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Abstract. Many studies in the past have proposed various methods
to detect protein complexes from protein-protein interaction networks
(PPINs) by applying clustering algorithms to the network, relying only
on the topology of the PPIN. However, PPINs have a high number of
false positives and false negatives, making them unreliable when used
alone to detect protein complexes. Moreover, not all proteins in a protein
complex interact with each other and not all proteins that interact with
each other are from the same complex. Thus, relying alone on the physical
interactions of proteins is not ideal for detecting protein complexes.
This study extends the idea of a method by Yong et al. called SWC,
where they integrated other heterogeneous data sources into the PPIN
to create a composite network and where each edge is weighted according
to its posterior co-complex probability. SWC, when combined with vari-
ous clustering algorithms, resulted in more accurate results in detecting
protein complexes.
This study attempts to improve SWC by integrating additional data
sources and by using a more advanced machine learning model called
gradient-boosted trees. The proposed method outperformed SWC in ev-
ery performance metric, often by a considerable margin in terms of
precision-recall AUC, Brier score loss, and log loss when predicting co-
complex edges. More importantly, it also outperformed SWC in terms of
precision-recall AUC when used together with the Markov Cluster algo-
rithm (MCL) to detect protein complexes. Lastly, it also outperformed
various unsupervised weighting methods in all the said performance eval-
uations. These evaluations were performed on two yeast PPINs.
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1 Background

Proteins are large molecules that are involved in many important functions and
cellular processes in our body. However, proteins very rarely act alone and in-
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stead, they interact with other proteins to perform their functions. The physical
interaction between two proteins is called a protein-protein interaction (PPI).
The collection of PPIs within an organism forms a large network called protein-
protein interaction network (PPIN).

Within this PPIN are subgraphs or clusters of PPIs called protein complexes.
Protein complexes are large multimolecular units, comprising proteins interact-
ing at the same time and place [38], that perform a specific cellular process.
Thus, identifying these protein complexes would help us understand the biolog-
ical processes within our cells.

Several developments in high-throughput experimental methods (e.g. TAP-
MS [33] and Y2H [48]) have resulted in the rise of genome-wide PPINs (inter-
actomes). The availability of these interactomes has encouraged researchers to
data mine them in order to computationally detect (predict) protein complexes.
Most of the protein complex detection methods developed so far transform the
problem of protein complex detection into a graph clustering problem. More
specifically, a PPIN is first represented as a large graph or network of proteins,
where the proteins are the vertices and their interactions are the edges. Then,
these complex detection methods cluster the said network into subgraphs, which
correspond to the predicted protein complexes.

However, due to the high-throughput nature of these experimental meth-
ods, PPINs contain a non-negligible amount of noise [13, 18], which ultimately
affects the performance of complex detection methods. This signifies the need
for integrating additional biological insights into these methods to increase their
accuracy.

2 Preliminaries

2.1 Graph Clustering

A PPIN can be represented as a graph G = (V,E,w), where V is the set of
vertices corresponding to the proteins, E ⊆ V × V is the set of edges corre-
sponding to the PPIs, and w : E → R≥0 is the edge weight of the PPI. Note
that w(vi, vj) = 0 if (vi, vj) /∈ E. Moreover, G can be represented as an adjacency
matrix A such that Aij = w(vi, vj).

These graph representations of PPINs allow us to perform graph clustering
algorithms to the network, which output clusters or subgraphs corresponding to
the detected protein complexes.

Markov Cluster Algorithm The Markov Cluster (MCL) algorithm [14, 44]
is one of the many graph clustering algorithms frequently applied in the context
of bioinformatics [15]. In fact, several studies have extended and modified the
algorithm, particularly for protein complex detection [4, 36, 39].

Given an undirected graph G and its corresponding adjacency matrix A, the
original MCL algorithm roughly works based on the following steps.
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1. First, matrix A is converted to a column-stochastic matrix M where each
of its column sums to 1. This is done by normalizing the columns of A.
Note that the entry Mij is the probability of walking from node j to node i
(transition probability).

2. The expansion operation is performed by matrix squaring M (i.e. Mexpand =
M ·M). This assigns new transition probabilities to all the existing edges by
expanding the reach of each node to other nodes in the graph.

3. The inflation operation is performed by taking the rth power of each entry
of the matrix Mexpand, then normalizing the columns of the resulting ma-
trix so that the resulting matrix is column-stochastic. This has the effect
of strengthening walks within a cluster and weakening walks between two
different clusters.

4. Repeat the process of expansion and inflation until a steady state is achieved.
5. The converged state of the column-stochastic matrix can be interpreted as

the clusters of the graph G.

In summary, the whole process is essentially a simulation of random walks
on the graph G. Moreover, the MCL algorithm has an inflation parameter that
can be set by the user to control the granularity of the resulting clusters.

