
 

 

.  

 

 

 
© The Author(s) 2024
J. Caro et al. (eds.), Proceedings of the Workshop on Computation: Theory and Practice (WCTP 2023), Atlantis
Highlights in Computer Sciences 20,
https://doi.org/10.2991/978-94-6463-388-7_19

Reset Profiles and Classical Soundness in
Robustness Diagrams with Loop and Time

Controls

Jasmine Malinao1,� and Richelle Ann Juayong2

1 Division of Natural Sciences and Mathematics, University of the Philippines
Tacloban College, Tacloban City, Leyte, Philippines,

jamalinao1@up.edu.ph,
2 Department of Computer Science, College of Engineering, University of the

Philippines, Diliman, Quezon City, Philippines

Abstract. This study establishes concepts and strategies for the ver-
ification of classical soundness of Robustness Diagrams with Loop and
Time Controls(RDLT) that contain reset and join profiles. In contrast to
other well-known workflow models such as BPMN, YAWL, Petri Nets,
and UML Diagrams, RDLTs are powerful modelling tools that can cap-
ture all workflow dimensions, i.e. resource, process, and case, without any
concerns on concept excess, the lack of support for explicit representation
of data and rules, process orchestrations, and information hiding. Thus,
RDLTs have found use in system representation for various real-world
systems in different fields. These reset profiles in RDLTs and their mech-
anisms that execute system processes induce a multi-level management
of information and control in its system representation. With this, pre-
vious literature had only focused on RDLTs with no resets so to avoid
being encumbered by the multi-level aspect of RDLTs while perform-
ing model verification. Through this research, we provide extensions to
such literature so that we are now able to manage this multi-level aspect
RDLTs while also establishing their impact and relationship with vari-
ous types of join and neighborhood structures in the context of verifying
classical soundness of RDLTs. As a point of validation of our strategies,
we benchmark the derivable activities in the input RDLT with its corre-
sponding model abstractions. Lastly, we demonstrate and prove cases for
which these abstractions help hasten the verification process or impose
all abstractions to be used in the verification of the input RDLT. Fi-
nally, we provide the time and space complexity in determining classical
soundness of RDLTs with such resets, joins, and neighborhood profiles,
as well as pose open problems on related matters to the community.
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1 INTRODUCTION

Robustness Diagram with Loop and Time Controls(RDLT) are multi-dimensional
workflow models that had been used to represent real-world systems such as
the integrated disease surveillance and response system in the country[1], Heat-
ing, Ventilation and Air-conditioning systems[2–4], and Fujitsu Ten’s Computer
Aided Multi-Analysis System Auto Test Tool (CATT)[11]. All the workflow di-
mensions, i.e. resource, process, and case, as defined in [5], can be represented
in RDLT. Moreover, RDLTs also provide mechanisms to perform reset tasks in
its components. This reset allows a wider capacity of control for system repre-
sentation as well as volatility profiles if and when system designers would need
them for system representation.

Other well-known workflow models such as the Business Process Model and
Notation(BPMN)[6] and UML Diagrams, like RDLTs, do offer the capacity to
represent all real-workflow dimensions in their models. However, [7] has shown
the BPMN suffers from concept excess such that modellers and nontechnical
users erroneously use and/or interpret another notation in BPMN in place of the
appropriate one, errors in the use of multi-merges and the presence of deadlocks,
and challenges in information hiding, among others. Meanwhile, UML Diagrams
gravely lack supporting formal methods on model transformation and model
verification so that we are able to establish workflow properties in them[8].

There had been techniques that are targeted to decompose RDLTs into one-
or two-dimensional workflow models such as Workflow Nets, Petri Nets, a set
of UML Diagrams, and matrix representations for the purpose of model simpli-
fication and/or verification of model properties[11–13, 16–18]. Model properties
such soundness, free-choiceness, conflict-freeness, etc., defined for Workflow Nets
and Petri Nets[5, 9, 10], had been adopted and extended for RDLTs since RDLTs
were first introduced in [11]. These properties, and verification thereof, are im-
portant in the field of system design and analysis as they become mechanisms
for which computer science practitioners, and in general, decision-makers of sys-
tem planning, design, implementation, and deployment determine a criterion of
fitness or suitability of models to certain environments and/or use. For example,
the property of classical soundness in Workflow Nets require that the model rep-
resenting a system observes (a) proper termination of every process and case it
executes, as well as (b)liveness to ensure that every component of the model is
reachable such that no deadlocks or livelocks, are present in the system. When-
ever such requirements are deemed to be limiting for system designers, they can
opt to create models that can be verified for relaxed soundness, i.e. they allow
termination for some processes despite having other ongoing processes that has
not/cannot be completed in the model. It may also be the case they opt for the
other notions of soundness, e.g. weak soundness, k-soundness, up-to-k soundness,
generalized soundness, lazy soundness, or easy soundness[5] for system represen-
tation depending on their system requirements and/or preference.

Recently, literature targeting specific types of soundness, e.g. classical and
relaxed soundness[5], had been also adopted and defined in RDLTs[16, 19]. How-
ever, [19] only considered RDLTs without the inclusion and consideration of the
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presence of reset-bound subsystems(RBS) in them. Thus, it is the goal of our
research to extend the concepts of the said paper to include RDLTs with RBS.

Taking inspiration from model decomposition by way of the vertex simplifi-
cation of RDLTs in [11], we propose in this research an expanded technique of
such simplification on RDLTs with RBS to transform them into its “simpler”
abstractions. These abstractions are RDLTs themselves with no RBS, yet they
preserve the connectivity and reusability of the components(or their abstrac-
tions) from the original output. We also provide in this study a mechanism to
gauge the consistency of the original input RDLT to its abstractions with re-
spect to the information on the system activities that are present among them.
Furthermore, by using these RDLT abstractions, we are then able to reuse the
existing literature on model verification techniques of RDLTs with no RBS to
help verify for classical soundness in the input RDLT with RBS. Lastly, we es-
tablish the structures inside RDLTs with RBS that can influence the strategies
on verifying classical soundness for them, e.g. type-alikeness of CAs and their
escape arcs, establishing the use of CAs and PCAs, cases when one or both of
these simpler abstractions becomes sufficient for verifying the input RDLT.

1.1 Workflow Nets with Resets and Soundness

Petri Nets and Workflow Nets[5] are two of the most widely known and mature
tools for system modelling and model verification, albeit targeted mostly on
the process and case dimension representation. There are model properties[9]
for these classical models as well as similar models, e.g. YAWL (Yet Another
Workflow Language)[14], that can include cancellation region that can disable
or withdraw the execution of (ongoing) processes[10] in them. However, with
such models having both cancellation regions and OR-joins, classical soundness
becomes undecidable[14, 15]. This complexity is mainly attributed to (a) the
dependence of nonlocal information that is used to trigger cancellations in the
model, and (b) the semantics of the OR-joins that is not capable of realizing
such information when resolving the processes leading to those joins.

