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Abstract. In this study, we focus on parallel programming in the purely
functional language Haskell and try to analyze the execution time stati-
cally.
Liquid Haskell is a program verification tool that integrates refinement
types into the Haskell programming language and relies on SMT solvers
for verification. In this study, we will improve the existing method for an-
alyzing sequential execution time by extending its capabilities to parallel
programs using Liquid Haskell.
Specifically, we have implemented two execution time analysis functions
in Liquid Haskell. One is a function that executes a two-element tuple
sequentially or in parallel, depending on the number of processors. The
other is a function that executes each element of a list in parallel.
We compare the results of parallel execution time inferences made in
Parallel Haskell with the actual execution times of parallel runs on com-
puters with multi-core CPUs.
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Haskell, SMT solver

1 Introduction

Execution time and time complexity

In recent years, the advancement of single-core processors has plateaued, as they
have reached their performance limits. As a result, there has been a growing
emphasis on parallel computing acceleration using both multi-core and many-
core processors to overcome these limitations. This shift towards parallelism
aims to leverage the combined processing power of multiple cores to achieve
higher computational efficiency. However, writing parallel programs that fulfill
the desired performance criteria is a complex and challenging task. Without
proper parallelization techniques and careful consideration of factors such as
data dependencies, workload balance, and synchronization, the execution time
of a parallel program may not show significant improvement over a sequential
one. In some cases, improper parallelization can even result in slower execution
times due to overheads such as thread creation and communication.
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Measuring execution time is a valuable method for verifying the efficiency
of a parallel program. However, ensuring that a parallel program consistently
performs as expected can be challenging because execution time can vary de-
pending on several factors. These include the environment in which the program
is running (such as the number of processors) and the specific input provided.
In addition, changes to certain parts of the source code may require remeasur-
ing the execution time, further complicating the verification and optimization
process.

Time complexity is a critical metric for evaluating the performance of any
computer program, including parallel programs. In the context of parallel com-
puting, time complexity not only measures the number of computational steps
required for a given task, but also incorporates the number of processors as a
variable. This unique consideration allows one to analyze how the actual number
of computational steps can be reduced by increasing the number of processors,
thereby achieving more efficient parallel execution.

The concept of time complexity goes beyond simply counting operations.
It describes the asymptotic behavior of the program’s execution time as the
size of the input increases. By understanding the time complexity of a paral-
lel program, developers can predict its performance over different input sizes
and different numbers of processors. This understanding aids the optimization
process, enabling the creation of more responsive and resource-efficient parallel
applications.

Functional Programming Language Haskell

Haskell[1][2][3] is a purely functional programming language known for its clear
syntax and strong type system. When discussing Haskell in the context of com-
piling and running code in this paper, we assume that we are referring to the
Glasgow Haskell Compiler (GHC), the most widely used compiler for the lan-
guage.

In addition to its functional nature, Haskell[4][5][6][7] also provides robust
support for parallel programming. This capability allows developers to use mul-
tiple processors to perform tasks simultaneously, which can lead to improved
performance. Unlike some other parallel programming environments, Haskell’s
design ensures that parallel programs are deterministic, meaning that they pro-
duce the same results on multiple runs. This avoids common parallel program-
ming pitfalls such as race conditions and deadlocks, problems that can cause
unpredictable behavior in parallel systems.

In Haskell[1], the complexities of synchronization and communication be-
tween parallel tasks are handled implicitly by the language and its runtime
system. Rather than requiring the programmer to manually control these as-
pects, the developer simply indicates in the source code where parallelization is
expected or desired. The runtime system then analyzes the code and automati-
cally makes decisions about how to execute the parallel parts, taking care of the
underlying details. This approach promotes a cleaner code base and allows the
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programmer to focus more on logic and functionality, fostering a more efficient
and error-free development process.

Type Classes in Haskell

A type class in Haskell represents a set of functions that defines a particular
behavior and specification. Essentially, it specifies a set of methods that must be
implemented for a type, allowing that type to be treated in a specific way. Type
classes enable polymorphism, where different types can be treated uniformly
based on shared behaviors rather than their specific implementations. When a
type is made an instance of a type class, it means that the type implements the
functions required by the type class. These implementations provide the actual
behavior for the specific type, fulfilling the contract that the type class specifies.

In Haskell functions that take polymorphic types as arguments, type class
constraints can be applied to ensure that the types conform to particular behav-
iors. By requiring that the type variable be an instance of a specific type class,
the function can ensure that the type can perform the computations dictated by
the type class. This enforces a level of type safety and allows for more abstract
and reusable code.

For example, the Num type class in Haskell defines the behavior for numeric
types, specifying operations such as addition (+), subtraction (-), and multipli-
cation (*). Any type that is made an instance of Num must provide implementa-
tions for these operations. Common numeric types like the type of fixed-length
integers such as 64bit integers Int, the type of floating-point numbers Float,
and the type of multiple precision integers Integer are instances of the Num type
class, and therefore, they support these operations.

In Figure 1, consider a function like sum that takes a list of type a, with the
constraint that a satisfies the type class Num a.

1 sum :: Num a => [a] -> a

2 sum [] = 0

3 sum (x:xs) = x + sum xs

Fig. 1. Function sum

This constraint ensures that the elements in the list can be added together,
as the Num typec lass guarantees that the addition operation is defined for type
a. By leveraging the type

Monad in Haskell

A monad[8] is a design pattern that represents a generalized way of structur-
ing computations, including aspects such as the state of the computation, in-
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put/output operations, and more. It’s a powerful abstraction that allows com-
putations to be combined in a structured and flexible way.

A monad has three essential components:

1. A data type that is the object or target of the computation, representing the
underlying structure or context.

2. A function that produces computed values, often referred to as the return

function. This function encapsulates a value within the monad, creating a
basic computational context.

3. A function that composes computations, often referred to as a bind operation
(>>=). This function allows for the chaining or sequencing of computations,
transforming the output of one computation into the input of the next.

In Haskell, a monad is implemented as a type class that requires the definition
of these two core functions: the return function for value generation and the bind
(>>=) function for computation composition. By implementing these functions
for a particular datatype and making that datatype an instance of the monad
type class, calculations can be performed on that datatype in a monadic way.
This allows complex computations to be constructed using simple, composable
building blocks.

Figure 2 illustrates the typing of these functions, showing how they interact
to form the computational structure of a monad. The monadic design pattern
promotes more maintainable and understandable code by abstracting common
computational patterns, making it a fundamental concept in functional program-
ming, especially in Haskell.

1 return :: a -> m a

2 (>>=) :: forall a b. m a -> (a -> m b) -> m b

Fig. 2. Typing of return and (>>=)

The return function is a special function that takes a value and encapsulates
it inside a monad, creating a monadic value from a regular value.

The bind function (>>=) is a central component of monads. It takes a value
of type a, wrapped in a monad, along with a function that accepts a value of
type a and returns a value of type b, wrapped in the same monad. The bind
function combines these elements, resulting in a value of type b wrapped in the
monad. This allows for sequencing of computations within the monadic context.

Common examples of monads in Haskell include the Maybe monad and the
IO monad. The Maybe monad provides a way of dealing with computations that
may fail. It adds an additional case to a value, representing failure or absence.
When a function returns a value wrapped in the Maybe monad, it can represent
either a successful computation resulting in a value (Just) or a failure (Nothing).
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The bind function (>>=) is essential when working with the Maybe monad.
It allows you to concatenate computations that may result in failure. When
performing a series of computations, if any step fails, the entire computation will
result in Nothing. The final value will be Just if and only if all computations in
the series succeed, allowing elegant handling of potentially failing computations.

1 data Maybe a = Nothing | Just a

Fig. 3. Maybe monad

The IO monad in Haskell is a special construct that encapsulates side ef-
fects and allows for controlled interaction with the outside world. Since Haskell
functions are inherently pure, meaning they have no side effects, the IO monad
provides a means to perform impure operations such as reading from or writing
to files, interacting with the network, or accessing user input. By encapsulating
these side effects within the IO monad, Haskell maintains its functional purity
while still allowing necessary interactions with external systems.