2.2 Weighting Methods

Note that while the MCL algorithm can work on unweighted graphs, it has
been reported that the algorithm predicts more accurate clusters when used on
weighted protein networks. This is due to the high amount of noise in PPINs [13,
18], which significantly affects the performance of protein complex detection
methods that rely only on the topology of the protein network. Thus, several
weighting methods have been developed in the past to mitigate this issue.

2.3 Local Topology of Protein Pairs

Local-topology-based weighting schemes assume that protein pairs that share a
high number of common neighbors are more likely to interact with each other.
This assumption was supported by the findings of Chua et al. [10], where they
found that the majority (∼ 70%) of protein pairs that are level-1 or level-2
neighbors of each other share the same functions, and are thus more likely to
interact with each other.

Several weighting schemes based on common neighbors have been used and
developed. Among these are CD-Distance [7] and FS-Weight [10]. Despite their
simplicity, topology-based weighting schemes are effective in terms of improving
the performance of protein complex detection algorithms. For instance, a study
by Beltran et al. [4] has shown that using FS-Weight as a pre-processing step
significantly improves the performance of plain (unweighted) MLR-MCL with
balance [36] (a variant of MCL).

Liu et al. [24] further improved the performance of these topology-based
weighting schemes by proposing an iterative topological weighting method. The
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formula of this is shown below.

w(k)(u, v) =

∑
x∈Nu∩Nv

w(k−1)(x, u) +
∑

x∈Nu∩Nv
w(k−1)(x, v)∑

x∈Nu
w(k−1)(x, u) +

∑
x∈Nv

w(k−1)(x, v) + λ
(k)
u + λ

(k)
v

(1)

where w0(x, u) = 1 if (x, u) ∈ E ; otherwise, w0(x, u) = 0; and the neighbor set

Nu = {v|(u, v) ∈ E}. The λ
(k)
u and λ

(k)
v are the penalty terms used to penalize

proteins with very few immediate neighbors. In particular, they are defined as
follows.

λ(k)u = max

{
0,

∑
x∈V

∑
v∈Nx

w(k−1)(v, x)

|V |
−

∑
v∈Nu

w(k−1)(v, u)

}
(2)

The authors remarked that this iterative scoring method achieves the best
performance on k = 2 and that increasing the number of iterations further does
not improve its performance significantly.

In their other study, they used the said iterative weighting approach (called
iterative AdjustCD), together with their protein complex prediction algorithm
called CMC [25]. The results of this study have shown that iterative AdjustCD
significantly improves the performance of CMC in terms of predicting protein
complexes compared to the non-iterative version.

Experimental Reliability Weighting schemes based on experimental repro-
ducibility assume that PPIs reported in multiple independent experiments are
more reliable than those that are reported only once. One such method under
this category is MV scoring [22], which takes into account both experimental re-
producibility (number of experiments) and experimental plurality (throughput).
It has the formula:

MV (u, v) = Na
e

Ne∑
i=1

1

plurality(i)
(3)

where Ne is the number of independent experiments that report the PPI
(u, v) and plurality(i) is the number of reported PPIs of experiment i. Note
that a is a parameter that dictates how much weight should be given to the
experimental reproducibility factor (i.e. Ne) versus the experimental plurality
factor (plurality(i)). In the said study [22], the optimal value of a was exper-
imentally determined to be a = 2 (hence, this value was the one used in this
study).

The idea behind MV scoring is that PPIs reported in multiple experiments
(i.e. those with Ne > 1), as well as those that are reported in low-throughput
experiments (i.e. those with smaller values of plurality(i)), are given higher
scores. It is assumed here that PPIs reported in low-throughput (low plurality)
experiments are more reliable than those that are reported in high-throughput
ones.

In the said study, MV scoring was applied to four protein complex detection
algorithms and was shown to generally improve their performance.
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Gene Co-expression The idea behind gene co-expression weighting methods
is that a protein pair whose genes are highly co-expressed is more likely to
have an interaction than random protein pairs [5, 16] and are more likely to be
functionally associated [46].

One simple, yet popular method to measure the co-expression of two proteins
is by using the Pearson correlation coefficient (PCC) on the gene expressions of
proteins.

For instance, a study by Yu and Kong [49] used PCC to weight protein net-
works based on gene expression correlation. This weighting method was used
as a preprocessing step in their protein complex detection method. Given pro-
teins u, v ∈ V with gene expressions ugene exp = {xi} and vgene exp = {yi} for
i = 1, 2, 3, . . . , n at n time points, the PCC of the gene expression profiles of
proteins u and v is

PCC(u, v) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1 (xi − x)
2 ∑n

i=1 (yi − y)
2

(4)

where x and y are the mean gene expressions of u and v, respectively. In the
said study, negatively correlated protein pairs are removed from the network.
Moreover, the gene expression data used in the study is GSE3431 [43], which
contains 36 time points of gene expression profiles of yeast over three successive
metabolic cycles (12 time points per cycle).