In a similar note, the work in [16], where an input RDLT with RBS can be
decomposed into a Workflow Net with reset arcs, avoids producing this nonlocal
information in the latter due to the inherent design of RDLTs. That is, con-
nectedness of non-RBS components that causes resets, i.e. out-bridges, in RBS
components guarantees a well-established connectivity of their counterparts in
these Workflow Nets. However, there is still an existing gap that is yet to be
resolved in literature with regard to the replenishment of tokens in the cancella-
tion region. Without such replenishment, this decomposition still incur certain
behaviors in these Nets which diverge from that of their input RDLT.

2 RDLT MODELLING AND VERIFICATION

In this section, we revisit the fundamentals in RDLT modelling and verification.
We shall mainly focus on the extraction of activities that are represented in
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an RDLT model of some system as established in [3]. Thereafter, we reiterate
soundness of RDLT that is consistent with that of Workflow Nets. Finally, we
present various techniques and results in literature on verifying such property in
RDLTs as well as structural profiles that help satisfy its requirements.

2.1 Robustness Diagram with Loop and Time Controls

Definition 1. (Robustness Diagram with Loop and Time Controls[3])
A Robustness Diagram with Loop and Time Controls(RDLT) is a graph repre-
sentation R of a system that is defined as R � �V,E,T,M� where

– V is a finite set of vertices where every vertex is either a boundary or entity
object, or a controller. An object corresponds to a resource, e.g. person, file
system, table, etc., while a controller corresponds to a task in a system.

– E is finite set of arcs such where no two objects are connected to each other.
Furthermore, every arc �x, y� has following attributes:
Y C � E � Σ 8 �ε� where Σ is a finite non-empty set of symbols and ε is
the empty string. C�x, y� > Σ means that C�x, y� is a condition that is
required to be satisfied, e.g. input/output requirement, to proceed from x
to y. Meanwhile, C�x, y� � ε means that there is no condition imposed
by �x, y� or signifies that x is the owner object of the controller y.

Y L � E � IN is the maximum number of traversals allowed on the arc.
– Let T be a mapping such that T ��x, y�� � �t1, . . . , tn� for every �x, y� > E

where n � L��x, y�� and ti > IN is the time a check or traversal is done on
�x, y� by some algorithm’s walk on R.

– M � V � �0,1� indicates whether u > V is a center of a RBS. A RBS is a
substructure of Gu of R that is induced by a center u > V , i.e. if M�u� � 1,
and the set of controllers owned by u. �x, y� is an in-bridge of Gu if x is
not a vertex in Gu but y is. Conversely, �x, y� is an out-bridge of Gu if x
is a vertex in Gu, but y is not. Lastly, a pair of arcs �a, b� and �c, d� are
type-alike with respect to y if �a, b� and �c, d� are both in/out-bridges of y,
or both are not.

If one has a multi-source and/or multi-sink RDLTs, [3] adopts the concept
of extending Petri Nets into Workflow Nets for RDLTs, i.e. extended RDLT.
That is, to extend the RDLT, create a dummy source s� and dummy sink f �

vertices in V . Thereafter, add an arc �s�, v� and �fk, f
�� to E, for every v > V

that is an original source in V and every fk > V that is an original sink in the
RDLT, k > IN. Then, set L�s�, v� � 1 and C�s�, v� � ε, while L�fk, f

�� � 1 and
¦k > IN,C�fk, f

�� > Σ, and C�fi, f
�� x C�fj , f

��, i x j.
Figure 1.(a) shows a RDLT with an RBS with center x2 and its owned

controllers x3 and x4, and the arcs that connect them. The in-bridges of x2 are
�x1, x2� and �x6, x2�. They are type-alike with respect to x2, however, �x3, x2� is
not type-alike to any of them. Furthermore, �x3, x2�, �x2, x3�, �x2, x4� are type-
alike with respect to x2. Both �x4, x5� and �x4, x6� are out-bridges of x4. They
are type-alike with respect to x4. Note that the T -attributes of the arcs here are
not reflected for less clutter on the image.
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Fig. 1. RDLT with a reset-bound subsystem with center at x3, where M�x2� � 1.

The Activity Extraction Algorithm
The structure of RDLT models can capture the system components and the
processes they execute. In [3], an activity extraction algorithm is introduced
so as to extract activities where each activity, given its starting source vertex
s > V and a target sink vertex f > V , is described by its set of system com-
ponents, the processes that drive it, inclusive of resets, and the specific set of
cases that compose it to reach the output f . The algorithm explores the RDLT
model through a depth-first search wherein a traversal from one node to its ad-
jacent vertex is determined by satisfying conditions of their connecting arc as
per its arc attribute values. This search would initially perform a check opera-
tion on the L- and T -values of the arc �x, y� – verifying if the number of check
or traversals that had been executed on �x, y� as recorded in its T -attribute
has not exceeded the maximum number of traversals, i.e. L�x, y�, allowed on
it. If such is true, then the algorithm records the check time and proceeds to
evaluate if �x, y� is unconstrained with respect to �v, y� > E where �x, y� and
�v, y� are type-alike; otherwise, the algorithm finds another �x, z� > E to check.
If �x, y� is unconstrained, then the algorithm traverses it and updates the check
time with the traversal time in T ; otherwise, the algorithm backtracks to x and
performs another check. The check(traversal time) would always use the most
recent traversal time(check time) of some �u,x� (checked �w, y�) > E. If a traver-
sal happens on an out-bridge of vertex of an RBS, then a reset of the T -attribute
happens for each arc inside the RBS.

Check/Traversal times are recorded and updated in T �x, y�. Furthermore,
traversal times, as they are final values that describe an activity derivable from
R, are also recorded in S � �S�1�, S�2�, . . . , S�n��, where S�i� is the set of arcs
that were traversed at time i, where �s, t� > S�1�, and �q, f� > S�n�. Whenever
resets are triggered on an RBS of R, the T -values of each arc inside the RBS are
reset to their initial 0 values – as if the arc has never been checked nor traversed
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as per the records in T . However, these traversal records can still be retrieved via
S. Hence, designers must take caution as well as take advantage of the volatile
power or nature of the T -attribute of R. (This volatile power of the T -attribute
is illustrated in a model representing a heating and ventilation air-conditioning
system in [3] that has system components that can cycle and fluctuate their
features on adsorption and desorption.)

Definition 2. (Unconstrained Arc[3])
Let R � �V,E,T,M� be an RDLT. An arc �x, y� > E is unconstrained if
¦�v, y� > E where �x, y� and �v, y� are type-alike, any of the following require-
ments holds,

1. C�v, y� > �ϵ,C�x, y��, i.e. the condition of �v, y� is the same as �x, y�, or
there are no condition imposed by �v, y� at all,

2. S�ti > T �x, y�Sti C 1�S B S�tj > T �v, y�Stj C 1�S B L�v, y�, i.e. the number of
checks and traversals done on �x, y� has not exceeded that of �v, y�’s.

3. C�v, y� > Σ, C�x, y� � ϵ and T �v, y� x �0�, i.e. there is no unsatisfied con-
straint C�v, y�. That is, �v, y� has already been checked and/or traversed by
the algorithm in a prior step.

With Definition 2, the following JOIN structures[3] can be realized for RDLTs:

1. AND-JOIN merging at y > V : For every �u, y�, �v, y� > E, �v, y� and �v, y�
are type-alike where �v, y� x �u, y�, their C-values C�v, y� x C�u, y� and
C�v, y�,C�u, y� > Σ.

