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Abstract. Spiking Neural P systems (SN P system) are a kind of distributed
and parallel computational model under membrane computing inspired by
how neurons typically communicate with each other through the sending of
spikes between synapses. To further study SN P systems, various dedicated
simulators have been developed. WebSnapse, a web-based simulator of SN
P systems, has been used to serve as visual aid for creating, modifying, and
simulating SN P systems. This was upgraded on WebSnapse v2.0 by improv-
ing existing functionalities and adding support for more variants of SN P
system. However, WebSnapse suffered performance and stability issues, es-
pecially when simulating larger SN P systems. This research aims to optimize
the performance and stability of WebSnapse using a new way of computing
the next state of the system while achieving feature parity with WebSnapse
v2.0 and adding LaTeX support for rule input and visualization.

Keywords: membrane computing, spiking neural p system, matrices, sim-
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1 INTRODUCTION

Computational models that are abstracted from the architecture and the functioning
of living cells and its possible applications in modern computing are studied in an
area of natural computing called membrane computing [17,18]. Under membrane
computing, a kind of distributed and parallel-like neural-like computation model
called spiking neural P systems (SN P systems) were proposed by [13], inspired
by how neurons typically communicate with each other through sending of spikes
between the synapses. For more information, some recent surveys on theory and
main results are in [14], implementations and applications in [8], with a chapter on
SN P systems in the handbook in [19]. Formally, SN P systems is defined as:
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Definition 1 (SN P system). A spiking neural P system (SN P system) of a finite
degree m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, out),where:

1. O = {a} is the singleton alphabet (a is called spike).
2. σ1, ..., σm are neurons, of the form:

σi = (ni, Ri), 1 ≤ i ≤ m, where:
(a) ni ≥ 0 is the initial number of spikes contained by the neuron
(b) Ri is a finite set of rules of the following forms:

(1) E/ar → a; t, where E is a regular expression over O, r ≥ 1 and t ≥ 0
(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule

E/ar → a; t of type (1) from Ri;

3. syn ⊆ {1, 2, ...,m} × {1, 2, ...,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
among neurons);

4. i0 ∈ 1, 2, ...,m indicates the output neuron

Example 1. LetΠ = ({a}, σ1, σ2, σ3, σ4, sys) where σ1 = (2, R1) with R1 = {a2/a →
a, a → λ}; σ2 = (1, R2) with R2 = {a → a; 0, a → a; 1}; σ3 = (3, R3) with
R3 = {a3 → a; 0, a → a; 1, a2 → λ}; and σ4 is the output neuron (environment);
sys = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 4)}, visualized on Figure 1. The SN P system in
Figure 1 generates the set {2n | n ≥ 1} or the set of all even natural numbers. For
further details, including semantics of rule applications of SN P systems, the reader
is referred to [13,19,14].

Fig. 1. SN P system that generates all even natural numbers.

To further study SN P systems, web-based simulators are used. WebSnapse, for
example, was developed by [7] to serve as visual aid in showing how SN P sys-
tems work in a way that is easily understandable to users even without background
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knowledge. WebSnapse was extended to improve user experience and include more
variants of SN P systems, namely, with weighted synapses and input neurons [6].
However, both versions of the simulator suffered performance and stability issues in
simulating more complex SN P systems [7][6]. Both versions also does not exactly
follow the syntax in which rules are written in literature.

In this research, the intentions are to improve the performance and stability
of WebSnapse v2.0 while achieving at least feature parity using tools such as We-
bAssembly and implement LaTeX support for rule input and visualization in Web-
Snapse.

2 MATRIX REPRESENTATION OF SN P SYS-
TEM

SN P Systems can be represented through matrices and vectors. This representation
reduces the computation of configuration transitions to matrix operations. These
are the parts of the representation for SN P systems with no delay as defined by
[20]:

Definition 2 (Configuration Vectors). Let Π be an SN P system with m neu-
rons, the vector C0 = (n1, n2, ..., nm) is called the initial configuration vector of
Π, where ni is the amount of the initial spikes present in neuron σi, i = 1, 2, ...,m
before a computation starts.