Gene Ontology Semantic Similarity The Gene Ontology Consortium (GOC)
is a collaborative work that aims to provide comprehensive resources describing
the properties and functions of gene products (e.g. proteins) [2, 11]. It offers two
primary knowledgebases:

1. Gene Ontology (GO). The GO is a vocabulary of GO terms describing
a specific property of a gene product in terms of three domains: cellular
component (CC), biological process (BP), and molecular function (MF). It
is organized into a directed acyclic graph (DAG), where each node is a GO
term and each edge corresponds to a relationship (e.g. is a, part of, has part)
between two GO terms.

2. GO Annotations. A GO annotation is an association of a particular gene
product with a particular GO term. Several genomes of various organisms
have already been annotated with GO terms and are widely available (e.g.
the GO annotations for the Saccharomyces cerevisiae provided by Saccha-
romyces Genome Database (SGD) [9]).

A number of GO-based weighting schemes have been proposed over the years,
most of which are based on the concept of semantic similarity measures (SSMs).
In the context of GO, an SSM scores the similarity between two proteins by
getting the semantic similarity of the GO annotations of the two proteins.

One example of an SSM is the Topological Clustering Semantic Similarity
(TCSS) algorithm [19]. Because the GO is incomplete [2], the GO DAG is said
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to be unbalanced in the sense that some paths of the graph have little detail or
depth compared to others. TCSS takes into account this unbalanced nature of
GO DAG by clustering it into disjoint subgraphs. A protein pair belonging to
the same subgraph would have a higher score compared to a protein pair with
different subgraphs.

It is important to note that TCSS produces three scores for each protein pair,
one for each of the three domains of GO (i.e. cellular component (CC), biological
process (BP), and molecular function (MF)). In other words, for a protein pair
(u, v), its semantic similarity is

TCSSCC(u, v) = x (5)

TCSSBP (u, v) = y (6)

TCSSMF (u, v) = z (7)

where x, y, z are the SSMs of (u, v) in terms of CC, BP, and MF.
The authors of TCSS then compared the algorithm with other SSMs where

they evaluated the SSMs in terms of their ability to distinguish positive and
negative PPIs, as well as their correlation with gene expression and protein
families. Results generally and significantly favored TCSS over the other SSMs.

Supervised Weighting Methods Aside from the discussed unsupervised
weighting methods, many supervised weighting methods that integrate multi-
ple data sources or features together were also developed in the past.

However, some of these methods do not primarily focus on protein complex
detection. In particular, some of them focuses only on predicting interactions
and/or co-complex relationship between two proteins without applying in the
context of protein complex detection [1, 20, 31].

One supervised weighting method that primarily focuses on protein complex
detection is SWC [47], which is the main inspiration for this study. In the said
study, they integrated other heterogeneous data sources into the PPIN to create
a composite protein network. These data sources or features are:

– Topological weights of a combined PPIN which is weighted via iterative
AdjustCD [25]. The combined PPIN is the combination of all the PPIs from
BioGRID [40], IntAct [21], and MINT [23] (these databases were downloaded
in November 2011). Note that both direct (level 1) and indirect (level 2)
interactions were topologically weighted.

– Functional association scores from the STRING [42] database (downloaded
in January 2012), where only the scores greater than 0.5 were kept.

– Co-occurrence of protein pairs in the PubMed literature (downloaded in
January 2012), which is based on the formula:

CO OCCUR(u, v) =
|Au ∩Av|
|Au ∪Av|

(8)

where u, v ∈ V are proteins and Au, Av are the sets of PubMed publications
that contain u, v respectively.
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Note that SWC had a total of four features since direct and indirect topolog-
ical weights were treated as separate features. For brevity, we will refer to the
four features as TOPO, TOPO L2, STRING, and CO OCCUR throughout this
paper (they were called PPI, L2-PPI, STRING, and PUBMED, respectively in
the paper of SWC).

These four features are combined together to create a composite protein
network. Then, each edge in the network is weighted using a naive Bayes model
based on its posterior probability of belonging to the same complex. Using this
weighted network, six graph clustering algorithms were used to predict protein
complexes which include MCL [14, 44].

The authors compared SWC with another supervised weighting method that
uses LogitBoost [45], as well as other unsupervised weighting methods (iterative
AdjustCD and the STRING database). The results generally favored SWC on
both yeast and human composite protein networks.