Refinement type

Refinement Types[9] are types that classify values such that they satisfy a partic-
ular predicate. The following examples are refinement types of non-zero integers
and even integers, respectively.

{v ∈ Z | v 6= 0} and {v ∈ Z | ∃w ∈ Z(v = 2w)}

The parts to the right of the vertical bar, v 6= 0 and ∃w ∈ Z(v = 2w), are the
predicate.

SMT solver

SMT (Satisfiability Modulo Theories)[10] refers to the task of determining the
satisfiability of logical formulas in the context of certain mathematical theories.
These formulas are expressed using first-order predicate logic and can repre-
sent constraints related to various domains, such as arithmetic, arrays, or data
structures.

An SMT solver is a specialized tool that solves SMT problems by combining
the capabilities of two types of solvers: a SAT (Boolean Satisfiability) solver,
which handles the propositional logic aspects, and a solver dedicated to the
particular theory, such as integer arithmetic, for handling domain-specific con-
straints.

A prominent example of an SMT solver is Z3[11], which is widely used in
various fields, including formal verification and symbolic execution. To illustrate,
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consider a system of simultaneous integer equations, such as x + y = 10 and
x+ 2y = 20. By appropriately encoding these constraints and providing them as
inputs to an SMT solver such as Z3, one can automatically determine the values
of the variables x and y that satisfy the given equations. The encoding for Z3 is
shown in Figure 4.

1 (declare-const x Int)

2 (declare-const y Int)

3 (assert (= (+ x y) 10))

4 (assert (= (+ x (* 2 y)) 20))

5 (check-sat)

6 (get-model)

Fig. 4. Code for solving a linear system of equations

Liquid Haskell

Liquid Haskell[12] is an extension to the Haskell programming language that
introduces refinement types to facilitate static verification using SMT solvers.
These refinement types allow for more precise constraints on values, thereby
increasing the correctness of the code. Programs successfully verified by Liquid
Haskell are guaranteed to be compilable with GHC (Glasgow Haskell Compiler).

The verification process in Liquid Haskell consists of a few key steps. First,
a subtype relation is extracted from the refinement type specified in the code.
This relation is then transformed into a logical expression suitable for analysis.
The SMT solver then verifies the truth of this logical expression, confirming that
the constraints imposed by the refinement type are met.

In Liquid Haskell, refinement types are often expressed as annotations within
comments in the Haskell source code, maintaining compatibility with standard
Haskell tools. As an illustrative example, consider the safeDiv function, which
is designed to perform division in a way that avoids division by zero. This safe
division can be defined and used through refinement types, with the specifics
outlined in Figure 5.

1 {-@ safeDiv :: Int -> { v:Int | v /= 0 } -> Int @-}

2 safeDiv x y = x `div` y

3 main = print $ safeDiv 3 0

Fig. 5. Function safeDiv
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Liquid Haskell reports the given program as unsafe due to the refinement
type constraint that requires the second argument to be nonzero.

In Liquid Haskell, you can express a function’s preconditions by adding a
predicate to the type of its arguments. This predicate helps define the expected
behavior of the function by stipulating conditions that must be met before ex-
ecution. Similarly, predicates can be appended to a function’s return type to
detail the postconditions, or the expected state after the function’s execution.
Additionally, by associating a predicate with the type of a data structure, an in-
variant condition that must always hold for that data structure can be enforced.

Consequently, programs verified by Liquid Haskell are ensured to meet these
specified preconditions, postconditions, and invariant conditions, providing a ro-
bust and clear definition of program behavior. However, it’s important to note
that limitations in the SMT solver’s inference capabilities might occasionally
lead to a program being judged as unsafe, even when it conforms to the refine-
ment type constraints. This highlights the complexity of static analysis and the
ongoing challenges in fully automating the verification process.

Efficiency Analysis using Liquid Haskell

The paper [13] by Handley et al. introduced a novel method for static analysis
of program efficiency using Liquid Haskell. This method uses a unique data
structure called a tick monad to monitor resource usage during computation.

As shown in Figure 6, a tick monad serves as a monad specifically designed to
store both the number of operation steps (representing the cost of computation)
and the actual value resulting from the computation. Within this monad, tcost
denotes the number of operation steps, while tval encapsulates the value of the
computed result.

When an operation is performed within the context of a tick monad, the
number of steps required for that particular operation can be systematically
recorded. This is accomplished by incrementing the value of tcost accordingly,
which accurately represents the cumulative number of operation steps. Through
this methodology, the tick monad provides a structured way to analyze the time
complexity of computations in a way that integrates seamlessly with Liquid
Haskell’s verification framework.

1 {-@ data Tick a = Tick { tcost :: Int, tval :: a } @-}

2 data Tick a = Tick { tcost :: Int, tval :: a }

Fig. 6. Type of Tick Monad

The definitions of the return and (>>=)functions that make up the tick
monad are shown in Figure 7.
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1 {-@ reflect return @-}

2 {-@ return :: x:a

3 -> { t:Tick a | x == tval t && 0 == tcost t } @-}

4 return :: a -> Tick a

5 return x = Tick 0 x

6

7 {-@ reflect >>= @-}

8 {-@ (>>=) :: t1:Tick a -> f:(a -> Tick b)

9 -> { t:Tick b |

10 tval (f (tval t1)) == tval t &&

11 tcost t1 + tcost (f (tval t1)) == tcost t }

12 @-}

13 infixl 4 >>=

14 (>>=) :: Tick a -> (a -> Tick b) -> Tick b

15 Tick m x >>= f = let Tick n y = f x in Tick (m + n) y

Fig. 7. Functions return and (>>=) of Tick Monad

In Line 4 and 5 of Figure 7, the return function takes a value and returns a
Tick monad with tcost of 0.

In Line 15 of Figure 7, the (>>=)function takes the tcost of the returned
Tick monad as (m+n), the result of adding m, the tcost of the first argument,
and n, the tcost of the result of applying the value x of the first argument to
the second argument f.

There are two prevalent methods for analyzing timing in Liquid Haskell:

– one that relies on automated reasoning within the Liquid Haskell framework,
and

– the other that relies on manual external theorem proving through the use of
proof combinators.

The advantage of the automated reasoning approach is that it eliminates the
need for manual proofs, thus streamlining the verification process. However,
this method is not without its challenges. Automated proofs require type-level
computations, which means that inferences cannot be made simply by using
the (>>=)function. Instead, the inference process requires the use of the eqBind

function, as shown in Figure 8. Within this function, tcost (f (tval t1))

is strategically replaced with an integer argument, providing a mechanism for
encoding complex logical relationships.
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1 {-@ eqBind :: n:Int -> t1:Tick a

2 -> f:(a -> { tf:Tick b | n == tcost tf })

3 -> { t:Tick b |

4 tval (f (tval t1)) == tval t &&

5 tcost t1 + n == tcost t }

6 @-}

7 eqBind :: Int -> Tick a -> (a -> Tick b) -> Tick b

Fig. 8. Function eqBind

2 Research Purpose

In this study, we introduce an implementation for analyzing time efficiency in
parallel programs, utilizing the Liquid Haskell framework as initially proposed by
Handley et al. Leveraging this new implementation, we showcase its application
across several parallel programs, conducting detailed analyses of their execution
times.

Additionally, we execute these parallel programs on a computer equipped
with a multi-core CPU to gauge the real-world elapsed time. This empirical mea-
surement is then compared with the theoretically computed number of operation
steps from our analysis. This juxtaposition not only validates our implementa-
tion but also provides insightful observations on the time efficiency of parallel
programs when analyzed through Liquid Haskell.