In a computation, for any k ∈ N, the vector Ck = (n
(k)
1 , n

(k)
2 , ..., n

(k)
m ) is called the

kth configuration vector of the system, where n
(k)
i is the amount of spikes in neuron

σi, i = 1, 2, ...,m after the kth step of the computation.

In Example 1, the initial configuration vector C(0) =
(
2 1 3 0

)
.

Definition 3 (Spiking Vectors). Let Π be an SN P system with m neurons and

n rules, and Ck = (n
(k)
1 , n

(k)
2 , ..., n

(k)
m ) be the kth configuration vector of Π. Assume

that a total order d : 1, ..., n is given for all n rules, so the rules can be referred to
as r1, ..., rn. A spiking vector s(k) is defined as follows:

s(k) = (r
(k)
1 , r

(k)
2 , ..., r(k)n ), (1)

r
(k)
i =


1, if the regular expression Ei of rule ri is satisfied by the number

of spiked n
(k)
j (rule ri is in neuron σj) and rule ri is chosen and

applied;
0 otherwise.

(2)

In Example 1, the spiking vector Sp(0) could either be
(
1 0 1 0 1 0 0

)
or(

1 0 0 1 1 0 0
)
due to two rules on σ2 being applicable to the amount of spikes

contained.
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Definition 4 (Spiking Transition Matrix). Let Π be an SN P system with m
neurons and n rules, and d : 1, ..., n be a total order given for all the n rules. The
spiking transition matrix of the system Π, MΠ , is defined as follows:

MΠ = [aij ]n×m (3)

where:

aij =


−c, if rules ri is in neuron σj and it is applied consuming c spikes;

p, if rule ri is in the neuron σs (s ̸= j and (s, j ∈ syn)) and is applied
producing p spikes;

0, if rule ri is in neuron σs ((s ̸= j) and (s, j) /∈ syn)

In Example 1,

MΠ =



−1 1 1 0
−1 0 0 0
1 −1 1 0
1 −1 1 0
0 0 −3 1
0 0 −1 1
0 0 −2 0


(4)

This matrix represents the spikes produced and consumed by the rules in the
system.

To take into account rules with delay, [4] defined additional vectors such as:

Definition 5 (Delay Vector). The vector D = (d1, d2, ..., dm) is the delay vector
that indicates the amount of delay di ≥ 0 of the rule ri, for each i = 1, 2, ...,m

In Example 1, D is
(
0 0 0 1 0 1 0

)
.

Definition 6 (Loss Vector). The vector Lv(k) = (lv1, lv2, ..., lvm) is the loss vector
where each lvi for each neuron σi, i = 1, 2, ...,m, contains the number of spikes
consumed, c, if σi applies ri at time step k.

Definition 7 (Gain Vector). The vector Gv(k) = (gv1, gv2, ..., gvm) is the gain
vector which contains the total number of spikes gained, gvi for each neuron σi, i =
1, 2, ...,m at the kth step of computation not considering whether the neuron is open
or closed.

Definition 8 (Status Vector). The vector St(k) = (st1, st2, ..., stm) is called the
status vector at the kth step of computation where each sti, i = 1, 2, ...,m determines
the status of the neuron m

sti =

{
1 if neuron m is open

0 if neuron m is closed
(5)
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Note that a neuron is said to be closed when a rule with a delay is activated and
is waiting for that delay to become 0. A neuron that is closed may not receive any
incoming spike.

Definition 9 (Indicator Vector). The vector Iv(k) = (iv1, iv2, ..., ivn) is called
the indicator vector at the kth step of computation where each ivi, i = 1, 2, ..., n
determines whether the rule n is fired at time step k.