The authors of SWC emphasized the issues that come along when only the
PPI data is used to predict protein complexes. Aside from the fact that PPINs
have a huge amount of noise, they remarked that not all proteins in a protein
complex interact with each other and not all proteins that interact with each
other are from the same complex. Thus, relying only on the topology of the PPIN
is not ideal for detecting protein complexes. The authors further emphasized that
SWC solves the aforementioned issues by enriching the original PPIN so that
new edges are added for protein pairs belonging to the same complex but do not
necessarily physically interact with each other.

3 Objectives of the Study

The objective of this study is to develop a weighting method for protein complex
detection, based on the idea of co-complex probability weighting as was done in
SWC. More specifically, the objectives are

1. to determine what additional biological data sources can be added to extend
SWC features to increase its performance;

2. to use a more advanced machine learning model for more accurate integration
of data sources; and

3. to analyze the individual importances of the biological data sources used.

4 Datasets

The following datasets were used in this study.

– The yeast composite protein network used in SWC [47] was used in this
study. This contains TOPO, TOPO L2, STRING, and CO OCCUR features
as discussed in Section 2.3.

– As a secondary protein network, the Database of Interacting Proteins [35]
PPIN was also used (February 2017 version). Note that, unlike the previous
protein network, the DIP PPIN is much smaller and more recent.
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– For the gene expression data, GSE3431 [43] was used, which was downloaded
from the Saccharomyces Genome Database [9] (SGD) website. This dataset
contains 36 time points of gene expression profiles of yeast.

– For the Gene Ontology (GO) data and annotations, the data were down-
loaded from the Gene Ontology website. In particular, the October 31, 2011
version of GO was used, while the October 29, 2011 version of yeast GO anno-
tations was used. These versions were particularly selected in order to ensure
fairness since the external data sources provided by SWC (i.e. STRING and
CO OCCUR) are late-2011 to early-2012 data.

– The database iRefIndex [32] (version 19.0, release date: August 22, 2022) was
also used in this study. This database is a combination of various protein
interaction databases, which are BIND [3], BioGRID [41], CORUM [34],
DIP [35], HPRD [29], IntAct [26], MINT [23], MPact [17], MPPI [27], and
OPHID [6]. While the version of this data is very recent, only the publication
entries before 2012 were selected from this database, for the same reason
stated in the previous item (i.e. to ensure fairness).

– The CYC2008 dataset [30] was used as the gold standard protein complex
dataset. This dataset contains 408 verified Saccharomyces cerevisiae protein
complexes backed by highly reliable small-scale studies.

5 Building the Composite Network

In this study, two yeast PPINs were used. First is the “Combined PPIN” used
in SWC, which was obtained by combining BioGRID [40], IntAct [21], and
MINT [23]. Second is a more recent and much smaller PPIN, which is the
DIP [35] PPIN. The UniProt [12] Retrieve/ID mapping service was used to
map each UniProtKB AC/ID in the DIP PPIN to its corresponding systematic
name.

Both of these PPINs were filtered such that protein pairs with no common
neighbors were removed from the network. This process resulted in the Combined
PPIN having a total of 106,328 direct (level 1) PPIs and the DIP PPIN having
a total of direct 12,509 PPIs.

Using the features that will be discussed in the next sections, two composite
protein networks were derived from these two PPINs. For brevity, let’s call the
first one derived from the Combined PPIN as the “Original” composite network,
and the second one derived from the DIP PPIN as the “DIP” composite network.

5.1 Using the Features of SWC

Given an unweighted PPIN Gppi = (Vppi, Eppi), a base composite network Gbase

= (V,E, Fbase) is built using the four features of SWC (i.e. TOPO, TOPO L2,
STRING, and CO OCCUR). Note that Vppi ⊆ V and Eppi ⊆ E since new edges
that are not present in the PPIN are added to the composite network based on
the features. Moreover, Fbase = {TOPO, TOPO L2, STRING, CO OCCUR}
are the four features of SWC. Each feature F ∈ Fbase maps each edge (u, v) ∈ E

A Supervised Co-complex Probability Weighting of Yeast 349



to a score s ≥ 0 depending on the association of the edge on that feature. If
there is no association between u and v on a certain feature, then their score is
set to 0 on that feature. In other words,

F (u, v) =

{
0, if (u, v) ∈ E is not related at feature F

s, otherwise
(9)

For instance, we can express a direct PPI (u, v) whose topological weight
(based on iterative AdjustCD [25]) is 0.5 as TOPO(u, v) = 0.5. The same nota-
tion goes with all the other features.

The feature scores for TOPO, TOPO L2, STRING, and CO OCCUR were al-
ready provided by the authors of SWC for the “Original” composite network. The
“DIP” composite network, however, needed to be topologically re-weighted to get
its TOPO and TOPO L2 scores. The process of getting TOPO and TOPO L2
scores for the DIP composite network is the same as the one done in SWC.