Shiromizu et al. [14] introduced an extension of the computational complexity
analysis method to parallel programs using the Coq theorem proving system [15].
The monad C, shown in Figure 9, is composed of a value of type A and a predicate
P, which yields a proposition characterizing computational complexity. The C is
descrived in the ususual mathematical style as follows: for a set A and a predicate
P on A and N, C is defined as

{a ∈ A | ∃m ∈ N P (a,m)},

where a natural number m is a computational costs and an output value a is
related to m through the predicate P . This complexity is defined by both a value
of type A and the number of processors involved.

In this parallel adaptation, the methodology integrates several new compo-
nents: an argument representing the logarithm of the number of processors to
indicate the degree of parallelism, a special format to describe parallel calls, and
an evaluation of the computational load relative to the degree of parallelism.

This approach allows the operations relevant to computational complexity to
be described within the type itself. As a result, code can be extracted from Coq
and translated to OCaml while preserving the essential features of computational
complexity. It’s worth noting, however, that proofs in Coq still have to be done
manually.
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1 Definition C (A:Set) (P:A -> nat -> Prop) : Set :=

2 {a : A | exists (m:nat), (P a m)}.

Fig. 9. Definition of monad C

Hoffmann et al. [16] introduced a method for static and automated analysis
of the costs associated with parallel programs. This approach is based on the
principle that the cost of a parallel program can be evaluated using two key
metrics: work, which represents the total computation time, and depth, which
represents the duration of the longest computation. Using these criteria, they
developed a consistent analysis method that has been implemented in Resource
Aware ML (RaML), where its practical applicability has been confirmed.

3 Time efficiency analysis of parallel programs

In this section, we begin by exploring the computational model underlying a
parallel program. We then introduce a function library that facilitates execution
time inference in Liquid Haskell. Building on the function library, we then imple-
ment specific parallel programs using the function library within Liquid Haskell.
Finally, we analyze the execution time of the programs, providing insight into
their performance characteristics.

3.1 Our parallel computation model: PRAM

When analyzing time and space computations, it is essential to understand the
underlying computer model. For sequential programs, models such as Turing
machines and random access machines (RAMs) are commonly used.

Parallel random access machines (PRAMs) [17][18] are the dominant model
for parallel computing. A PRAM consists of a series of processors, each of which
is a RAM with local memory and shared memory accessible to all processors. In
the PRAM model, each processor executes each instruction (or step) in a unit
of time, and the cycles of instruction execution are synchronously coordinated.
When the PRAM stops, it means that all processors have stopped working.

Thus, the time complexity of a parallel program is defined as the elapsed
time until the PRAM stops. Since each step is executed in a single unit of time,
this complexity can also be interpreted as the number of steps when the entire
program is considered as a single processor.

Conversely, the workload of a parallel program refers to the cumulative num-
ber of instructions executed by all processors within the given program. The
relationship between workload and time is known as the work-time paradigm.
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In the following discussion of a parallel algorithm that takes n inputs, we
will denote the number of steps as T (p, n) and the work as W (n), where p is the
number of processors.

In general, the relationship between work and time is given by

W (n) ≤ pT (p, n).

The equality holds in cases where all processors execute instructions until the
PRAM stops. When p = 1, that is, when the parallel program is executed se-
quentially, the relationship simplifies to W (n) = T (1, n).

3.2 Parallel Execution Functions

In this study, the method of Handley et al. [13] is extended so that the definition
of the tick monad remains identical. Here, tval refers to a type value, while
tcost represents the time complexity of the parallel program as defined earlier
in this study. Although the terms “number of steps” and “time complexity”
are often used interchangeably, in the context of additive processing it is more
natural to interpret them as the number of steps. Therefore, they are primarily
considered as such throughout the process.

During the course of this study, two important functions for parallel execution
were carefully designed and implemented. This section serves only as a brief
introduction, with full details provided in the later section on implementation.

1 {-@ evalPair :: t12:(Tick a, Tick b) -> lbp:Nat

2 -> { t:Tick (a, b) |

3 tcost t == if lbp == 0

4 then (tcost (fst t12) + tcost (snd t12))

5 else tcost (fst t12) &&

6 tval t == (tval (fst t12), tval (snd t12))}

7 @-}

8 evalPair :: (NFData a, NFData b) =>

9 (Tick a, Tick b) -> Int -> Tick (a, b)

Fig. 10. Function evalPair

Function evalPar The evalPair function accepts a tuple consisting of two val-
ues of type Tick, specifically (Tick a, Tick b), along with information about
the logarithm of the number of processors lbp. It returns a value of type Tick
encapsulating the tuple (a, b).

In this storyline, each of the two tick types within the argument tuple has a
tcost, which represents the number of steps required to execute or evaluate a
single tick value.
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The evalPair function takes the logarithm of the number of processors as
an argument. If the number of processors is 1, a sequential computation is per-
formed. If the number of processors is greater than 1, a parallel computation is
performed.

In sequential computation, as shown in Figure 11, the first and second ele-
ments are evaluated sequentially by the same processor. Consequently, the tcost,
which represents the number of steps for both elements, is accumulated.

Fig. 11. Sequential Computation of Pair

Unlike sequential computation, parallel computation evaluates the processes
simultaneously, as shown in Figure 12. Specifically, the first process is assigned
to an available processor while the second process runs on the original processor.
Only after both processes are completed does the next process begin.

When evaluation and synchronization are performed in parallel, the total
number of steps is determined by the greater of the step counts of the two
processors. However, it’s assumed that the first element is passed with a higher
tcost. See the implementation chapter for more details.

Fig. 12. Parallel Computation of Pair

The (>>=/)function shown in Figure 13 is defined as a helper function. While
its arguments are identical to those of the bind operator (>>=), the constraints
imposed by the refinement type are different. Within the (>>=/) function, the
specific constraint is that the tcost of the tick in the return value of the argument
f must be equal to 1. This particular constraint allows the inference of tcost

(f (tval t1)) to be replaced by 1, thus facilitating inference within the SMT
solver.
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1 {-@ (>>=/) :: t1:Tick a

2 -> f:(a -> { tf:Tick b | tcost tf == 1 })

3 -> { t:Tick b |

4 tval (f (tval t1)) == tval t &&

5 tcost t1 + 1 == tcost t }

6 @-}

7 infixl 4 >>=/

8 (>>=/) :: Tick a -> (a -> Tick b) -> Tick b

Fig. 13. Function EqBind

1 {-@ parList :: c:Nat

2 -> { xs:[{ t1:Tick a | tcost t1 <= c }] | xs /= [] }

3 -> { p:Nat | p >= length xs }

4 -> { t:Tick {

5 os:[a] | length xs == length os

6 } | tcost t == c }

7 @-}

8 parList :: (NFData a) =>

9 Int -> [Tick a] -> Int -> Tick [a]

Fig. 14. Function parList

Function parList The parList function accepts a list of type Tick [Tick a],
a cost parameter, and the number of processors. It then returns a value of type
Tick [a], with the list encapsulated within the Tick type.

As depicted in Figure 15, the parList function evaluates each element of the
list in parallel.

The parList function imposes certain refinement type constraints. The total
tcost of the list of ticks received as an argument must be less than or equal to
the specified cost, and the number of processors received must be greater than or
equal to the length of the array. These constraints ensure that each element of the
array can be evaluated in parallel using the processors provided. Consequently,
the total tcost can be equal to the cost received as an argument.

To facilitate the use of the parList function, additional functions chunk (see
Figure 16) and mapParList have been implemented. The chunk function takes
a number representing the desired list division and returns a segmented list by
dividing the input list accordingly. A brief overview of these utility functions is
also provided.

The mapParList function performs the functions passed to it in parallel,
using the previously defined parList function to achieve this parallelization.

The following section uses these functions to analyze the execution time of a
parallel program.
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Fig. 15. Parallel Compution on Lists

1 {-@ chunk :: { n:Nat | n /= 0 } -> { m:Nat | m /= 0 }

2 -> { xs:[a] | length xs == n * m }

3 -> { yss:[ { ys:[a] | length ys == n } ] |

4 length yss == m }

5 / [m]

6 @-}

7 chunk :: Int -> Int -> [a] -> [[a]]

Fig. 16. Function chunk

4 Exection time analysis in parallel execution for specific
programs

4.1 Parallel Fibonacci Function

The Fibonacci sequence is a sequence of numbers defined by the following recur-
rence formulas.