In Example 1, Iv(0) is
(
1 0 1 0 1 0 0

)
if the first rule in σ2 is chosen. If the second

rule is chosen, Iv(0) is
(
1 0 0 0 1 0 0

)
, reflecting that the chosen rule is delayed in

t = 0.

Definition 10 (Net Gain Vector). Let Lv(k), Gv(k) and St(k) be the loss vector,
gain vector, and status vector at time step k, respectively. The net gain vector NG(k)

at time step k is defined as

NG(k) = St(k) ⊙GV (k) + LV (k) (6)

Note that on the definition above, St(k) is updated first before computing NG(k).
If it is to be defined that St(0) = 1⃗ since all neurons are open initially, then the net
gain vector is defined instead as

NG(k) = St(k+1) ⊙Gv(k) + Lv(k) (7)

Referencing [4], [3] defined the following matrices:

Definition 11 (Production Matrix). For an SN P system Π with n rules and
m neurons, a production matrix of Π is given by

PMΠ = [pij ]n×m, (8)

where for each rule ri : E/ac → ap; d ∈ σj, we have

pij =

{
p, if ri ∈ σs, s ̸= j and (s, j) ∈ syn

0, otherwise
(9)

Definition 12 (Consumption Matrix). For an SN P system Π with n total rules
and m neurons, a production matrix of Π is given by

CMΠ = [cij ]n×m,

where for each rule ri : E/ac → ap; d ∈ σj, we have

cij =

c, if ri ∈ σj and consumed c
spikes

0, otherwise

With the above definitions, the following lemmas are shown
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Lemma 1. Let Π be an SN P system with delay, d > 0

Gv(k) = Iv(k) · PMΠ (10)

Lemma 2. Let Π be an SN P system with delay, d > 0

Lv(k) = −Sp(k) · CMΠ (11)

Thus, the formula for NG(k) can also be defined as

NG(k) = St(k+1) ⊙ (Iv(k) · PMΠ)− Sp(k) · CMΠ (12)

3 EXTENSION OFMATRIX REPRESENTATION
OF SN P SYSTEMS WITH DELAY AND IN-
PUT SPIKES FROM ENVIRONMENT

3.1 Algorithm for computing the next state of the system

In [3], the configuration vector at the next time step is computed by:

C(k+1) = C(k) + St(k+1) ⊙ (Iv(k) · PMΠ)− Sp(k) · CMΠ (13)

[3] also related the MΠ with PMΠ and CMΠ

Collorary 1. For any SN P system Π

PMΠ − CMΠ = MΠ (14)

where MΠ is the spiking transition matrix of Π

What follows is a correction of the results from [3] where another way of com-
puting the next configuration vector C(k+1) is proposed

Theorem 1. Let Π be an SN P systems with delay, d > 0. Then for k ≥ 0,

C(k+1) = C(k) + St(k+1) ⊙ (Iv(k) ·MΠ) (15)

Proof. Let Π be an SN P System with delay, d > 0. Given C(k) for some time
step k, an indicator vector Iv(k) is specified to describe which rule is allowed to fire
at time step k. Multiplying Iv(k) with PMΠ gives us the gain vector Gv(k) that
represents the amount of spikes produced by the respective rules at time step k.
Assume St(0) = 1̂. To satisfy the condition that on time steps q, q + 1, ..., q + d − 1
where q is the time step where a rule with delay d > 0 is chosen, incoming spikes
should be ignored; the gain vector should be multiplied by the next status vector
St(k+1).

Assuming that spiking and spike consumption of a rule should be at the same
time step, multiplying Iv(k) with CMΠ gives us the loss vector Lv(k) that represents
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the amount of spikes consumed at time step k. Note that if St
(k+1)
i = 0, Lv

(k)
i = 0 as

well. Since spikes on a neuron are only consumed once it opens from a closed state,
no spikes are consumed on time steps q, q+1, ..., q+d− 1 on a closed neuron, where
q is the time step where a rule with delay d > 0 is chosen. Formally, the elements of
Lv(k) are:

Lv
(k)
i =

{
0, if St

(k+1)
i = 0

Lv
(k)
i , otherwise

, ∀i, 1 ≤ i ≤ n (16)

where n is the number of neurons.