2. MIX-JOIN merging at y > V : There is at least one pair of type-alike arcs
�u, y�, �v, y� > E, where �u, y� x �v, y�, C�v, y� x C�u, y� and, without loss
of generality, C�u, y� � ϵ, and C�v, y� > Σ.

3. OR-JOIN merging at y > V : For every �u, y�, �v, y� > E, �u, y� and �v, y�
are type-alike where C�u, y� � C�v, y�.

One of the activity profiles that can be extracted from the RDLT is illus-
trated in Figure 1.(b), i.e. S � �S�1�, S�2�, . . . , S�8��, where its reachability
profiles are: S�1� � ��x1, x2��, S�2� � ��x2, x3��, S�3� � ��x3, x2��, S�4� �

��x2, x3��, S�5� � ��x3, x4��, S�6� � ��x4, x5��, S�7� � ��x5, x6�, �x4, x6��,
S�8� � ��x6, x7��. Note that �x1, x2� and �x6, x7� are unconstrained by Def-
inition 2, requirement (1), when they were evaluated at time steps 1 and 7,
respectively. Meanwhile, �x5, x6���x4, x6�� is not unconstrained after its check
operation at time step 6 by Definition 2, requirement (2). A backtrack to x4 is
done to ultimately reach and evaluate �x4, x6���x5, x6�� to satisfy all the con-
ditions a and b of this AND-JOIN at time step 7. For this series of traversal,
the traversal of �x4, x5� incurs a reset of all the T -values of the arcs inside the
RBS. However, the time of traversal that is stored in S�5� can be retrieved to
determine the next check/traversal time of the outgoing arcs of x4.

Should the algorithm have looped back to the RBS at time step 8 by travers-
ing �x6, x2�, rather than terminating via �x6, x7�, the RBS components can still
be reused since their T -values were reset to 0. For example, a check (and subse-
quent traversal) will be successfully done on �x2, x3� or �x2, x4� at time step 9,
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and so on. The algorithm can reuse the RBS (components) for four(4) additional
times in subsequent traversals through �x6, x2�.

Soundness in RDLTs
In this section, we revisit soundness and verification techniques that had been
formulated for RDLTs as inspired by those in literature. In particular, we focus
on the existing verification of some notions of soundness for RDLTs with or
without RBS. Finally, we reflect how the structures in RDLTs, e.g. its JOINs and
reset-bound subsystems, impact classical or relaxed soundness for such models.

Definition 3. (Classical Sound R)[19]
An RDLT R is classical sound if for every activity profile S � �S�1�, S�2�, ..., S�k��,
1 B k B diam�R�, diam�R� is the diameter of R, of a set of source vertices I ` V
and a final output vertex f > V , where ¦x > I and y > V, �x, y� > S�1�, and
�u, f� > S�k�, u > V , the following hold,

1. Proper termination
(a) for every �x, y� > S�i�, i � 1,2, . . . , k, §�y, z� > S�j�, i � 1 B j B k,
(b) for every �x, y� > S�k�, y � f .

2. Liveness
for every �x, y� > E, there is an activity profile S� � �S��1�, S��2�, . . . , S��k���,
k > N , such that �x, y� > S��i�, 1 B i B k�.

Definition 3, item (1.a) requires that every vertex y that is reached from x
and included in the activity must have its subsequent child vertex z, if any, be
also included in the activity and their processes eventually end up at the target
output vertex f . This means that every required component of a JOIN is included
in the activity if and when at least one of its component has been checked by
the algorithm. That is, every pending AND- or MIX-JOIN is resolved by the
algorithm upon termination. Moreover, item (1.b) requires that each vertex that
is reached during the termination step is the target output vertex f of the activity
profile. That is, there is no unfinished process at the termination point of the
activity. Collectively, these requirements compose proper termination of R.

Lastly, item (b) requires that every edge is included in at least one activity in
R. This also ensures that every component of R is usable without any incurred
deadlocks (or livelocks) for any part of the model.

As for relaxed soundness of RDLTs, [19] also follows the definition of relaxed
soundness for workflow nets. With reference to Definition 3, [19] weakens the
first requirement, i.e. proper termination, such that R only requires an existence
of at least one of its activities to observe proper termination, yet maintaining
the same requirement on liveness of R.

Techniques to Verify Soundness in RDLTs
Similar to some techniques of model verification, there had been several ap-
proaches that were introduced in literature to decompose, extend, and/or trans-
form RDLTs into other models for the purpose of model simplification and/or
verification, as follows,
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1. Compositional Analysis of RDLTs.
When dealing with an RDLT R with RBS, a preprocessing step known as
vertex simplification is done on R in [3] to verify soundness in R. This sim-
plification produces two models R1 and R2 that are referred to as level 1 and
level 2 vertex simplifications of R. In general, R1 captures a subgraph of R
that is found outside of its RBS as well as the vertices of the RBS that have
at least 1 in-bridge or out-bridge. For each pair of vertices x and y of the
RBS that are retained in R1, an arc �x, y� is induced in R1 if there is a path
from x to y in R. Meanwhile, R2 captures the RBS itself with vertices that
have in- or out-bridges in R marked as sources and/or sinks in R2. Whenever
the activity extraction algorithm is used on R2, these markings can be used
to determine where the algorithm shall start and end, respectively. Note that
a source, regardless of the C-attributes of its incoming arcs, is considered to
have been already reached (through an activity extraction in R1) at the start
of the activity extraction using R2. Whenever soundness is verified on R1

(R2) that contains multiple sources and/or sinks, we would always use the
extended RLDT R1(R2) as a preprocessing step for the verification process.

Note that the vertex simplification process does not modify decrease nor
increase the number of loops from R to R1�R2�.

Figure 2 shows the levels 1 and 2 vertex simplifications R1 and R2 of R in
1, respectively. x2�x4� is marked as the start/source(target/sink) vertex of
R2 where the activity extraction algorithm can begin(end) in its traversal
process.

Fig. 2. The levels 1 and 2 vertex simplification R1 and R2 of the RDLT in Figure 1

In [3], R1 (and R2) (or its extended form) is used to help verify (relaxed)
soundness by checking if the conditions, i.e. C-attributes of R of arcs induce
deadlocks. A graph contraction strategy of R1(R2) continually merges its
vertices together by arc contraction until it results to one vertex, if possible.
Two vertices x and y of the arc �x, y� of R1(R2) are merged if the set of
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C-attribute values of all arcs from x to y is a superset of the C-attributes
(incl. ε) of all arcs from any other vertices in R1(R2) to y. This means that
the set of conditions and the connectivities in R1(R2) are already satisfiable
or sufficient to reach y using its set of ancestors that is represented by x
through the merge process. Whenever �x, y� are merged, any incoming arc
to y that is not from x has its C-attribute set to ε.

This graph contraction strategy starts at the source of R1(R2). This strategy
mimics how the C-attributes are used by the activity extraction algorithm,
albeit, excluding the L- and T -attributes for a targeted model analysis.