F0 = 1

F1 = 1

Fn+2 = Fn+1 + Fn (n ≥ 0)

1 {-@ mapParList :: { n:Nat | n > 0 }

2 -> { xs:[a] | length xs == n }

3 -> c:Nat

4 -> (a -> { t:Tick b | tcost t <= c })

5 -> { t:Tick { os:[b] | length xs == length os } |

6 tcost t == c }

7 @-}

8 mapParList :: (NFData b) =>

9 Int -> [a] -> Int -> (a -> Tick b) -> Tick [b]

Fig. 17. Function mapParList
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Function fib defined in Figure 18 calculates the nth number in the Fibonacci
sequence.

1 {-@ fib :: n:Nat -> { v:Nat | v >= n } @-}

2 fib :: Int -> Int

3 fib 0 = 1

4 fib 1 = 1

5 fib n = fib (n -1) + fib (n -2)

Fig. 18. Function fib

The fib function shown in Figure 18 can be conveniently parallelized by
modifying the part that makes recursive calls to itself. We can consider a paral-
lelized version called fibPar, which preserves the time complexity as tcost.

The fibPar function takes two inputs: n, and lbp, which is the logarithm
to the base 2 of the number of processors. It then returns a Tick type where
the value is the nth Fibonacci number, Fn . The implementation of the fibPar

function is shown in Figure 33.

1 {-@ fibPar :: n:Nat -> lbp:Nat

2 -> { t:Tick Int | (tcost t == fibCost n lbp) } @-}

3 fibPar :: Int -> Int -> Tick Int

4 fibPar 0 _ = wait 1

5 fibPar 1 _ = wait 1

6 fibPar n 0 =

7 ((x, y) `evalPair` 0)

8 >>=/ (\(a, b) -> wait (a + b))

9 where

10 x = fibPar (n -1) 0

11 y = fibPar (n -2) 0

12 fibPar n lbp =

13 ((x, y) `evalPair` lbp)

14 >>=/ (\(a, b) -> wait (a + b))

15 where

16 x = fibPar (n -1) (lbp -1)

17 y = fibPar (n -2) (lbp -1)

Fig. 19. Function fibPar

If the input is either 0 or 1, the value returned is 1. The wait function takes
a value and returns a tick with tcost set to 1.

Time efficiency analysis of parallel programs on Liquid Haskell             169



For an input of n > 1, we want to compute the sum of fib(n-1) and
fib(n-2). So we assign the result of the call to the fibPar function so that
fib(n-1) is computed for x and fib(n-2) is computed for y. If the number of
processors is 2 or more (i.e., the base-2 logarithm of the number of processors
is 1 or more), then the base-2 logarithm of the number of processors minus 1 is
passed as an argument to the fibPar function. At this stage, x and y are not
evaluated.

Next, the tuple (x,y) and the two base-2 logarithms of the number of proces-
sors are passed to the evalPair function. If two or more processors are available,
the evalPair function evaluates the operation in parallel; if only one processor is
available, it evaluates the operation sequentially. Since x and y are calls to the
fibPar function, this operation is repeated recursively.

The result of evalPair becomes the second argument to the (>>=/)function
for both sequential and parallel processing. The (>>=/)function passes the pairs
of x and y values to the wait function, which takes the sum of the pairs and
returns it to the wait function as a Tick type representing the result of the sum.
Since the wait function specifies 1 as tcost, the total tcost is the sum of the
tcost of the Tick type resulting from the evalPair function and 1.

However, due to Liquid Haskell’s inference specification, it is necessary to
explicitly distinguish between the cases where lbp = 0 and where lbp > 0.

Static Analysis of Execution Time of Parallel Fibonacci Function Func-
tion fibCost is defined to represent the execution time of fibPar, as illustrated
in Figure 20. Using the inputs n and lbp, the value returned by fibCost can be

1 {-@ fibCost :: n:Nat -> lbp:Nat -> Nat @-}

2 fibCost :: Int -> Int -> Int

3 fibCost 0 _ = 1

4 fibCost 1 _ = 1

5 fibCost n lbp

6 | n <= lbp + 1 = n

7 | otherwise = 2 * fib (n - lbp) -1 + lbp

Fig. 20. Function fibCost

expressed as T (n, lbp) as follows.

T (0, lbp) = 1,

T (1, lbp) = 1,

T (n, lbp) = n, (n ≤ lbp + 1)

T (n, lbp) = 2 · fib(n− lbp)− 1 + lbp,

(otherwise).
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Thus, if lbp is lbp < n for sufficiently large n, then we have

T (n, lbp) = O

(1 +
√

5

2

)n−lbp
 ;

if lbp is n ≤ lbp + 1 for sufficiently large n, then wen have

T (n, lbp) = O(n)

The results show that when the number of parallel processors is limited,
the computation time grows exponentially. However, when there is sufficient
parallelism, the computation is completed in linear time. In contrast, when lbp
exceeds n, it implies that the logarithm of the number of processors is greater
than n, a scenario that is impractical since it would require approximately 2n

processors. Below is a brief explanation that confirms the correctness of the
above time complexity for each scenario.

Case (either n = 0 or n = 1). The case where n ≤ lbp + 1 occurs when there
are enough processors to allow for as much parallelization as desired. When the
fibPar function receives n, it passes n − 1 and n − 2 to subseuent calls of the
fibpar function, executing them in parallel. The case with the larger number
of steps involvs passing n− 1. If the function continues to follow the path with
the large number of steps, it will eventually stop at n = 1. The number of steps
from n to 2 is increased by one by the wait function then adding, and again at
1 when returning, ensuring that the number of steps aligns with the value n for
tcost.

On the other hand, for the cases where 1 < n and lbp ≤ n, we divide the
cases into those with lbp = 0 and those without lbp = 0.

Case (1 < n and lbp = 0.) In this case, the number of processors is 1. Except
for the cases n = 0 and n = 1, it holds that n > 1. Since n ≤ lbp + 1 is not
satisfied, this is the fourth case of the definition of T (n, lbp). Substituting lbp
for 0, we get that the cost is 2 × fib(n)− 1.

There is an intuitive explanation for this value. When lbp = 0 and n > 1,
the result of fib(n) is the sum of fib(0) or fib(1) as follows.

fib(2) = fib(1) + fib(0) = 2

fib(3) = fib(2) + fib(1)

= fib(1) + fib(0) + fib(1) = 3

fib(4) = fib(3) + fib(2)

= fib(2) + fib(1) + fib(1) + fib(0) + fib(1)

fib(n) =

fib(n)︷ ︸︸ ︷
fib(1) + . . . + fib(1)
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Since fib(0) = fib(1) = 1, the sum of fib(0) and fib(1), which make up fib(n),
is fib(n). When fib(0) or fib(1) is returned in the FibPar calculation, tcost is
set to 1. 1 is also added to tcost when fib(n − 1) and fib(n − 2) are added.
Therefore, since the number of steps fib(n) is added by the wait function when
returning the value and the number of steps (fib(n)− 1) is added when adding,
the total number of steps is 2fib(n)− 1.

Case (1 < n and 0 < lbp ≤ n).
In this case, the calculation is parallelized up to the point where there is a

surplus of processors and parallelization is possible, and sequential processing is
performed once the tasks have been assigned to each processor.