By this definition, we can multiply St(k+1) element-wise with Lv(k) and we should
still get Lv(k):

St
(k+1)
i × Lv

(k)
i =

{
St

(k+1)
i × 0, if St

(k+1)
i = 0

St
(k+1)
i × Lv

(k)
i , otherwise

= (17)

{
0× 0 if St

(k+1)
i = 0

1× Lv
(k)
i , otherwise

=

{
0, if St

(k+1)
i = 0

Lv
(k)
i , otherwise

Thus, we can say that Lv(k) = St(k+1) ⊙ (Iv(k) ·CMΠ) and we get the following
net gain vector:

NG(k) = St(k+1) ⊙ (Iv(k) · PMΠ)− St(k+1) ⊙ (Iv(k) · CMΠ) (18)

By the distributive property of Hadamard multiplication and matrix multiplica-
tion, both the next status vector and indicator vector can be factored out, resulting
in St(k+1) ⊙ (Iv(k) · (PMΠ − CMΠ)). Substituting PMΠ − CMΠ with MΠ from
Corollary 4, and then adding the net gain vector to the current configuration vector,
the following equation is obtained:

C(k+1) = C(k) + St(k+1) ⊙ (Iv(k) ·MΠ) (19)

■

Using this method, the amount of computation needed is reduced since the matrix
multiplication needed is reduced to one instead of two. Also note that in the proposed
method of [4], the spike consumption of a rule happens first then, after some delay,
follows the production of spikes. In contrast, production and consumption of spikes
happens at the same time in this method. Ultimately, the results will be the same
since the spikes inside a closed neuron cannot change.
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Example 2. Using Example 1 and choosing the 2nd rule in σ2, the computation of
the next configuration vector is as follows:

C(1) = C(0) + St(1) ⊙ (Iv(0) ·MΠ) =
(
2 1 3 0

)
+

(
1 0 1 1

)
⊙ (

(
1 0 0 0 1 0 0

)
·

−1 1 1 0
−1 0 0 0
1 −1 1 0
1 −1 1 0
0 0 −3 1
0 0 −1 1
0 0 −2 0


) =

(
2 1 3 0

)
+

(
−1 0 −2 1

)
=

(
1 1 1 1

)
(20)

To compute the indicator vector Iv(k), the following vectors are defined:

Definition 13 (Decision Vector). The vector Dcs(k) = (dcs1, dcs2, ..., dcsn),
where n is the total number of rules in the system, is the decision vector that indicates
whether a rule is chosen/applied at time step k.

Note that this is only a renaming of the spiking vector Sp(k) since it makes more
sense in the context of systems with delays

Definition 14 (Delay Indicator Vector). The delay indicator vector Div(k) =
(div1, div2, ..., divn), where n is the total number of rules in the system, is defined as

divi =

{
1 if ri is scheduled to fire at some time d

0 otherwise
(21)

Definition 15 (Delay Status Vector). The delay status vector Dst(k) =
(dst1, dst2, ..., dstm), where m is the number of neurons in the system, indicates the
amount of delay dsti ≥ 0 the neuron σi has at time step k

Note that this is a redefinition of what is defined by [3] from rule-wise to neuron-
wise to avoid redundancy.

Using the above definitions, these are the algorithms to obtain the next state of
the system. Note that the pseudocode is vectorized, if possible, to take advantage of
parallel computing.

Algorithm 1 Compute Indicator Vector

Require: Dst(k+1), Dcs(k), D,Div(k)

1: procedure getIndicatorVector
2: r ← 0
3: for i← 0 to COUNT(σ) in Π do
4: count←COUNT(R of σi)

5: Iv(k)[r : r + count] ← (Dst
(k+1)
i = 0) and ((Dcs(k)[r : r + count] = 1⃗ and

D[r : r + count] = 0⃗) or Div(k)[r : r + count] = 1⃗)
6: r ← r + count
7: end for
8: end procedure
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If the delay status vector becomes 0, it means that the neuron becomes open and
can fire a rule. If a rule is chosen and it has no delay, it can immediately fire. Also,
if there is a delayed rule and it becomes open, that delayed rule is to fire.