5.2 Extending the Features of SWC

In this study, additional features were added, namely: REL, CO EXP, GO CC,
GO BP, and GO MF. For brevity, let

Fnew = { REL, CO EXP, GO CC, GO BP, GO MF } (10)

REL. This feature is based on experimental reliability, in particular, MV Scor-
ing [22]. This feature uses the iRefIndex [32] database to retrieve the experimen-
tal reproducibility of each PPI and the experimental plurality of each experiment.

Since MV Scoring is unbounded while the rest of the features are normalized,
additional modifications were done on the MV Scoring to normalize it to the scale
between 0 and 1.

Let X = lnMV (u, v) and X and SD be the mean and standard deviation of
X. Let the standardized, log-transformed MV scoring be

MVnew(u, v) =
X −X
SD

(11)

Then, MVnew is bounded such that any value that exceeds the third stan-
dard deviation is set to the third standard deviation. Let this operation be
Bound(MVnew). After bounding, Bound(MVnew) is then normalized. Let this
operation be Norm(Bound(MVnew)). The result of the post-processes described
above is the REL feature,

REL(u, v) = Norm(Bound(MVnew)) (12)

CO EXP. Using GSE3431 [43] gene expression data, protein pairs are weighted
via PCC,

CO EXP (u, v) = PCC(u, v) (13)
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GO CC, GO BP, and GO MF. These features are derived from the output SSMs
of TCSS [19] using the GO and GO annotation data described in Section 4.

GO CC(u, v) = TCSSCC(u, v) (14)

GO BP (u, v) = TCSSBP (u, v) (15)

GO MF (u, v) = TCSSMF (u, v) (16)

Thus, the full list of features used in this study is

Ffull = Fbase ∪ Fnew (17)

Using all these features, the full composite network G is constructed from
the base composite network Gbase. This is done by adding the new features to
Gbase, that is, each edge in Gbase was scored according to each feature in Fnew.
In other words, G = (V,E, Ffull). Note that no new edges were added to the base
composite network Gbase (i.e. G and Gbase have the same vertices and edges)
since only additional feature scores of existing edges were added.

The composite network can be visualized in tabular form, as is shown in
Table 1.

PROTEIN U PROTEIN V TOPO TOPO L2 STRING . . .

YDR098C YDR130C 0.67 0.98 0.72 . . .
YDR098C YHR069C 0.40 0.00 0.12 . . .
YDR130C YHR069C 0.51 0.32 0.99 . . .

...
...

...
...

...
. . .

Table 1. An example of a composite protein network.

Table 2 shows the summary of the two composite networks. The second
column is the PPIN from which the composite network was built. The third
column is the number of direct (level 1) PPIs after filtering out protein pairs
with no common neighbors from the PPIN. The fourth column is the number of
edges of the composite network after integrating all the features.

Composite Network Source PPIN Num. of PPIs Num. of edges

Original Combined PPIN 106,328 531,800
DIP DIP PPIN 12,509 349,795

Table 2. Summarizing statistics of the two composite networks.
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6 Weighting the Composite Network

The composite network G can now be weighted using all the features. In partic-
ular, each edge in G is weighted according to its co-complex probability, which
is the same idea used in SWC [47].

However, this study used a different model from the model used in SWC,
which is naive Bayes. The problem with naive Bayes is its reliance on the assump-
tion that the features are independent, which makes the probability estimates
of this model frequently inaccurate.

Hence, this study proposes the use of another machine learning model called
gradient-boosted decision trees (GBDT), more specifically, using XGBoost [8].
The main reason for choosing this model is based on the fact that XGBoost was
shown to dominate and even outperform various state-of-the-art deep learning
models in tabular datasets [37], making this model particularly fitting to this
study since composite networks are tabular in form.

For brevity, let’s call the weighting method proposed in this study as XGW.

6.1 XGBoost

XGBoost [8] is a software library implementation of gradient boosting. Gradient
boosting works by creating a series of “weak models” (usually classification and
regression trees (CART)), with each successive model built on top of the errors
of the previous model. This series of weak models are then added together to
make a final prediction. Mathematically, this can be written as [8]

ŷi =
K∑

k=1

fk(xi), fk ∈ F (18)

where K is the number of trees, fk is a tree (i.e. one of the “weak models”),
and xi and ŷi are the features and predicted value of sample i, respectively.

One important difference between XGBoost and traditional GBDTs is the
regularized objective function, which allows us to control overfitting. In partic-
ular, the objective function to be minimized [8] is

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (19)

where Ω(f) = γT +
1

2
λw2 (20)

where l is any differentiable loss function and Ω (which depends on γ and λ)
is the regularization term to control overfitting.