As an example, Figure 33 shows the execution of fibPar(5, 2).
The fibPar(5, 2) performs the computation of fib(5) on 22 processors. fibPar(5, 2)

calls fibPar(4, 1) and fibPar(3, 1) in parallel. In fibPar(4, 1), fibPar(3, 0) and
fibPar(2, 0) are called in parallel, and these fib(3) and fib(2) computations are
done in parallel on each processor. The same is true for fibPar(3, 1), where the
calculations of fib(2) and fib(1) are performed in parallel on each processor. The
largest number of steps is in fib(3), and as mentioned above, it is 2fib(3) − 1.
Therefore, the number of steps in fibPar(4,1) is 2×fib(3), which is the number of
steps plus 1 in the addition process. Therefore, the number of steps in fibPar(5,2)
is

2fib(3) + 1 = 2fib(5− 2)− 1 + 2

, which is the number of steps plus 1 in the addition process.
The above is an analysis of the time complexity of the parallel fib function

and an intuitive explanation of it.

Fig. 21. Exection of fib(5, 2)

4.2 Power function 2n in parallel execution

A pow2 function means a function that computes 2n for a given n. The following
is an example implementation of the pow2 function. Although more efficient
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1 {-@ pow2 :: n:Nat -> { v:Nat | v >= n } @-}

2 pow2 :: Int -> Int

3 pow2 0 = 1

4 pow2 n = pow2 (n -1) + pow2 (n -1)

Fig. 22. Function pow2

implementations exist, for the purpose of this parallelization introduction, the
implementation shown in Figure 22.

Similar to the fibPar function, the pow2Par function, which computes pow2
in parallel, can be defined as shown in Figure 23 by parallelizing the process of
recursively calling it.

1 {-@ pow2Par :: n:Nat -> lbp:Nat

2 -> { t:Tick Int | (tcost t == pow2Cost n lbp) } @-}

3 pow2Par :: Int -> Int -> Tick Int

Fig. 23. Function pow2Par

The pow2Cost function is a function that represents the exection time of the
pow2Par function and is defined as shown in Figure 24.

1 {-@ reflect pow2Cost @-}

2 {-@ pow2Cost :: Nat -> lbp:Nat -> {v:Nat | v >= 1} @-}

3 pow2Cost :: Int -> Int -> Int

4 pow2Cost 0 _ = 1

5 pow2Cost n lbp

6 | n <= lbp = n + 1

7 | otherwise = pow2 (n + 1 - lbp) -1 + lbp

Fig. 24. Function pow2Cost
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The value returned by pow2Cost can be expressed by the following equation
using the input n and lbp.

T (n, lbp) =



1 = O(1)
(n = 0)

n + 1 = O(n)
(0 < n ∧ n <= lbp)

2n+1−lbp − 1 + lbp = O
(
2n−lbp

)
(Otherwise)

The correctness of the time complexity of the pow2Par function can be seen
by considering it in the same way as for the fibPar function. This result is
consistent with the results of the time complexity analysis of the parallel pow2
function in the paper [14]. Note, however, that the GHC optimization does not
have the same time complexity as the pow2 function, since the two values to be
added are the same expression.

4.3 Parallel traversal of complete binary tree

The height of a tree refers to the greatest distance from the root node to any
leaf node in the tree. A perfect binary tree, also known as a complete binary
tree, is characterized by having the heights of the left and right subtrees of each
node exactly equal.

Fig. 25. Example of a perfect binary tree

In Liquid Haskell, a perfect binary tree can be defined as in Figure 26.
PBT is a datatype in Haskell that signifies a complete binary tree. While

it essentially represents a binary tree with both height and key attributes, its
completeness is assured through the use of a refinement type constraint. The
function getHeight is designed to retrieve the height of the given binary tree.
This datatype adheres to a specific constraint, requiring that the heights of both
left and right subtrees be exactly one less than the overall height h of the binary
tree, thus ensuring that PBT is a complete binary tree. It’s important to note,
though, that under this definition, the leaves of the tree do not contain values
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1 {-@ measure getHeight @-}

2 {-@ getHeight :: PBT a -> Nat @-}

3 getHeight :: PBT a -> Int

4 getHeight Leaf = 0

5 getHeight (Node _ h _ _) = h

6

7 {-@

8 data PBT a

9 = Leaf

10 | Node

11 { key :: a,

12 h :: Nat,

13 l :: { v:PBT a | getHeight v == h - 1 },

14 r :: { v:PBT a | getHeight v == h - 1 }

15 }

16 @-}

17 data PBT a

18 = Leaf

19 | Node

20 { key :: a,

21 h :: Int,

22 l :: PBT a,

23 r :: PBT a

24 }

25 deriving (Show)

Fig. 26. Definition of Perfect Binary Tree

Time efficiency analysis of parallel programs on Liquid Haskell             175



1 {-@ sumPBT :: { p:PBT Nat | getHeight p /= 0 }

2 -> lbp:Nat

3 -> { t:Tick Int |

4 (tcost t == pow2Cost (getHeight p - 1) lbp) }

5 @-}

6 sumPBT :: PBT Int -> Int -> Tick Int

7 sumPBT (Node key 1 _ _) _ = wait key

8 sumPBT (Node key _ l r) 0 =

9 ((x, y) `evalPair` 0)

10 >>=/ (\(a, b) -> wait (a + b + key))

11 where

12 x = sumPBT l 0

13 y = sumPBT r 0

14 sumPBT (Node key _ l r) lbp =

15 ((x, y) `evalPair` lbp)

16 >>=/ (\(a, b) -> wait (a + b + key))

17 where

18 x = sumPBT l (lbp -1)

19 y = sumPBT r (lbp -1)

Fig. 27. Function sumPBT

The parallel time complexity of the sumPBT function can be expressed by the
function pow2Cost, which expresses the parallel time complexity of the function
pow2Par. This is because the pow2Par function, which takes two parallel calls
with a small value as an argument, and the sumPBT function, which takes two
parallel calls with a small height complete binary tree as an argument, have the
same structure. The pow2Cost function takes getHeight p − 1 as an argument.
In this definition, the recursion ends when the full binary tree reaches height 1,
so the height of the full binary tree minus 1 is passed.

Calculating the Total Amount of Values of All Nodes When computing
the sum of all nodes in a tree, it is essential to traverse each node. This process
can be greatly accelerated by parallelization.

The sumPBT function is designed to perform this task by calculating the sum
of all nodes in parallel. Its definition is shown in the figure 28. Similar to the
parallel fib function and the parallel pow2 function, the part of the process that
involves recursive function calls is parallelized, delegating the work to another
available processor.

The parallel execution time of the sumPBT function can be represented by
the pow2Cost function, which also describes the parallel execution time of the
pow2Par function. This correspondence arises because both the pow2Par func-
tion, taking two parallel calls with one smaller value, and the sumPBT function,
taking two parallel calls with a complete binary tree of reduced height, share the
same structural design. Within this definition, the pow2Cost function accepts
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1 {-@ sumPBT :: { p:PBT Nat | getHeight p /= 0 }

2 -> lbp:Nat

3 -> { t:Tick Int |

4 (tcost t == pow2Cost (getHeight p - 1) lbp) }

5 @-}

6 sumPBT :: PBT Int -> Int -> Tick Int

7 sumPBT (Node key 1 _ _) _ = wait key

8 sumPBT (Node key _ l r) 0 =

9 ((x, y) `evalPair` 0)

10 >>=/ (\(a, b) -> wait (a + b + key))

11 where

12 x = sumPBT l 0

13 y = sumPBT r 0

14 sumPBT (Node key _ l r) lbp =

15 ((x, y) `evalPair` lbp)

16 >>=/ (\(a, b) -> wait (a + b + key))

17 where

18 x = sumPBT l (lbp -1)

19 y = sumPBT r (lbp -1)

Fig. 28. Function sumPBT

getHeight(p)− 1 as an argument, since the recursion terminates when the full
binary tree attains a height of 1, meaning the height of the full binary tree minus
one is passed.

Computing the maximum among all nodes in parallel The maxPBT func-
tion, which computes the maximum value of all nodes in parallel, can be defined
in a manner analogous to the sumPBT function, as shown in Figure4.3. Like sum-
mation, maximum computation requires traversing all nodes, but parallelization
allows the left and right subtrees to be processed by different processors. The
time complexity for the maxPBT function is identical to that of the sumPBT func-
tion.