Algorithm 2 Compute Next Delay Status Vector

Require: Dcs(k), D,Dst(k)

1: procedure getNextDelayStatusVector
2: r ← 0
3: for i← 0 to COUNT(σ) in Π do
4: d← 0
5: count←COUNT(R of σi)
6: for j ← 0 to count do
7: if Dcs

(k)
r+j = 1 then

8: d← Dr+j

9: break
10: end if
11: end for
12: Dst

(k+1)
i = Dst

(k)
i > 0 ? Dst(k) − 1 : d

13: r ← r + count
14: end for
15: end procedure

This procedure iterates over Dcs(k) to check which rule is chosen for each neuron,
if any, and note the delay of that rule. Then, if the delay status dsti > 0 (meaning
that the neuron is closed), decrement dsti. Otherwise, dsti becomes the delay of the
chosen rule.

Algorithm 3 Compute Next Delay Indicator Vector

Require: Div(k), Iv(k), Dcs(k), D
1: procedure getNextDelayIndicatorVector
2: Div(k+1) ← (Div(k) and not Iv(k)) or (Dcs(k) and D > 0)
3: end procedure

The delay indicator divi is retained in the next time step if it is not yet fired.
divi also becomes 1 if the corresponding rule ri is chosen and it has a delay d > 0.

These procedures are used in the following order to get the next state.
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Algorithm 4 Compute Next State of System

1: procedure getNext
2: call Get Dst(k+1)

3: call Get Iv(k)

4: call Get C(k+1)

5: call Get Div(k+1)

6: end procedure

3.2 Algorithm for input spikes from environment

SN P systems can also function by taking input spikes from the environment as spike
trains.

Example 3. Let Π = ({a}, σ1, σ2, σ3, σ4, sys) where σ1 and σ2 are input spike trains;
σ3 = (0, R2) with R2 = {a3 → a; 0, a → a; 1; a2 → λ}; and σ3 is the output neuron
(environment); sys = {(1, 3), (2, 3), (3, 4)}, visualized in Figure 2

Fig. 2. SN P System that adds two binary numbers

To take these systems into consideration, input nodes are treated as a regular
neuron with the following rule:

R = (λ → a; 0) (22)

Additionally, a new vector is introduced.

Definition 16 (Spike Train Vector). The vector Spt(k) = (spt1, spt2,..., sptn) is
called the spike train vector, which is defined at the kth step as

spti =

{
ST j

k if ri is in σj

0 otherwise
(23)

where ST j
k is the kth element of the input spike train defined in σj
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The spike train vector acts as the indicator vector for rules that function for input
spikes from the environment. For illustration, in Example 3, Spt(0) =

(
1 1 0 0 0

)
.

Thus, Theorem 1 is modified as:

Theorem 2. Let Π be an SN P system with delay, d > 0, and input spike train
vector Spt(k) at time k. Then, for k ≥ 0,

C(k+1) = C(k) + St(k+1) ⊙ ((Iv(k) + Spt(k)) ·MΠ) (24)

Example 4. Using the SN P System from Example 3. The computation of the next
configuration vector is as follows:

C(1) = C(0)+St(1)⊙((Iv(0)+Spt(0))·MΠ) =
(
0 0 0 0

)
+
(
1 1 1 1

)
⊙((

(
0 0 0 0 0

)
+

(
1 1 0 0 0

)
) ·


0 0 1 0
0 0 1 0
0 0 −1 1
0 0 −1 0
0 0 −2 1

) =
(
0 0 0 0

)
+
(
0 0 2 0

)
=

(
0 0 2 0

)
(25)

3.3 Algorithm for computing the previous state of the system

By transposing Theorem 2 and moving it one time step back, the following can be
derived

Collorary 2. Let Π be an SN P system with delay d > 0. Then for k ≥ 1

C(k−1) = C(k) − St(k) ⊙ (Iv(k−1) + Spt(k−1) ·MΠ) (26)

To obtain the previous delay status vector Dst(k−1), the following algorithm is
used.