Meanwhile, at the level of the L-attributes of R, [3] uses the L-attribute
values of the arc to help verify relaxed soundness of R. The general rule
for this is to ensure that each loop, whenever present in R, is disabled (i.e.
not traversable) so that deadlocks in R do not happen. This is ensured by
configuring the L-attribute values of the arcs in cycles to have each vertex x
therein having its number of exit traversals to its child(ren) set to at most
the number of entry traversals to x from its parent/s. For the case of RBS of
R, this configuration of values can be generalized for the bridges and other
arcs and/or paths that lead to or out of x. (For the formalism and details of
this analysis of R by its L-attributes, the reader is referred to [3] regarding
the property of L-verifiability of RDLTs.)

It has been shown in [19] that the combination of the two verification strate-
gies above, i.e. C-verifiability and L-verifiability, on R is usable to prove its
relaxed soundness. However, they are insufficient in proving classical sound-
ness of R. As an example, the arcs that compose and AND-JOIN would
require consistency with respect to the traversals, i.e. if one is (not) checked
by the algorithm, it should also be the case that the other components are
(not) checked. This matter requires restrictions on connectivity and the con-
sistency of L-values of these arcs. Both C- and L-verifiability do not have
such profiles as scope of its verification for classical soundness.

2. Verification by Model Decomposition.
A work done by [16] proposed a partial mapping of RDLTs with RBS into
its corresponding Petri Net with reset arcs. It improved the previous work
of [12] to include and map the L- and M - attributes into the resulting PN.
Furthermore, this improvement in [16] posed the preservation of classical or
relaxed soundness of the input RDLT, given some specific JOIN profiles, into
its corresponding PN as shown in Table 1. Lastly, a significant and important
contribution of [16] establishes this mapping to produce a unified model of
the levels 1 and 2 vertex simplification of the RDLT. That is, the mapping
does not segregate the RDLT information into its “level 1” and “level 2” PN
counterparts, rather, it only produces 1 PN containing the profiles of the
former models.
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Input RDLT Resulting PN

Classical sound RDLT with no MIX-JOIN Classical Sound

Classical sound RDLT with MIX-JOIN Relaxed Sound

Relaxed sound RDLT with no MIX-JOIN Relaxed Sound

Relaxed sound RDLT with MIX-JOIN Relaxed Sound

Table 1. The satisfaction of soundness for the proposed mapping of [16] on RDLTs to
their output PNs.

Despite the significant contributions of the proposed mapping in [16], it also
poses a certain limitations in its transformation. That is, whenever reset arcs
are used in the output PNs to simulate the resets incurred by a traversal of an
out-bridge in the input RDLT, there is no replenishment of tokens that can
be done on the input places of the transitions that represent the components
of this RBS. Note that RBS components can be reused as per their initial
L- and T -values, however, their corresponding input places and transitions
cannot be reached/used again in the output PN using the proposed mapping.
With this, activities of the input RDLT would have a limited representation
with the cases that can be simulated in the output PN.

3. L-safeness of RDLTs without resets
In [19], some strategies that rely on the L-attribute and JOIN structures to
verify classical soundness for RDLTs, albeit without the presence of reset-
bound subsystems, were provided. Nevertheless, these strategies shall be
considered and extended in this paper as we move to verifying classical
soundness in RDLTs with or without the presence of RBS. They do not
rely on the C-attribute values themselves, however, they put restrictions on
the connectivity and the L-values of RDLTs without RBS so that these mod-
els satisfy the requirements of classical soundness.

This work[19] focuses on the concept of reusability of RDLT components(i.e.
vertices, arcs) and the controls that limit or enable it in the model. (Note that
this work only focuses on RDLTs without RBS.) It introduced the concept
of a critical arc(CA) of a cycle in R that drives this reuse of another
component referred to as a non-critical arc(NCA). A critical arc of a cycle
c has the least value of the L-attribute among the arcs in c, otherwise, it
is an NCA of c. The reuse of a NCA �x, y� > E of R is then determinable
by the sum of distinct CAs of the cycles that the NCA is involved in. �x, y�
is called a loop-safe NCA if its L-attribute value is greater than this sum.
Formally,

Definition 4. (Loop-safe NCAs, safe CAs)[19]
Let R be a connected RDLT with no RBS, i.e. for every vertex v > V , there
is a path from a source vertex s > V to v.

A cycle c � �x1x2 . . . xn� is a sequence of vertices xi > V where �xi, xi�1� > E,
i � 1,2, . . . , n � 1, and no two vertices in c are the same except for x1 � xn.
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The elements of c is denoted as Lit�c�. Moreover, the set of arcs of c is
ArcsOfCycle�c� � ��x, y� > ESxi, xi�1 > Lit�c� where x � xi and y � xi�1�.

Let Cycles�x, y� � �cycle cS�x, y� > ArcsOfCycle�c� in R�.

A non-critical arc �x, y� > E of R is loop-safe if L�x, y� A RU�x, y�, where

RU�x, y� �
SCycles�x,y�S

P
k�1

�I �L�u, v��, for some �u, v� >minL CA�ck�, with

I �

¢̈
¨̈
¦
¨̈̈
¤

1, if k � 1 or
k�1

�
j�1

minL CA�cj� 9 minL CA�ck� � g,

0, otherwise,

and minL CA�c� ` E is the set of arcs whose L-value is the minimum among
the critical arcs found in c, accounting the other cycles c� in R that intersect
with c.

If there is no such cycle for �x, y�, i.e. Cycles�x, y� � g, this means that
�x, y� is never reused in any activity in R, i.e. RU�x, y� � 0, therefore,
simply set L�x, y� > IN.
Meanwhile, a CA �q, p� > E is called safe CA there is at least one NCA
�q, r� > E of R that is loop-safe. �q, r� is referred to as an escape arc of
�q, p�.

Escape arcs guarantee that activities can proceed whenever �p, q� is unusable
when it had already been fully used in an activity. Note that having safe CAs
and loop-safe NCAs in R is insufficient in achieving classical soundness. With
this, this work in [19] puts an added requirement on the JOINs in R with
no RBS, i.e. they have JOIN-safe L-values, as follows:

Definition 5. (JOIN-safe L-values)[19]
Let R � �V,E,T,M� be a RDLT with no RBS.

A JOIN merging at y > V of R has JOIN-safe L-values if for every pair
�u, y�, �v, y� > E, where C�u, y� x C�v, y�, the following hold:

(a) One split origin. There is exactly one common ancestor x > V for u
and v. This guarantees that the activity extraction backtracks at x from
u�v� and eventually proceeds to (tries to) resolve the JOIN by evaluating
v�u�.

(b) No unrelated process. Every process that start at the split origin x
will only lead to y.

(c) No branching from every related process. Every vertex q > V that
is involved in a process from the split origin x to y does not have any
outgoing arc �q, s� > E such that s does not lead to y.

(d) No process interruptions. Every vertex q > V that is involved in a
process from the split origin x to y is not a target vertex by some s > V ,
where s is not part of such process.
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(e) On duplicate conditions. AND-JOINs merging at y should not have
any pair of its arcs to have the same C-attribute value(i.e. condition).
Meanwhile, MIX-JOINs can have duplicate conditions, however, no two
of them are different Σ conditions.

(f) Equal L-values of arcs at the AND-JOIN. Every pair of arcs of
an AND-JOIN merging at y must have the same L-value.