In this study, XGBoost was used for binary classification, that is, it attempts
to classify each edge in the network whether it is a co-complex edge or a non-
co-complex edge. In particular, XGBoost was used to predict the co-complex
probability of an edge (u, v) by setting the loss function l to be the loss function
used in binary logistic regression (i.e. log loss, see Equation 22). This allows
XGBoost to output class probabilities, not labels. The predicted co-complex
probability of an edge is then set as the final weight of that edge.
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6.2 Training

Let G = (V,E, Ffull) be the composite protein network. Let T = {T1, T2, . . . , Tn}
be the set of n training protein complexes selected from CYC2008 [30] and let
Tprot be the set of all proteins in T . A subset D of E is used as the training
samples for the XGBoost classifier, where D = {(u, v) | (u, v) ∈ E∧u, v ∈ Tprot}.
Each edge (u, v) ∈ D is labeled as 1 if it is a co-complex and 0 if it is non-co-
complex, according to the set of training complexes. In other words, each edge
(u, v) ∈ D is labeled as 1 if ∃Ti ∈ T : u, v ∈ Ti and 0 otherwise.

Using these labeled samples and their corresponding feature scores Ffull,
XGBoost learns its parameters which are the trees fi. After learning the param-
eters, each edge (u, v) ∈ E is weighted according to its probability of belonging
to class label 1 (co-complex probability).

Note that while XGW and SWC have exactly the same set of training com-
plexes (and hence, the same positive training samples), they differ in how they
generate their set of negative training samples (negative training samples need
to be generated since the set of training complexes only provide positive training
samples, i.e. the co-complex edges).

During the training phase, SWC labels all the edges of the entire network
(E), while XGW labels only the edges in D ⊆ E. What this means is that SWC
treats all the other edges aside from the co-complex training pairs as non-co-
complex edges, which results in mislabeling some edges since some of them are
in reality, co-complex edges (but which are not part of the training complexes).
The labeling approach used in XGW mitigates this issue by labeling only a
subset of the entire network, in particular, labeling only the edges whose both
proteins can be found in Tprot. In other words, XGW assumes that a protein pair
(u, v) ∈ Tprot×Tprot that is not a co-complex pair in T , is a true non-co-complex
pair. Experiments have shown that using this labeling approach is a lot more
effective than the labeling approach used in the SWC study.

7 Protein Complex Detection

After weighting, the MCL algorithm is run on two versions of the weighted
composite protein network. The first version is the protein network with all the
edges present. The second version is a filtered version where only the top 20,000
edges were selected (as was done in the SWC study).

This whole process then produces two sets of predicted clusters per weighted
composite network (one using all the edges, another using only 20,000 edges).
Each predicted cluster C was then scored according to the following cluster
density formula adopted from SWC:

dens(C) =

∑
u∈C,v∈C w(u, v)

|C|(|C| − 1)
(21)

These cluster density scores were then used in performance evaluation, which
will be discussed in the next section.
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Moreover, four different inflation parameters were used in running the MCL
algorithm. These are I = 2, 3, 4, 5.

8 Performance Evaluation Setup

The performance of the two supervised weighting methods (XGW and SWC)
was compared together with all the unsupervised weighting methods used (the
nine features themselves).

Moreover, another set of unsupervised weighting methods (called super fea-
tures, for brevity) were introduced. These super features are essentially hand-
picked combinations of two or more features, which are averaged together.

8.1 Super features

The following is the list of super features used in this study.

1. ALL. This is the mean of all the nine features.
2. GO SS. This is the mean of all the GO SSMs (i.e. GO CC, GO BP, and

GO MF).
3. TOPOS. This is the mean of TOPO and TOPO L2.
4. ASSOC. This is the mean of STRING, CO OCCUR, REL, and CO EXP.
5. TOPO GO. This is the mean of TOPO, GO CC, GO BP, and GO MF.
6. TOPO CO EXP. This is the mean of TOPO and CO EXP.
7. TOPO GO CO EXP. This is the mean of TOPO, GO CC, GO BP, GO MF,

and CO EXP.

Essentially, the protein network is weighted according to these super features
as well, aside from the aforementioned supervised and unsupervised weighting
methods.

Thus, in total, there are 19 weighting methods that were evaluated (two
supervised methods, nine features, seven super features, and one unweighted
method). Note that the unweighted method is essentially just the (filtered) PPIN
(that is, PPIs with no common neighbors are removed) where all its scores are
set to 1.

8.2 Cross-validation

Performance evaluations were done on 10 rounds of cross-validation. In each
round, 134 (that is, 90% out of 149) protein complexes of size greater than
three are selected from CYC2008 as the set of testing complexes. The rest of
the unselected complexes (n = 274 complexes) were used for training. Note that
only 15 of the 274 training complexes are large (size greater than three), while
the rest are small (size is either two or three proteins). For XGW, training is
done using all the features Ffull, while for SWC, only on Fbase.