1 {-@ maxPBT :: { p:PBT Nat | getHeight p /= 0 }

2 -> lbp:Nat

3 -> { t:Tick Int |

4 (tcost t == pow2Cost (getHeight p - 1) lbp) }

5 @-}

6 maxPBT :: PBT Int -> Int -> Tick Int

Fig. 29. Function maxPBT
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4.4 Parallel division of list processing

Next, consider a case where a long list is to be processed, and the process can
be divided and parallelized to speed up the process.

The countSolve function takes a list of Sudoku problems consisting of strings
and counts the number of solutions obtained. The number of steps required to
solve a Sudoku problem is calcCost, and the total number of steps is calcCost
multiplied by the length of the list. The implementation of the countSolve

function is not covered here.

1 {-@ countSolve :: { xs:[String] | length xs /= 0 }

2 -> { t:Tick Int | tcost t == calcCost * length xs }

3 / [length xs]

4 @-}

5 countSolve :: [String] -> Tick Int

6

7 {-@ countSolveList :: { n:Nat | n > 0 }

8 -> { m:Nat | m > 0 }

9 -> { xs:[String] | length xs == n * m }

10 -> { t:Tick [Int] | tcost t == calcCost * n }

11 @-}

12 countSolveList :: Int -> Int

13 -> [String] -> Tick [Int]

14 countSolveList n m xs =

15 mapParList m ys (calcCost * n) countSolve

16 where

17 ys = chunk n m xs

18 c = calcCost * n

Fig. 30. Function countSolve and function countSolveList

When the countSolve function is applied to a list, it yields a Tick Int result
from sequential processing. The countSolveList function is a parallelized ver-
sion of this process. During parallelization, the mapParList and chunk functions
can be employed.

First, the chunk function divides the given list into m lists, each of length n,
with the number of processors (or fewer) passed as m. The result, ys , is of type
[[String]], representing a list of strings; it’s then passed to the mapParList

function, and each element [String] is handed to the countSolve function for
parallel evaluation.

Since the processing occurs on the subdivided list in parallel, the total num-
ber of steps corresponds to the number of steps performed by the countSolve

function on a single processor, that is, calcCost multiplied by n.
As demonstrated, functions that process arrays and return ticks can be par-

allelized with relative ease by dividing the array by the number of processors.
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5 Implementation of functions for parallel execution time
analysis

5.1 Parallel Haskell

There are several parallelization methods in Haskell. Among them, the method
using the package parallel is described. The simplest way to achieve parallelism
is to use the par and pseq functions in the package Control.Parallel.

1 par :: a -> b -> b

2 pseq :: a -> b -> b

Fig. 31. Function par and pseq

The par function indicates that it is useful to evaluate the first and second
arguments in parallel and returns the second argument. A Spark corresponding
to the first argument is generated and added to the spark pool. The sparks are
computations waiting to be executed, and the spark pool is the place where they
are stored. A spark added to the spark pool is evaluated and allocated to the
remaining processor using a method called work stealing.

The pseq function evaluates the first argument in positive form and returns
the second argument. However, it does not evaluate to the canonical form, so if
you want to evaluate to the canonical form, use the deepseq function.

Parallelism can be described using the above two functions. However, the
par and pseq functions must be written in the middle of an expression, mak-
ing parallelism algorithm-dependent. Strategies, which are included in the same
package. (See Figure 32.)

1 infixl 0 `using`

2 using :: a -> Strategy a -> a

3

4 rdeepseq :: NFData a => Strategy a

5 rpar :: Strategy a

6

7 rparWith :: Strategy a -> Strategy a

8

9 evalTuple2 :: Strategy a -> Strategy b

10 -> Strategy (a, b)

11 parList :: Strategy a -> Strategy [a]

Fig. 32. Control.Parallel.Strategies
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The Strategy type indicates which evaluation strategy is used. A using func-
tion is a function that takes a value and an evaluation strategy, and evaluates
the value using that strategy. The using type can be used as an infix opera-
tor. For example, you can write (f x) ‘using‘ rpar to separate the value, the
algorithm to compute it, and the evaluation strategy. The rdeepseq function
evaluates to normal form, and the rpar function returns a parallel evaluation
strategy. The rparWith function adds evaluation in addition to parallel eval-
uation. For example, passing the rdeepseq function to the rparWith function
allows parallel evaluation up to normal form. The evalTuple2 function takes
two evaluation strategies and returns a strategy that applies the strategy to the
first and second elements. In the following sections, these functions are combined
to implement parallel processing.

5.2 Naive implementation of parallel execution analysis

Let us consider extending time complexity analysis in Liquid Haskell to parallel
processing. First, as a concrete situation, we will attempt an execution time
analysis of a parallel Fibonacci function.

As a simple implementation, we choose to directly extract tval and tcost

from the Tick monad and perform appropriate operations on them. The defi-
nition of the function fibPar, implemented as a parallel Fibonacci function, is
shown in Figure 33.

The result itself is identical to the parallel Fibonacci function introduced in
the Section 4.1. The sequential processing for lbp = 0 and the parallel processing
for lbp > 0 are also identical.

On the other hand, it is possible to reason about tval compared to the case
of Section 4.1. tval t == fib n guarantees as a refinement type constraint that
the returned value is equal to the same input n given to the Fibonacci function
in sequential processing.

However, the inference fails if the type returned by the fibPar function
is Tick Nat. It is expected that we should be able to infer that the value of
the Fibonacci function is Nat, i.e., a non-negative integer. The problem here,
however, is that the arguments of the rdeepseq function are required to satisfy
the type class NFData. Since the type Nat is an annotated type in Liquid Haskell
and does not satisfy the type class NFData, the return type of the rdeepseq

function is interpreted as Int, not Nat, and therefore Strategy Int is returned.
Int is returned through usingStrategy.

The usingStrategy function is a function that evaluates the first argument
based on the evaluation strategy of the second argument and returns the same
value as the argument.

5.3 Toward generalization of the implementation

In the previous example of the parallel Fibonacci function, tcost was manipu-
lated directly in ticks. However, directly manipulating tcost can inadvertently
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1 {-@ fibPar :: n:Nat -> lbp:Nat ->

2 { t:Tick Int |

3 (tcost t == fibCost n lbp) && (tval t == fib n) }

4 @-}

5 fibPar :: Int -> Int -> Tick Int

6 fibPar 0 _ = wait 1

7 fibPar 1 _ = wait 1

8 fibPar n 0 = Tick (c1 + c2 + c3) v3

9 where

10 x0 = fibPar (n -1) 0

11 y0 = fibPar (n -2) 0

12 Tick c1 v1 = x0 `usingStrategy` rdeepseq

13 Tick c2 v2 = y0 `usingStrategy` rdeepseq

14 Tick c3 v3 = wait (v1 + v2)

15 fibPar n lbp = Tick (c1 + c3) v3

16 where

17 x0 = fibPar (n -1) (lbp-1)

18 y0 = fibPar (n -2) (lbp-1)

19 Tick c1 v1 = x0 `usingStrategy` rparWith rdeepseq

20 Tick c2 v2 = y0 `usingStrategy` rdeepseq

21 Tick c3 v3 = wait (v1 + v2)

Fig. 33. Function fibPar

1 {-@ usingStrategy :: x:a

2 -> Strategy a -> {v:a | v == x } @-}

3 usingStrategy :: a -> Strategy a -> a

Fig. 34. Function usingStrategy
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increase or decrease the number of steps. Here we consider defining and invoking
a parallel processing function that handles the number of steps appropriately.

First, we try to generalize a function that returns a Tick value as an argu-
ment. Specifically, we take two functions that take a value and return a Tick

value, pass arguments to them, and actually use them sequentially or in paral-
lel to return a Tick value with tcost appropriately added. However, obtaining
the tcost when applied to a function that returns a tick requires higher-level
reasoning, and for the same reason that the bind function cannot be reasoned
about, it did not work.