(g) Loop-safe components of every related process. The processes that
are involved in an AND- or MIX-JOIN merging at y must have each of
their component arcs to be loop-safe (NCAs). Lastly, for an OR-JOIN
merging at y, each of the processes that are involved in this JOIN must
be composed of loop-safe NCAs and safe CAs, if any.

Definition 6. (JOIN-safe R, L-safe R)[19]
A RDLT R is JOIN-safe if every JOIN in R has its set of arcs to have
JOIN-safe L-values. R is L-safe is every NCA is loop-safe, every CA is
safe, and R is JOIN-safe.

Theorem 1. (L-safeness and Classical Soundness of RDLTs)[19]
A RDLT R with no RBS and has a single source and single sink vertex is
classical sound if R is L-safe. Moreover, verifying that R is L-safe/classical
sound takes O�cSES4� and O�SES2� time and space complexity, where c is the
number of cycles in the RDLT.

The proof to Theorem 1 is detailed in [19].

The RDLT (without any RBS) in Figure 3 is L-safe.

Fig. 3. A RDLT without RBS that is L-safe.(Source: [19])

In this study, we shall extend the concept of reusability of RDLT components
as we now consider RDLTs with RBS. We introspect on the multi-level abstrac-
tions induced by the presence of RBS in RDLTs, the impact of type-alikeness of
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arcs, the reset mechanisms of RBS, and the requirements for JOIN structures to
satisfy classical soundness in such RDLTs.

3 REUSABILITY AND RESETS IN RDLT

Reusability and graph connectivity, with emphasis on JOINs, of the components
of RDLTs were the main drivers to verify classical soundness in RDLTs with-
out RBS in [19]. In our study, we take some inspiration from the multi-level
perspective of RDLTs whenever they have RBS in them.

For ease of discussion in the subsequent sections, we assume that R here is
in its extended version, i.e. having a single, non-RBS vertex source and single-
output RDLT.

3.1 Expanding the concept of Reusability

For the concept of reusability of components in R with at least one RBS, we
extend the computation of RU�x, y� in [19], as follows:

Definition 7. (Pseudocritical Arcs, Pseudo-escape Arcs)
A pseudocritical arc(PCA) �x, y� > E, where �x, y� is a component of a cycle
c in R, where L�x, y� is the minimum among all the L-values of the arcs in c
which are not arcs of an RBS in R.

Meanwhile, a pseudo-escape arc(PEA) �x, z� > E is a non-critical arc in
R where �x, y� and �x, z� are type-alike.

Note that a CA can also be a PCA.

We establish PCAs and their PEAs in R to provide and restore control to pro-
cess flows whenever the critical arc/s of their cycles “lose” such control whenever
these critical arcs are affected by resets in R. That is, when these critical arcs
are found inside an RBS. In essence, the PCAs and PEAs mimic the function of
critical arcs and their escape arcs as introduced in [19]. This previous literature
suggested that critical arcs should not be designed within RBS to help achieve
classical soundness, however, this would software engineers in building designs
and their implementations. We remove this limitation through the help of PCAs
and PEAs, among others, while putting additional specifications and require-
ments in RDLTs so that they still satisfy classical soundness. Notwithstanding,
CAs remain as control points solely within the RBS as per usual.

Definition 8. (Expanded Reusability in RDLTs with Resets)
Let R � �V,E,T,M� be a connected RDLT. If §v > V where M�v� � 1, then let
B � �V �,E�, T �,M �� be the RBS with its center v.

Let IBr�x� be the set of in-bridges of x > V .

Let Cyclespart�R� be a set of cycles in R where ¦p � �x1x2 . . . xn� > Cyclespart�R�,
there is at least one cycle component �xi, xi�1� > E that is inside an RBS
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B of R, i.e. xi, xi�1 > V �, and at least one cycle component �xj , xj�1� > E
that is not inside B, i.e. xj or xj�1 is not in V �. Whenever we have cycles
d � �d1d2 . . . dm1

�, e � �e1e2 . . . em2� > Cyclespart�R� that overlap in their non-
RBS components such that this overlap contains both of their PCAs �dk, dk�1�,
�ek� , ek�

�1�, where L�dk, dk�1� C �ek� , ek�
�1�, we only consider one of these PCAs,

whichever has the minimum L-value since it would ultimately contribute to the
reusability of every RBS component that has a path from these cycle components.
This is consistent with the computation of RU�x, y� in literature. Thus, let

PCAs�R� � �
c>Cyclespart�R�

�PCA �u, v� of c � �x1x2 . . . xn� > Cyclespart�R�S for

every �xi, xi�1� x �u, v�, where �xi, xi�1� is a PCA of cycle c� > Cyclespart�R�,
c� x c, L�u, v� B L�xi, xi�1��.

The expanded reusability eRU�x, y� of �x, y� > E of R,

eRU�x, y� �

¢̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈
¦
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¨̈̈
¤

RU�x, y�, if R has
no RBS,

P
�u,v�>IBr�u�

l�u, v� � �RU ��x, y� � 1�, if �x, y� > E�

where
l�u, v� �min�L�u, v�, P

�r,s�>PCAs�R� & of c
L�r, s��,

where �u, v�, �x, y� > ArcsOfCycle�c�,
with c > Cyclespart�R�,
or 1 if no c exists, and

RU ��x, y� � RU�x, y�, where RU�x, y� is
computed solely wrt E� of RBS B,and
�x, y�is not a CA in B,otherwise, set
RU ��x, y� � L�x, y�.

,

By Definition 8, the expanded reusability eRU�x, y� of the NCA arcs of R
with no RBS is equal to RU�x, y� as in literature. Meanwhile, if �x, y� is inside
an RBS, its expanded reusability provides the maximum number of times �x, y�
can be used by an activity profile in R. This eRU�x, y� is determined by the
number of times each cycle containing �x, y� is accessed through each of the
in-bridges of its components, as well as the number of times it is (re)used inside
its RBS. If and when this in-bridge is also part of this cycle, eRU�x, y� uses the
L-value of the PCA of this cycle since this PCA controls the (re)use of �u, v�,
�x, y�, and the cycle itself. On another hand, if this in-bridge �u, v� is not part
of any cycle that involves �x, y�, yet there is a path from �u, v� to �x, y�, then
�x, y� is used one time in this activity through the traversal of �u, v�.

3.2 Reusability in Multi-level views of RDLTs

Having expanded the concept of reusability of components in RDLTs with RBS,
we can now expand the Levels 1 and 2 vertex simplification strategy to incor-
porate L-attribute information with considerations of the RBS behavior. Recall
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that the vertex simplification process leaves out the L-attribute values of the en-
tire model. We also need to ensure that the activities that are discoverable when
using the original input RDLT R (with RBS) are “preserved” in the discoverable
activities when using these expanded versions of R1�R2�. For this, we first define
the following criteria to determine this model preservation, as follows,

Definition 9. (RU-preserving transformation)
A transformation δ of an input RDLT R to another RDLT R� is said to be
RU-preserving if for every activity profile S � �S�1�, S�2�, . . . , S�n1��, n1 > IN,
that is derivable from R, there is a corresponding activity profile S� � �S��1�, S��2�,
. . . , S��n2��, n2 > IN, that is derivable from R�, where for every pair �x, y� > S�i�
and �y, z� > S�i � 1�, either of the following holds:

1. �x, y� > S��j� and �y, z� > S��j � 1�,
2. there exists a path p � x1x2 . . . xn in R being represented by the arc �x1, xn�

in R� where xk�1 � x,xk,� y, xk�1 � z, and
(a) �s, x1� > S

��j� and �x1, xn� > S
��j � 1�, for some vertex s in R�, or

(b) �x1, xn� > S
��j�, for some 1 B j B n2, or

(c) �x1, xn� > S
��j� and �xn, s� > S

��j � 1�, for some vertex s in R�.