In each round, the following performance evaluations were conducted

– Classification of co-complex edges.
– Prediction of protein complexes when combined with the MCL algorithm.
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8.3 XGBoost Hyperparameters

A hyperparameter search in each cross-validation round using the training sam-
ples was also performed with the following values

– max depth: {3, 4}
– gamma: {0, 0.5}
– lambda: {50, 100}
– subsample: {0.6, 0.8}
– colsample bytree: {0.6, 0.8}

Tuning was done via five-fold cross-validation grid searching on the training
set using scikit-learn [28]. Moreover, the number of boosting rounds and the
learning rate were set to 1000 and 0.01, respectively, while the objective function
was set to binary:logistic so that the model outputs class probabilities.

These parameters were selected to make the model as conservative as pos-
sible (that is, to avoid overfitting). For instance, the lambda (λ) regularization
parameter was set to a high value. This is because most of the training com-
plexes are small while all of the testing complexes are large, which means that
the training and testing datasets are vastly different. Strongly regularizing the
model will help prevent it from overfitting to small complexes in order to better
predict large complexes.

9 Predicting Co-complex Edges

For co-complex edge classification, three performance evaluation metrics were
computed for each of the 19 weighting methods, which were averaged over the
10 rounds of cross-validation. To eliminate the bias of supervised methods in
classifying training co-complex edges well, training co-complex edges were not
included in the calculation of the following metrics.

– Log loss is a measure quantifying the difference between the actual class of
a sample and its predicted probability. It is defined as

Llog(y, p) = −(y log(p) + (1− y) log(1− p)) (22)

where y ∈ {0, 1} is the true label and p = Pr(y = 1) is the probability
estimate.
Here, the lower the log loss, the better the performance of the method.

– Brier score loss is similar to log loss in that it measures the mean squared
difference between the actual class of a sample and its predicted probability
as well. It is defined as

BS =
1

nsamples

nsamples−1∑
i=0

(yi − pi)2 (23)

Here, the lower the Brier score loss, the better the performance of the
method.
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– The precision-recall area under the curve (PR AUC) is a summarizing statis-
tic of the precision-recall curve, which measures the tradeoff between preci-
sion and recall at different thresholds.
Here, the higher the PR AUC, the better the performance of the method.

9.1 Log loss and Brier score loss

Figure 1 shows the top 10 weighting methods in terms of log loss and Brier
score loss for both the composite protein networks. As expected, the two super-
vised weighting methods topped the performance evaluation. More importantly,
XGW significantly outperformed all the other weighting methods in both com-
posite networks, including SWC. Another thing to note is that all of the top
unsupervised weighting methods were super features, indicating that a simple
average of multiple features is effective for co-complex edge classification.

Fig. 1. Log loss and Brier score loss of the top 10 weighting methods for the Original
and DIP composite network in terms of co-complex edge classification.

9.2 Precision-Recall Area Under the Curve

Figure 2 shows the top 10 weighting methods in terms of precision-recall area
under the curve for both composite protein networks. Here, XGW ranked at
least top two in terms of this metric (in the case of the DIP composite network,
its score is very close to the score of the top method, which is GO CC). It is
important to note, however, that while GO CC performed well in this metric, it
performed relatively lower when it comes to log loss and Brier score loss; hence,
it is inconsistent.

Another surprising result is the low rank of SWC on this metric, which may be
attributed to the fact that naive Bayes models are bad estimators of probability.
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Fig. 2. The precision-recall area under the curve of the top 10 weighting methods for
the Original and DIP composite networks in terms of co-complex edge classification.

The consistently high performance of XGW across all three performance
metrics shows that XGW is an effective method for classifying co-complex edges.

10 Predicting Complexes

Next, the performance of the 19 weighting methods when used with the MCL
algorithm to predict protein complexes was evaluated. For this evaluation, the
evaluation setup performed in the SWC study [47] was adopted.

A predicted cluster Pi is said to match a protein complex Cj if

JaccardIndex(Pi, Cj) =
|Pi ∩ Cj |
|Pi ∪ Cj |

≥ match thresh (24)

Following the precision and recall formula in [47], we have

Recalld =
|{Ci | C i ∈ C ∧ ∃Pj ∈ P, dens(Pj) ≥ d, Pj

⊗
Ci}|

|C|
(25)

Precd =

|{Pj | Pj ∈ P, dens(Pj) ≥ d ∧ ∃Ci ∈ C,Ci

⊗
Pj}|

|{Pk | Pk ∈ P, dens(Pk) ≥ d ∧ (@Ti ∈ T, Ti
⊗
Pk ∨ ∃Ci ∈ C,Ci

⊗
Pk)}|

(26)

where C is the set of test protein complexes, P is the set of predicted protein
complexes, T is the set of training protein complexes, and P

⊗
C means cluster

P matches complex C.
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The precision and recall were computed under different cluster score thresh-
olds d. More specifically, they were computed for these values of d:

d = {0, 0.01, 0.02, 0.03, . . . , 0.99, 1.0} (27)

.
As a summarizing statistic of the precision-recall curves, the AUC of the

PR curve was computed across the 10 cross-validation rounds and was averaged
across all rounds and across all the inflation parameter settings of MCL (see
Section 7 for the MCL inflation parameter settings).