Algorithm 5 Compute Previous Delay Status Vector

1: procedure getPreviousDelayStatusVector
2: r ← 0
3: for i to COUNT(σ in Π) do
4: count← COUNT(R of σi)
5: for j to count do
6: if Div

(k−1)
r+j = 1 then

7: Dst
(k−1)
i ← Dst

(k)
i + 1

8: go to nextNeuron
9: end if
10: end for
11: Dst

(k−1)
i ← 0

12: nextNeuron: r ← r + count
13: end for
14: end procedure
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If a rule ri is previously scheduled to fire, it means that the neuron σj that
contains it had a delay; thus, the delay status dstj is incremented. Otherwise, dstj =
0. The use of goto is to make it clear that the loop has two exits based on a condition,
but it can also be done with having a flag that is set before exiting the loop or having
the loop in a function and return accordingly.

To get the previous indicator vector Iv(k−1), Algorithm 1 is sufficient except the
vectors from the previous state is used.

Iv(k−1) = call GetIv(k)(Dst(k), Dcs(k−1), D,Div(k−1)) (27)

Using the above, the stacks needed are for the decision vector Dcs(i), Div(i) for
i ≤ k − 1. Stacks can also be implemented for Iv(i) and Dst(i) for i ≤ k − 1 and it
would perform better since it would only be O(1). However, it would also need more
memory than when these vectors are computed instead.

4 IMPLEMENTATION

Since matrix representation and algorithms are used, it would be advantageous to
parallelize the computation of state vectors. One method of parallel computing avail-
able in the browser is SIMD.

SIMD (Single Instruction, Multiple Data) is a type of parallel computing that
exploits data parallelism by simultaneously performing the same operation on mul-
tiple data elements. It works well in this case considering that matrix multiplica-
tion involves multiple dot products, which are vector operations. The source code
for WebSnapse v3, including test files and previous versions of WebSnapse, can be
found at the WebSnapse page [1].

4.1 WebAssembly

To use SIMD in the browser, WebAssembly (WASM) is used, as it defines a portable,
performant subset of SIMD operations that are available on most modern architec-
tures [9].

Algorithms 1, 2, 3, 4, 5, Theorem 2 and Corollary 2 are implemented in C and
compiled into WASM using Emscripten. Using the O3 and msimd128 compilation
flag, operations that could be parallelized such as for-loops are vectorized when
compiled.

4.2 Front-end

The front-end is built using the MVP architecture (Figure 3). The models are the SN
P system, which is the model configured for the neurons, rules, and other parts of the
system; the Simulator, which keeps track of the state and updates of the simulation;
and the System JSON, which imports JSON to System model and export System
model to JSON. The views are the Graph, which is graph representation of the SN
P System; and Input, which is the view for the input elements of the simulator. The
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Fig. 3. MVP Architecture for WebSnapse v3

presenter determines how user input is handled and updates the models accordingly.
The presenter also updates the view based on the models.

This is implemented with HTML, CSS, and TypeScript. For the libraries, Vi-
vagraphJS is used for graph visualization, KaTeX for HTML TeX rendering, and
MathJax for SVG TeX rendering. The web application is hosted on Netlify with link
available at the WebSnapse page in [1].

Necessary vectors and matrix are generated in JavaScript based on the built or
imported system. Since it is necessary for SIMD to have sequential data access, the
spiking transition matrix is transposed so that the matrix multiplication becomes
row-to-row dot products instead of row-to-column. These vectors are then passed to
the compiled WASM module.