So we decided to pass the Tick value itself instead of the function. Specifically,
we consider a function that takes a pair of Tick values and returns a Tick value
with the pair as an element. This is the evalPair function, one of the functions
implemented in this study.

5.4 Functions to process in parallel

In this section, we explain how to implement functions to process in parallel.

Function evalPair The evalPair function is introduced in the previous sec-
tion. Here we discuss its internal implementation. The evalPair function calls
the sequential processing function seqPair if the logarithm of the processor’s 2,
lbp, is 0, and the parallel processing function parPair if it is positive.

Due to the nature of the Parallel Haskell, we want to guarantee that the
results do not change when parallelized. However, due to the limitations of the
SMT solver’s reasoning, the evalPair function is not able to reason about this
in actual use, although it is included in the refinement type constraints.

1 {-@ evalPair :: t12:(Tick a, Tick b) -> lbp:Nat

2 -> { t:Tick (a, b) |

3 tcost t ==

4 if lbp == 0

5 then (tcost (fst t12) + tcost (snd t12))

6 else tcost (fst t12) &&

7 tval t == (tval (fst t12), tval (snd t12))}

8 @-}

9 evalPair :: (NFData a, NFData b)

10 => (Tick a, Tick b)

11 -> Int -> Tick (a, b)

12 t12 `evalPair` 0 = seqPair t12

13 t12 `evalPair` lbp = parPair t12 lbp

Fig. 35. Function evalPair
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Function seqPair The definition of the seqPair function is shown in the Figure
36. The seqPair function takes a pair xy0 consisting of ticks as argument and
returns the result of the sequential evaluation of the pair.

The evalTuple2 function takes the first and second evaluation strategies of a
two-element tuple and returns the evaluation strategy of the two-element tuple.
Assuming that the first and second are evaluated to normal form by rdeepseq,
the elements of the pair are evaluated sequentially. The evaluation results t1

and t2 are each of type Tick, so they are decomposed, their tcosts are added,
and tval is returned as a pair.

1 {-@ seqPair :: t12:(Tick a, Tick b)

2 -> { t:Tick (a, b) |

3 tcost t == tcost (fst t12) + tcost (snd t12) &&

4 tval t == (tval (fst t12), tval (snd t12))}

5 @-}

6 seqPair :: (NFData a, NFData b)

7 => (Tick a, Tick b) -> Tick (a, b)

8 seqPair xy0 =

9 Tick (tcost t1 + tcost t2) (tval t1, tval t2)

10 where

11 (t1, t2) =

12 xy0 `usingStrategy`

13 evalTuple2 rdeepseq rdeepseq

Fig. 36. Function seqPair

Function parPair The definition of the parPair function is shown in Figure
37. The parPair function takes as arguments a pair xyl consisting of ticks and
lbp, the logarithm of the number of processors, and evaluates them in parallel,
returning the result. The logarithm of the number of processors is used to verify
that it is positive, i.e., that there are available processors, and is not used for
processing. It has much in common with the seqPair function, except that it
performs parallel processing by adding rparWith before rdeeepseq as a strategy
for evaluating the first element, and it uses only t1 to calculate tcost.

The parPair function assumes that the tcost of the first element of the
pair is greater than the second element as an implicit constraint that is not a
refinement type constraint. This is to simplify inference by assigning the first
tcost as the resulting tcost.

We will consider the case where the implementation is such that the one with
the larger tcost is adopted. Even with such an implementation, inferences can
be made when the left and right tcosts match, as in the case of the pow2Par

function. On the other hand, in the case of the fibPar function, the left and
right tcosts do not match, and furthermore, the SMT solver cannot infer which
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of the left and right tcosts is larger. Therefore, as a temporary measure, we
chose to set an implicit constraint.

1 {-@ parPair :: t12:(Tick a, Tick b)

2 -> { lbp:Nat | lbp > 0 }

3 -> { t:Tick (a, b) |

4 tcost t == tcost (fst t12) &&

5 tval t == (tval (fst t12), tval (snd t12))}

6 @-}

7 parPair :: (NFData a, NFData b)

8 => (Tick a, Tick b) -> Int -> Tick (a, b)

9 parPair xyl _ = Tick (tcost t1) (tval t1, tval t2)

10 where

11 (t1, t2) =

12 xyl `usingStrategy`

13 evalTuple2 (rparWith rdeepseq) rdeepseq

Fig. 37. Function parPair

5.5 Function for List processing in parallel

Similar to parPair, which performs parallel processing on pairs, consider a func-
tion that performs parallel processing on lists.

Function parList The parList function is introduced in the previous section.
Here, we discuss the internal implementation.

The parList function specifies c as the cost of the tick and the value as
the result of executing the list xs in parallel. The usingStrategy function, the
parList function, and the rdeepseq function are used to evaluate the list xs

in parallel up to the normalized form. The go function is an auxiliary function
that retrieves a list from a list of ticks.

The cost c is not necessary if the largest tcost is taken from a list xs of
Tick types. However, in Liquid Haskell reasoning, it is difficult to take such a
value and use it as a constraint. Although it would be more natural to use xs as
the first argument, we use this order because the cost c must be passed first in
order to specify that all the elements of xs satisfy the condition.

For example, this problem could be solved if the list to be received were a
data structure representing a list of Tick types below a certain value. However,
the current form, which simply accepts a list of costs and Tick types, is more
convenient when combined with other operations.
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1 {-@ parList :: c:Nat

2 -> { xs:[{ t1:Tick a | tcost t1 <= c }] | xs /= [] }

3 -> { p:Nat | p >= length xs }

4 -> { t:Tick { os:[a] | length xs == length os } |

5 tcost t == c }

6 @-}

7 parList :: (NFData a)

8 => Int -> [Tick a] -> Int -> Tick [a]

9 parList c xs p =

10 Tick c (go xs `usingStrategy` parList rdeepseq)

11 where

12 {-@ go :: xs:[Tick a]

13 -> { ys:[a] | length xs == length ys } @-}

14 go :: [Tick a] -> [a]

15 go [] = []

16 go (x : xs) = cons (tval x) (go xs)

Fig. 38. Function parList

Function chunk The chunk function takes as input a positive number n and
m and a list xs of length n and returns a list consisting of m lists of length n.
The refinement type is used to specify the length of the list to be a specified
length. Here, the list is returned as a simple list of lists that are not wrapped in
a Tick type. However, it is possible that tcost should be recorded and returned
wrapped in a Tick type, since the parallel partitioning is part of the process.

1 {-@ chunk :: { n:Nat | n /= 0 }

2 -> { m:Nat | m /= 0 }

3 -> { xs:[a] | length xs == n * m }

4 -> { yss:[ { ys:[a] | length ys == n } ] |

5 length yss == m }

6 / [m]

7 @-}

8 chunk :: Int -> Int -> [a] -> [[a]]

9 chunk _ 1 xs = [xs]

10 chunk n m xs = cons as (chunk n (m -1) bs)

11 where

12 as = take n xs

13 bs = drop n xs

Fig. 39. Function chunk
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Function map The map function takes a cost c, a function f that returns a Tick
value, and a list xs; the function returns an array of Tick values as a result of
applying f to xs. Note that this function simply applies the processing of the
function f to each element of the list xs, and does not perform any parallel
processing based behavior. Passing a cost c guarantees that the tcost of the
resulting Tick type is less than or equal to c as a refinment type constraint.

1 {-@ map :: c:Nat

2 -> (a -> { t:Tick b | tcost t <= c })

3 -> xs:[a]

4 -> { ys:[{ t:Tick b | tcost t <= c }] |

5 length ys == length xs }

6 @-}

7 map :: Int -> (a -> Tick b) -> [a] -> [Tick b]

8 map c f [] = []

9 map c f (x : xs) = cons (f x) (map c f xs)

Fig. 40. Function map

Function mapParList The mapParList function is a function that uses the
parList and map functions internally. The function takes an positive integer n,
a list xsf of length n, a cost c, and a function f that returns the Tick type of
cost c. The function applies the function f to each element of xs in parallel and
returns a Tick value such that the list is of type tval. The tcost of the returned
Tick type is guaranteed to be c.