The precision-recall AUC was computed on four different scenarios:

– Using only the top 20,000 edges and with a match thresh = 0.5 (which is
labeled as 20k 050 on the following graphs)

– Using all the edges and with a match thresh = 0.5 (which is labeled as
all 050)

– Using only the top 20,000 edges and with a match thresh = 0.75 (which is
labeled as 20k 075)

– Using all the edges and with a match thresh = 0.75 (which is labeled as
all 075

Figure 3 shows the performance of the top eight weighting methods when
used with the MCL algorithm to predict protein complexes for the two composite
protein networks.

Fig. 3. The Precision-Recall Area under the curve of the top eight weighting methods
for the Original and DIP composite networks in terms of protein complex detection.

XGW ranked first in both the composite protein networks while SWC ranked
second. These supervised weighting methods ranked high because they weight
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each edge based on co-complex probability. Another unsupervised weighting
method that performed well is ALL. This signifies that a simple averaging of
multiple data sources can achieve decent protein complex detection performance,
although not quite as accurate as the supervised weighting methods.

Surprisingly, despite not being a top method in terms of co-complex edge
classification, the feature TOPO performed relatively well for protein complex
detection. This is consistent with the findings of other studies that show signifi-
cant improvement in protein complex detection when using topological weighting
such as FS-Weight [10], AdjustCD [25], and CD-Distance [7].

11 Feature Importances

Aside from the discussed performance evaluations, the importances of the fea-
tures used were also estimated. XGBoost automatically computes feature impor-
tances based on the amount of accuracy gained when a certain feature is used
to split a branch of a tree. This provides a rough estimate of the importance of
each feature in predicting the target value (i.e. whether an edge is co-complex
or not).

Figure 4 shows the importance of each feature in both the composite net-
works. As you can see, GO CC is the most significant, indicating that the colo-
calization of two proteins is a good predictor if they belong to the same complex.
Indeed, this is intuitively true since two proteins can only be a member of a pro-
tein complex if they are located closely to each other. Moreover, the STRING
feature was also a good predictor. This is expected since it is a highly established
database of protein pair functional association that uses multiple evidence types.

Fig. 4. Feature importances on the Original and DIP composite network.

One surprising result is the fact that the topological features, TOPO and
TOPO L2, were relatively less important compared to others. This is rather in-
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teresting as it directly contradicts the high performance of TOPO in the protein
complex detection evaluation in the previous section.

However, note that XGBoost calculates feature importances based on ac-
curacy gain when predicting co-complex edges (not protein complexes). Thus,
this finding is still consistent with the findings in co-complex edge classification
in Section 9, which is the fact that TOPO is not one of the top predictors for
co-complex edge classification.

The low performance of TOPO on co-complex edge classification, as well
as its low feature importance, may be due to the fact that PPINs have a high
amount of noise and/or the fact that not all proteins belonging to the same
complex interact with each other.

12 Conclusion

In this paper, a supervised weighting method using XGBoost (called XGW)
was proposed to weight two composite protein networks based on co-complex
probability. XGW outperformed SWC, another supervised weighting method,
in all the performance evaluation metrics. This is because XGW extends the
features of SWC by using other published unsupervised weighting methods in the
literature. In addition, XGW also uses a more advanced machine learning model.
With these extensions, more accurate co-complex probability estimates were
achieved. More specifically, XGW outperformed SWC in terms of co-complex
edge classification and protein complex detection.

Moreover, similar to SWC, XGW also offers a tool to visualize the impor-
tances of the features used. The feature importances were calculated based on
how much accuracy is gained when a feature is used to split a branch. This allows
us to judge what features are noisy and what features are relevant in predicting
co-complex edges.

13 Future Directions

While the study offers promising results, further improvements are still needed.
First, a more extensive hyperparameter tuning is needed for XGBoost in order to
gain better performance and generalization for other protein networks. Second,
XGW needs to be applied to other clustering algorithms as well, not just MCL,
in order to determine if it performs well with other clustering algorithms. Third,
a core-attachment scheme may be used as an additional feature/post-processing
step such as the one used in [4, 39]. Moreover, the insights gained from the
feature importances results may be used for feature selection to select only the
most important and relevant features. Lastly, it would also be interesting to
apply this weighting method to protein networks of other species as well to see
if it generalizes well.
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