4.3 WebSnapse V3.0 Features

Apart from performance and runtime improvements, Websnapse v3.0 also boasts
some quality of life improvements. Features from the previous version such as the
button sidebar, Import/Export capability, clear All button, simulation controls, and
support for SN P system variants are retained. Some user-friendly additions such as
right-clickability of neurons and synapses were added for a more intuitive approach.
Here are the specific features:

Delete and Edit Synapses. Editing and deleting synapses can now be done
by right-clicking on a synapse and editing the weight once the menu appears. In
Websnapse v2.0, editing synapses was also possible, but the user had to click the
synapse, click the Edit Synapse button, and then edit the synapse weight. The extra
step proved to be quite time-consuming when editing a larger SN P system. Also,
right-clicking for options is more user-friendly and intuitive.

Delete and Edit Neurons. Similarly, editing and deleting neurons work the
same way as for synapses. This was another user-friendly improvement over the
previous version.

LaTeX Syntax Support Neuron names, rules, and spike train input all follow
the LaTeX format to better align with how these are written in literature.
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JSON File Format Websnapse v3.0 uses JSON file format, collaborated with
[10], vs the XMP file format of Websnapse v2.0. Any JSON file that follows the
format will be properly simulated when imported.

5 TESTING

Testing WebSnapse v3 is divided into two parts: the correctness of the simulations
and the performance benchmarks. These tests are run on Microsoft Edge Version
118.0.2088.46 (official build) (64-bit). The machine used runs Windows 10 Build
19045 with an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 1801 Mhz, 4 Core(s),
8 Logical Processor(s) and 8 GB RAM.

5.1 Correctness Testing

The following systems are run on WebSnapse v3 and have been confirmed to be
properly simulated.

Multiples of k Generator

These systems generate a number multiple of k by initially firing a spike to the
environment, and after a certain delay, firing the following spike. The time difference
between these spikes is the output of the system to be interpreted. When to fire the
following spike is non-deterministically chosen [18].

Boolean Function

These systems are used as transducer, receiving spike trains from the environment
and after 3 time steps delay, the output neuron will fire the output of the Boolean
function as a spike train to the environment [18].

Comparator

An increasing comparator represented as an SN P system is proposed by [5]. Two
bit strings as spike trains are fired into the system and the smaller of the two bit
strings is fired to the min output and the larger to the max output.

Bit Adder

This SN P system proposed by [12] works as a bit adder that accepts two bit strings
as spike trains and, after a one-time-step delay, fires the sum to the environment.

Subset Sum

A uniform SN P system is proposed by [15] that solves the subset sum problem.
Numbers in the set are written multiplied by two on the set of neurons labeled with
ini, 1 ≤ i ≤ LEN(set). The sum is also multiplied by two on neuron iLEN(set)+1.
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The system will only halt if a solution (a subset that satisfies the problem) is found;
otherwise, the system keeps running.

5.2 Benchmark

To gauge Websnapse v3.0 performance and runtime improvements, a baseline test
consisting of a single sequential system and a single parallel system was used. These
systems are generated in JSON format (for WebSnapse v3) and XML format (for
WebSnapse v2) using Python (https://github.com/lmgal/websnapse-stress-test) and
imported to each simulator, respectively. The one spike-chain system in Fig. 4 was
used for the sequential system benchmark, while the simple complete graph system
in Fig. 5 was used for the parallel system benchmark, both figures show systems
with only 10 neurons as a sample.

Console timers were added to measure the time it took the simulator to compute
the next configuration vector, as well as the time to render it. Neuron count is
gradually increased by increments of 20, up to a maximum of 100. The average
value of five individual benchmarks for both systems were taken as the final value.

Fig. 4. Sample One Spike-Chain system in WebSnapse v3

The following benchmark results show the observed computation and rendering
times for 20 neurons up to 100, for simplicity the results of the 100-node systems
will be the point of comparison as this demands the most out of the simulators.