We call �x1, xn� as the abstract arc in R� representing the path p in R.

Since the vertex simplification of R in [19] lacks the L-values of its R1 and
R2, we extend this process to produce the expanded vertex simplification
R�

1 and R�

2 of R by using R1, R2, and R itself (to retrieve the other attribute
values, e.g. L). The expanded vertex simplification R�

1 and R�

2 inherit the vertex
and arc sets and attributes of R1 and R2, respectively, while now having either
the original or derived L-values of R, as follows:

Expanded Vertex Simplification Algorithm(EVSA):

Inputs: Let R � �V,E,T,M� be an connected RDLT with an RBS, i.e. §v > V ,
where M�v� � 1. Let R1 � �V1,E1� and R2 � �V2,E2� be the vertex simplifica-
tions of R. (The C-attributes of the arcs of R, R1, and R2 are denoted as C, C1,
C2, respectively, while their L-attributes are L, L1, and L2, respectively.)

Outputs: Level 1 and Level 2 expanded vertex simplification R�

1 �

�V �

1 ,E
�

1, T
�

1� and R�

2 � �V �

2 ,E
�

2, T
�

2� of R, respectively . (The C-attributes of the
arcs of R�

1 and R�

2 are C �

1 and C �

2, respectively, while their L-attributes are L�

1

and L�

2, respectively.)

1. For each v > V1�V2�(or V of R), set v� > V �

1�V
�

2� to be its correspond-
ing vertex, and if �u, v� > E1�E2�, then its there is a corresponding arc
�u�, v�� > E�

1�E
�

2�, where the C-values C �

1�u
�, v���C2�u

�, v��� of R�

1�R
�

2� is set
to C�u, v� of R1�R2�, otherwise, none.

This step copies the vertices and arcs, inclusive of the C-values of R1 and
R2 to their corresponding expanded versions R�

1 and R�

2, respectively.

312             J. Malinao and R. A. Juayong



2. For each �u, v� > E, where �u, v� is not in an RBS of R, and its corresponding
arc �u�, v�� > V �

1 of L1, let L
�

1�u
�, v�� � L�u, v�.

This step copies the L-values of R for each of its arcs to the L-values of R�

1

whenever such arc does not belong to an RBS of R.
3. For each abstract arc �u�, v�� > E�

1 of R1, where �u�, v�� represents the path
p � x1x2 . . . xn in R, i.e. x1 > V and xn > V correspond to u� > E�

1 and v� > E�

1,
respectively, set L�

1�u
�, v�� � min

i�1,...,n�1
�eRU�xi, xi�1�� � 1.

This step sets the L-value of each abstract arc �u�, v�� of R�

1 to reflect the
maximum number of reuse of the path that it represents in R. Note that
we treat each component of the RBS as an NCA relative to the non-RBS
components, eRU�u�, v�� must be greater than its reusability, e.g. greater
than the PCAs of the cycles �u�, v�� are involved in, hence, we add 1 to this
maximum number of reuse. Additionally, note the eRU of the arcs along the
path p can vary because of the reuse of such components within the RBS,
albeit the number of times they are accessible through the in-bridges of their
ancestor node is the same. However, the reusability of the entire path p itself
is bound to the minimum of the L-values of the arcs therein. Thus, this
minimum shall be the representative L-value for these arcs as reflected by
their representative abstract arc.

For discrimination purposes, we shall refer to the L-values of abstract arcs
of R�

1 as derived L-values.

Shown in Figure 4 is the levels 1 and 2 expanded vertex simplification R�

1

and R�

2, respectively, of the RDLT in Figure 1. Each arc here is annotated with
C �

1�x, y� � L�

1�x, y��eRU�x, y�� and its arc attributes are underlined in �x, y�
is a (P)CA in a cycle in R�

1,R
�

2, and R. The PCAs of cycles �x2x4x5x6� and
�x2x4x6� of the RDLT are the same, i.e. �x6, x2� (shown with underlined arc
attributes in the figure). Hence, the L-value and the eRU�x6, x2� is the same.
This PCA in the original RDLT becomes a CA of its cycle in R�

1. Furthermore,
every abstract arc would become NCAs in R�

1 due to EVSA’s computation of
their derived L�

1-values, while every non-RBS components of R would retain
their arc attribute values in R�

1. Lastly, the RBS of the RDLT becomes a Level 2
vertex simplification R�

2 with arc attributes copied from the former to the latter.
Both R�

1 and R�

2 become RDLTs with no RBS by themselves.

Remark 1. EVSA builds the levels 1 and 2 expanded vertex simplification R�

1

and R�

2 given an RDLT R in O�SV S2� time and space complexity. The bulk
operation of EVSA is building the abstract arcs in R�

1 by verifying if there is a
path from an x to y of V , where x�y� has at least one in-(out-)bridge in R.

It should be noted that each CA (or PCA) �x, y� > E should have at least one
escape arc �x, z� that is type-alike with �x, y�. With this, the corresponding arcs
of �x, y� and �x, z� in the expanded vertex simplification will be both reflected
in either the expanded vertex simplification R�

1 and R�

2 of R. Type-alikeness
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Fig. 4. The expanded vertex simplification R�

1 and R�

2 of the RDLT in Figure 1. Each
arc here is annotated with C �

1�x, y� � L�

1�x, y��eRU�x, y��. Furthermore, the arc at-
tributes of (P)CAs of the cycles in R�

1,R
�

2, and R are underlined for easy referencing.

ensures that both these arcs are simultaneously affected by a reset or both are
not. Should they be in different levels of control, i.e. one is outside of an RBS
while the other is inside, the L-attributes and T -attributes of the latter would
be reverted to their initial state upon a reset as if they had never been used
for traversals before, while the former do not. We prove the usefulness of type-
alikenes of CAs(PCAs) and their escape arcs to achieve safe CAs (and L-safeness
of R�

1) in Theorem 2 below.

Theorem 2. Let R � �V,E,T,M� be a connected RDLT with at least one RBS
B. Let �r, s� > E be a critical arc of a cycle c > Cyclespart�R�. Furthermore, let
�x, y� > ArcsOfCycle�c� be the PCA of c.

Let R�

1 � �V �

1 ,E
�

1, T
�

1� and R�

2 � �V �

2 ,E
�

2, T
�

2� be the levels 1 and 2 expanded
vertex simplification of R.

Let �x�, y�� > E�

i and �x�, z�� > E�

j, i, j > �1,2�, be the corresponding arcs of
PCA �x, y� > E and its PEA �x, z� > E, respectively, and the cycle c� of R�

1�R
�

2�
be the corresponding arc of c.

