been presented by Aborot et. al. in [1].

We now show that AGCDP , when w+ = w−, is in APX

Theorem 5. AGCDP , when w+ = w−, is in APX.

Proof. It was shown in a previous study [15] how instances in AGCDP can be modeled
as a complete edge-weighted t-partite graph G∗ in MWtCP and it was shown as well
how the corresponding solution in MWtCP provides an approximate gene cluster solu-
tion for AGCDP.

We note, however, that in the cost function between vertices defined as

cost(u, v) = [(w− · |G(Jxjx,kx) \G(J
y
jy,ky

)|) + (w+ · |G(Jyjy,ky ) \G(J
x
jx,kx)|)] (8)

when w+ = w−, the cost between vertices in G∗ will be the symmetric difference of
the respective set of gene contents they represent, making the edge weights have the
metric property.

In the work of Crescenzi [4], it was shown that given an NP Optimization Problem
Γ , an instance x of Γ , a feasible solution y of x and the objective function m, the per-
formance ratio of y with respect to x was defined as

R(x, y) = max

{
m(x, y)

opt(x)
,
opt(x)

m(x, y)

}
(9)
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Furthermore, it was shown that in the reduction of NP Optimization problems Γ
into Z, there should be a polynomial-time computable function f mapping instances
of Γ into instances of Z, and also a polynomial-time computable function g mapping
back solutions of Z into solutions of Γ , i.e. x → f(x) and g(x, y) ∈ sol(x) ← y ∈
sol(f(x)).

A reduction (f, g) was defined to be anA-reduction if a computable function c : Q∩
(1,∞)→ Q∩ (1,∞) exists such that for any instance x of Γ , for any y ∈ solZ(f(x)),
and for any r > 1, the following holds:

RZ(f(x), y) ≤ r ⇒ RΓ (x, g(x, y)) ≤ c(r) (10)

Since the metric MWtCP and this case of AGCDP are bothNP optimization prob-
lems, by A-reduction [4], if we set the computable function c, where c : Q ∩ (1,∞)→
Q ∩ (1,∞), as the identity function, and since there is a 2-approximation algorithm
for the metric MWtCP, such 2-approximation algorithm may also be used to obtain a
solution for this case of AGCDP.

Thus, AGCDP, when w+ = w−, is in APX, as well.
ut

4 Conclusion and Future Work

In this paper we explored some hardness as well as approximability properties of the
Minimum Weighted t-partite Clique Problem and of the Minimum Edge-Weighted
Clique Problem, along with some of their important subclasses, namely the general,
the metric, σ-metric and the ultrametric case of inputs. An approximability result was
also presented on the Approximate Gene Cluster Discovery problem when w+ = w−.

A problem area open for exploration is hardness of the of the ultrametric variants of
these problems. Another open problem is the approximability of the general AGCDP.
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