One Spike-Chain System

Websnapse v3.0 was able to compute the next configuration vector in the one spike-
chain system in 0.887 milliseconds while Websnapse v2.0 took 18.403 ms as can be
seen in Fig. 6. Fig. 7 shows that rendering took 42.281ms in v3.0, while v2.0 took

WebSnapse v3: Optimization of the Web-based Simulator             429

https://github.com/lmgal/websnapse-stress-test


Fig. 5. Sample Simple Complete System

Fig. 6. One Spike-Chain system Compu-
tation Time Comparison

Fig. 7. One Spike-Chain system Render-
ing Time Comparison

Fig. 8. Simple Complete system Compu-
tation Time Comparison

Fig. 9. Simple Complete system Compu-
tation Time Comparison
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118.321ms. For a one spike-chain system, each neuron is connected to only two other
neurons, the previous and the next neuron in the spike chain. This leads to lower
computation and rendering time compared to complete simple systems. The upward
trend of computation time and rendering time can be seen in both figures, as the
node count or total number of neurons in the system increases. Fig. 6 and Fig. 7 show
significant improvements in performance and runtime for Websnapse v3.0 versus the
previous version when running a sequential SN P system.

Simple Complete System

Websnapse v3.0 was able to compute the next configuration vector in the simple
complete system in an average time of 1.376 milliseconds while Websnapse v2.0
ceased computation and rendering at 100 neurons Fig. 8. Fig. 9 shows that the
rendering took 2257.227 ms in v3.0. Since a simple complete graph with the same
number of neurons as a one spike-chain system contains an exponentially larger
number of synapses, it is expected that computation and rendering time will increase.
Similarly for the computation time, Fig. 8 shows that as the number of neurons in
the system increases, Websnapse v3.0 yields a far lower average computation time
than the previous version; Websnapse v2.0 was unable to process the computation
for a simple complete system with 100 neurons. For rendering time, an exponential
increase is observed in Websnapse v3.0 while Websnapse v2.0 failed to render.

6 CONCLUSION

The main goal of Websnapse v3.0 is to create a SN P system simulator that is
performant and intuitive. Websnapse v2.0 already boasted such features but perfor-
mance and stability-wise could still use some improvements. The implementation of
Websnapse v3.0 using WebAssembly (WASM) with single instruction, multiple data
(SIMD) allowed it to parallelize the computation of state vectors. Parallelization of
this process made use of the matrix representation in 2 specifically for the algorithms
used in computation for the states.

WebSnapse v3.0 was successful in creating an updated version that fits the spec-
ification for WebSnapse while providing performance and stability improvements.

As can be seen in Figures 6, 7, 8, 9, Websnapse v3.0 shows significant improve-
ment in the computation and rendering time for systems that are either sequential
or parallel over the previous version while also allowing simulations of up to 100
neurons or more which Websnapse v2.0 was unable to achieve.

Websnapse v3.0 also improves usability and user-friendliness by including LaTeX
syntax support, a new interface with more intuitive buttons that includes right-click
capabilities for editing and deleting neurons and synapses.

Overall, the development of WebSnapse v3.0 was a success. However, there are
several things that can be improved. To render higher neuron count, implementing
an alternative renderer can be explored such as rasterizing SVG to WebGL canvas
or simplifying the rendering load such as rendering regular neurons as circles with
a number instead to represent the number of spikes. Adding more quality-of-life
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features, such as selecting multiple neurons or synapses to move, delete, or duplicate,
would also be nice. Implementing other SN P system variants on web simulators with
matrix representation can also be explored. Improvements introduced in the present
work can also be extended to the massively parallel simulators as in [4,2] and more
recently in [11], as well as in hybrid simulators (combining web browsers and GPU
access) in [16].
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and Mario J. Pérez-Jiménez. Matrix representation of spiking neural p systems. In
Membrane Computing, pages 377–391. Springer Berlin Heidelberg, 2010.
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NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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