�x�, y�� > E�

k is a safe CA in R�

k if there exists a loop-safe �x�, z�� > E�

k, where
k > �1,2�.

Proof. We first prove that �x�, y�� is a CA for cycle c� � �x1x2 . . . xn� in R�

k, for
k > �1,2�. That is, for every �xi, xi�1� > ArcsOfCycle�c�, L�x�, y�� B L�xi, xi�1�.

Case A: �xi, xi�1� of c� is an abstract arc in E�

1 of R�

1.
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With EVSA applied on R to produce R�

1 and R�

2, we know that the cycle c�

would have every abstract arc �xi, xi�1� being non-CAs in R�

1. That is, for every
such �xi, xi�1�, eRU�xi, xj� A eRU�x�, y�� since �x, y� is a PCA of c in R, there-
fore the derived L-value L�

1�xi, xi�1� A L�

1�x
�, y��. This proves that every abstract

arc �xi, xi�1� > E
�

1 is a non-critical arc of c� in R�

1. Therefore �x
�, y�� is a CA in c�.

Case B: �xi, xi�1� of c� is not abstract arc in E�

1 of R�

1.

For this case, we know that L�xi, xi�1� C L�x�, y�� since L�x, y� is the mini-
mum L-value among all arcs in c where �x, y� is not within RBS B. Thus, �x�, y��
is a CA in c�.

Next, we prove that type-alikeness of �x, y�, �x, z� > E of R is a requirement
for �x�, y�� > E�

k to be a safe CA in R�

k, for k > �1,2�.

Case 1: �x, y� and �x, z� are not type-alike.

For this case, EVSA results to having �x�, y�� > E�

q and �x�, z�� > E�

p, q, p >

�1,2�, where q x p. Since �x�, y�� is a CA of c� in R�

p�R
�

q� and has no escape
arc, then �x�, y�� is not a safe CA by Definition 4. Note that it also follows that
R�

p�R
�

q� is not L-safe by Definition 6.

Case 2: �x, y� and �x, z� are type-alike.

For this case, �x�, y�� and �x�, z�� are both in E�

k of R�

k, k > �1,2�, where
�x�, z�� is a CA of c� and �x�, z�� is its escape arc. With this, we proceed with
proving the theorem for this case. That is, suppose that there no �x�, z�� that is
a loop-safe escape arc of �x�, y�� > E�

k of R�

k. We know that �x�, y�� is not a safe
CA by Definition 4.
Ì

Corollary 1. For every cycle c � �v1v2 . . . vn� where every �vi, vi�1� is fully
inside the RBS B of R in Theorem 2, its corresponding cycle c� � �x1x2 . . . xn�
in R�

2 has a safe CA �xj , xj�1� > E�

2, with 1 B j @ n, if there exists a loop-safe
escape arc �xj , s� > E

�

2.

Proof. Follows from Theorem 2.Ì

From hereon, we discuss how we further use the expanded vertex simplifi-
cations R�

1 and R�

2 of R as a strategy to help verify classical soundness in R.
Note that R�

1 and R�

2 are already RDLTs without RBS. Hence, the technique to
verify classical soundness for RDLTs without RBS in literature can be reused
for verifying classical soundness of R�

1�R
�

2� as well.

3.3 A View on JOINs in RDLTs with RBS

We now analyze the impact of AND-, MIX-, and OR-JOINs in RDLTs with RBS
in relation to verification of classical soundness in these models. More specifici-
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cally, we shall look at how these different types of JOINs are transformed into
the components of the expanded vertex simplification of their models. Further-
more, we shall also establish the case where the expanded vertex simplification
R�

1 is sufficient in verifying classical soundness of R. In literature, model proper-
ties, such as relaxed soundness, would use either R as a whole, and/or both the
vertex simplifications R1 and R2.

Theorem 3. Let R � �V,E,T,M� be a connected RDLT with at least one RBS.
Furthermore, let R�

1 � �V �

1 ,E
�

1, T
�

1� and R�

2 � �V �

2 ,E
�

2, T
�

2� be the expanded vertex
simplification of R where R�

1 and R2 have loop-safe NCAs and safe CAs (with a
one source and one output vertex each.)

EVSA is a RU-preserving transformation of R to R�

1 if R has no AND- or
MIX-JOINs in each of its RBS.

Proof. We prove this by contradiction. Assume that §R that has an AND-JOIN
for which EVSA is an RU-preserving transformation of R to its expanded vertex
simplification R�

1.
Note that since R�

1 and R�

2 have loop-safe NCAs and safe CAs, we know
that for every check (and subsequent traversal) of �x, y� > E of R that is not
impeded by its L�x, y�, there is a corresponding check (and subsequent traversal)
of the corresponding (abstract) arc �x�, y�� of R�

1 (or R�

2� that is not impeded
by its L�

1�x
�, y��, where �x�, y�� represents �x, y�. If and when �x�, y�� is a PCA,

we also know that it has at least one PEA to redirect the flow of traversals if
L�

1�x
�, y�� already disallows checking. This behavior is also true for �x, y� and for

some �x,u� > E of R, regardless if it is a CA or an NCA. From hereon, we can
focus on the behavior of traversals for the models solely with respect to their
connectivity, splits, and JOINs.

Let P1 � q1q2 . . . qn and P2 � r1r2 . . . rm be two paths (i.e. processes) that
are wholly contained in and forms an AND-JOIN within the RBS of R such
that, q1 � r1, qn � rm, C�qn�1, qn�,C�rm�1, rm� > Σ, C�qn�1, qn� x C�rm�1, rm�,
and n,m > IN. Furthermore, let �qn, v� > E where C�qn, v� � ε, and �qn, v� is an
out-bridge of qn.

Since EVSA is an RU-preserving transformation for R to R�

1, then for every
activity profile S � �S�1�, S�2�, . . . , S�n1�� that we extract using R, there is a
corresponding activity S� � �S��1�, S��2�, . . . , S��n2�� of its R�

1 where:

1. �qn�1, qn�, �rm�1, rm� > S�i� and �qn, v� > S�i � 1�, since the AND-JOIN
formed by �qn�1, qn� and �rm�1, rm� imposes that both of these arcs be
traversed at the same time in R; and

2. the abstract arcs �q�1, q
�

n�, �r
�

1, r
�

m� > S��j�, and �q�n, v
�� > S��j � 1�, where

qi, ri, and v in V corresponds to q�i, r
�

i, and v� of V �

1 , respectively.