The second argument of the parList function is the list of ticks after the
map function has been applied. In other words, the way they are evaluated is
not determined at the stage of passing the list to the map function, but it is
determined that they will be evaluated in parallel by passing them as arguments
to the parList function. The tcost return value of the map function is discarded.

6 Validity based on parallel execution time analysis
results

In this study, we introduced a method for statically analyzing the number of
steps within a parallel program. To validate this method, we measured the actual
execution time of a parallel program and compared it to the number of steps
determined by our analysis. The term “execution time” in this context refers to
the elapsed time from the beginning to the end of the target computation within
the given execution environment. The execution environment is as follows. The
CPU is AMD Ryzen Threadripper 3970X, which is a 32-core processor, the size
of the RAM is 32 GB, and the operating system Ubuntu 20.04.2 LTS.
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1 {-@ mapParList :: { n:Nat | n > 0 }

2 -> { xs:[a] | length xs == n }

3 -> c:Nat

4 -> (a -> { t:Tick b | tcost t <= c })

5 -> { t:Tick { os:[b] | length xs == length os } |

6 tcost t == c }

7 @-}

8 mapParList :: (NFData b)

9 => Int -> [a] -> Int -> (a -> Tick b) -> Tick [b]

10 mapParList n xs c f = parList c (map c f xs) n

Fig. 41. Function mapParList

Cores 1st(s) 2nd(s) 3rd(s) Average(s) Analyzed Steps

1 = 20 10.987433 10.996685 11.023951 11.00269 134,217,727

2 = 21 7.094920 7.064267 7.036276 7.065154 67,108,864

4 = 22 4.063124 3.993696 4.005592 4.020804 33,554,433

8 = 23 2.457884 2.472770 2.487182 2.472612 16,777,218

16 = 24 1.869392 1.882695 1.882147 1.878078 8,388,611

32 = 25 2.216256 2.229249 2.196343 2.213949 4,194,308

Table 1. Execution times and analyzed the numbers of steps for a perfect binary tree
traversal

In GHC(Glasgow Haskell Compiler), the number of threads that can be run
in parallel at the same time can be specified with the runtime option -N. It is
recommended that this value be equal to the number of CPU cores. Since a
32-core CPU is used in this study, the value specified in -N, i.e., the assumed
number of processors, is varied from 1 to 32, and the execution time of each is
measured.

6.1 Case of Perfect binary tree traversal

The table 1 compares the three execution times, their average and the number
of analyzed steps in the traversal of a complete binary tree.

Here, the measurement covers the calculation of the maxPBT function in Sec-
tion 4.3 with the argument n = 27 and the argument lbp as the logarithm of 2
for the number of processors. However, the generation of the perfect binary tree
was done before and is not included in the execution time.

The number of processors was specified as 1, 2, 4, 8, 16, or 32,, and the argu-
ment lbp was specified as 0, 1, 2, 3, 4, or 5 accordingly.

A line graph with the number of processors on the horizontal axis and the
execution time and number of steps analyzed on the vertical axis is shown in
Figure 42.
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Fig. 42. Comparison between Execution times and analyzed the numbers of steps

The graph shows that as the number of processors (numbers of processors)
is increased, the execution time (time) tends to decrease as well as the number
of analyzed steps (step).

On the other hand, it is observed that the execution time for the case with
32 processors is not shorter than that for the case with 16 processors.

Furthermore, a scatter diagram is shown in which a regression line is drawn
with the number of steps analyzed on the horizontal axis and the execution time
on the vertical axis 43

Fig. 43. Scatter diagram of execution times and analyzed the numbers of steps

The correlation coefficient between execution time and the number of steps is
0.9939287316. However, caution must be exercised in interpreting this result, as
the small sample size (only six data points) may not provide sufficient evidence
to establish immediate practical relevance or significance.
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Cores 1st(s) 2nd(s) 3rd(s) Average(s) Analyzed Steps

1 13.727178 14.910259 13.647531 14.09499 1.6 × 109

2 7.563414 7.460836 7.429231 7.484494 8.0 × 108

4 4.087452 4.191272 4.068193 4.115639 4.0 × 108

5 3.335491 3.307790 3.386718 3.343333 3.2 × 108

8 2.330277 2.402992 2.358420 2.363896 2.0 × 108

10 1.926612 1.933136 1.911500 1.923749 1.6 × 108

16 1.356350 1.326441 1.350727 1.344506 1.0 × 108

20 1.289420 1.195688 1.184411 1.223173 8.0 × 107

32 1.223408 0.965334 1.026178 1.071640 5.0 × 107

Table 2. Execution times and analyzed the numbers of steps for parallel partitioning
of list processing

6.2 Case of parallel partitioning of list processing

The table 2 compares the execution time in parallel partitioning of list processing
with the number of analyzed steps.

Here we measured the computation of solving 16, 000 Sudoku problems by
dividing them by the number of processors using the mapParList function in
the 4.4 section. The number of processors was set to 1, 2, 4, 5, 8, 10, 16, 20, and
32, respectively, so that the number of processors could be evenly distributed on
each processor.

The line graph with the number of processors on the horizontal axis and the
execution time and the number of steps analyzed on the vertical axis is shown
in Figure 44.

Fig. 44. Comparison between Execution times and analyzed the numbers of steps

Furthermore, the scatter diagram in which the regression line is drawn with
the number of steps analyzed on the horizontal axis and the execution time on the
vertical axis is shown in Figure 45. The correlation coefficient between execution
time and number of steps was 0.9998209612. As in the aforementioned case, the
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Fig. 45. Scatter diagram of execution times and analyzed the numbers of steps

number of data is also small, so caution is required before directly linking the
correlation coefficient to usefulness.

6.3 Discussion on the appropriateness of adopting the PRAM
model

In this study, the Parallel Random-Access Machine (PRAM) was chosen as the
computational model for parallel computing. PRAM serves as an abstract model
that contemplates both time and space complexity of parallel algorithms by sim-
ulating the concurrent operation of multiple Random-Access Machines (RAMs).
RAM is a well-known computational model that permits constant-time access
to any memory location.

Contrastingly, Haskell’s memory model does not allow for constant-time ran-
dom access, differentiating it from the RAM model.

Another model worth mentioning in the context of parallel computation is
the directed acyclic graph (DAG) model. Similar to Parallel Haskell, the DAG
model abstracts the complex problem of scheduling tasks to processors. However,
this abstraction complicates the analysis of an algorithm’s time complexity.

While the PRAM model was selected in this study to simplify the analysis of
time complexity, there remains an opportunity to explore the applicability and
relevance of other computational models in future research.

7 Conclusion

In this study, we developed and implemented a method for statically analyzing
the execution time of parallel programs using Liquid Haskell. We applied this new
method to analyze the execution time of several parallel programs. Furthermore,
we executed these parallel programs and measured the elapsed time. The results
were reasonably consistent with the number of steps we analyzed, validating our
approach to some extent.
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Future work in this area includes applying the method proposed in this study
to an extended set of parallel program examples. This could range from typical
algorithms, such as fast sorting and merge sorting, to more practical, real-world
applications.

In addition, Liquid Haskell’s ability to facilitate manual proofs, unrestricted
by the limitations of automatic reasoning using proof combinators, provides an
opportunity for further exploration. In particular, an analysis of the timing dy-
namics of parallel programs when using proof combinators remains an area for
future investigation.

Furthermore, as highlighted in the Discussion section, there is potential to
consider the adoption of computational models other than PRAM. This opens
up avenues for exploration and potential enhancement of the current approach,
providing a more robust and flexible basis for parallel computing analysis.
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