However, we find that item (2) does not hold for such R and R�

1 since
C�q�1, q

�

n� � C�r�1, r
�

m� � ε. That is, without loss of generality, �q�1, q
�

n� is tra-
versed at time j with �r�1, r

�

m� impeding this traversal. Thus, �q�1, q
�

n� > S
��j� and

�q�n, v� > S
��j � 1� and �r�1, r

�

m� ¶ S��j�. Thus, we arrive at a contradiction.
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The proof for R having a MIX-JOIN within its RBS is similarly done as
above. That is, for C�qn�1, qn� > Σ and C�rm�1, rm� � ε, there is an activity
where item �qn�1, qn�, �rm�1, rm� > S�i� and �qn, v� > S�i � 1� holds. That is,
whenever �rm�1, rm� is checked first before �qn�1, qn�. This checking will cause
a backtrack that would eventually reach and check �qn�1, qn�. Thereafter, the
activity extraction algorithm finds that �qn�1, qn� is unconstrained, thereby, it
traverses both �qn�1, qn� and �rm�1, rm� at time i, and subsequently, �qn, v� at
i�1. Meanwhile, this simultaneous traversal of their corresponding abstract arcs
�q�1, q

�

n� and �r�1, r
�

m� at time j is also not true for this case, and the algorithm
proceeds to traverse �q�n, v� at time j �1. Similarly, we arrive at a contradiction.
Ì

Theorem 4. Let R be a connected RDLT with a set of RBS where no RBS
contains an AND- or MIX-JOIN structure. Furthermore, let R�

1 � �V �

1 ,E
�

1, T
�

1�
and R�

2 � �V �

2 ,E
�

2, T
�

2� be the expanded vertex simplification of R. If R�

1 is L-safe,
then R is classical sound.

Proof. By Theorem 3, we know that EVSA is RU-preserving for R and R�

1.
Since R�

2 is composed of sequential and/or OR-JOIN process flows, the activity
extraction algorithm will always proceed with no backtracks incurred, therefore,
the components and the order of their reachability of R is consistent with that
of the components and their order of reachability of R�

1 through the abstract
paths or the retained arcs from R to R�

1. Furthermore, every component of the
RBS that is represented by the (abstract) arcs in R�

1 is a loop-safe NCA, as well
as every OR-JOIN that it can compose is JOIN-safe since R�

1 is L-safe. With
this, there is no need to verify for classical soundness of R�

2.
With Theorem 1, R is classical sound when R�

1 is L-safe. (It also follows that
R�

1 is classical sound.) Ì

The level 1 expanded verification R�

1 shown in Figure 4 is sufficient in estab-
lishing classical soundness of the input RDLT in Figure 1 since its RBS does not
contain any AND- or MIX-JOINs. Note that this R�

1 has loop-safe NCAs and
safe NCAs. The (P)CA �x6, x2� is a safe CA since it has at least one escape arc
�x6, x7� that is a loop-safe NCA. Furthermore, each of its remaining NCA �x, y�
is also loop-safe since its L�

1�x, y� is greater than their RU�x, y� in R�

1. With
these, R�

1 is classical sound since it is an L-safe RDLT.
We now discuss the case when we would need to use both R�

1 and R�

2 of R
to prove for classical soundness of R. It is obvious from Theorems 3 and 4 that
such case happens when there is a MIX- and/or AND-JOIN in R.

Theorem 5. A connected RDLT R � �V,E,T,M� with RBS B � �V �,E�, T �,M ��,
where V � ` V , E� ` E, is classical sound if R�

1 � �V �

1 ,E
�

1, T
�

1� and R�

2 � �V �

2 ,E
�

2, T
�

2�
are both L-safe.

Proof. In order to prove this theorem, we first look at the structures of R�

1 and
R�

2 which are produced from having AND- or MIX-JOINs in R, as follows:
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1. An AND-JOIN merging at y.
Structure 1: Every pair �u, y�, �v, y� > E�E��, they are type-alike with re-
spect to y.
For this structure, the corresponding arcs �u�, y�� and �w�, y�� of �u, y� and
�v, y� shall be in E�

k, k > �1,2�, where �w�, y� is an abstract arc. With this,
the structure of �u, y�, �v, y� > E�E�� as an AND-JOIN merging at y is con-
sistent with the structure of �u�, y��, �w�, y�� > E�

k as an AND-JOIN in R�

k.

Moreover, due to the type-alikeness of �u, y� and �v, y�, as well as R�

1 and
R�

2 being L-safe, we know that the (derived) L-attribute value of �u�, y�� and
�w�, y�� are equal in R�

k, k > �1,2�. Thus, the reuse of �u�, y�� allows, imposes,
and synchronizes with the reuse of �w�, y�� in R�

k equivalent to the reuse of
�u, y� and �v, y� in R. Hence for this structure, we can say that EVSA is an
RU-preserving transformation from R to R�

1 and R�

2. Thus, since all of these
AND-JOINs in R�

1 and R�

2 collectively represent all such AND-JOINs in R,
then we can also conclude that R is L-safe with respect to such structures.
With Theorem 1, since R is L-safe, the R is classical sound.

Related notes:
Structure 2: �u, y� > E�E�, and �v, y� > E�, where C�u, y�,C�v, y� > Σ
Although technically not an AND-JOIN in the context of RDLTs, this struc-
ture is an important point of discussion. Here �u, y� and �v, y� are not type-
alike where �v, y� is a part of an RBS of R, while �u, y� is not. This structure
in R is transformed into a MIX-JOIN merging at y� in R�

k, k > �1,2�. Al-
though the activity extraction algorithm will ignore �v, y� when evaluating
�u, y� for unconstrainedness (and vice versa), the resulting MIX-JOIN in
R�

k is not fully dealt with by the algorithm as the former. That is, if the
algorithm first evaluates �w�, y�� versus �v�, y��, �w�, y�� shall be constrained
due to C�v�, y�� > Σ while �w�, y�� � ε in R�

1. (Note that �w�, y�� is the ab-
stract arc in R�

1 representing �v, y� in R.) This causes a backtrack on w�.
This means that there will be some reachability configuration derivable of
an activity in R�

1 which has no equivalent activity in R (and vice versa).
With this case, EVSA is not RU-preserving for RDLTs having this kind of
structure. In particular, we have the following differences of activity profiles:
(a) R has an activity that has a reachability configuration where �u, y� is

present, while �v, y� is not; Meanwhile, R�

1 will not have a corresponding
activity to this;

(b) R�

1 has an activity where �w�, y�� and �u�, y�� simultaneously appears
once while R has no corresponding activity to this.

Notwithstanding, if R�

1 and R�

2 are L-safe, these differences of activities are
immaterial to the classical soundness of R. That is, given that R�

1 is L-safe,
the activity in R�

1 that is discussed in (b) in the list of differences ensures
that every activity in R, inclusive of the activity described in (a) in the
list, is allowed to happen and will have proper termination in R. Moreover,
should there be an additional arc �q, y� > E� in R, i.e. type-alike to �v, y�,
the AND-JOIN which shall be present in R�

2 is verifiable for L-safeness (i.e.
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Structure 1 verification). This proves that R is also L-safe if R�

1 and R�

2 are
L-safe. Again, by Theorem 1, since R is L-safe, the R is classical sound.

2. A MIX-JOIN merging at y > V �.
Case 1: Every arc �s, y� > E�E��, i.e. every pair of arcs �u, y�, �v, y� > E�E��
are type-alike with respect to y. Same case as in Structure 1, i.e. the struc-
ture and reuse of these components of the MIX-JOIN in R is preserved in
R�

k, k > �1,2�. Thus, R� is classical sound if R�

1 and R�

2 are L-safe with re-
spect to this structure.

Case 2: This MIX-JOIN has the components �u, y� > E�E�, and �v, y� > E�,
where C�u, y� > Σ and C�v, y� � ε.
This produces the same case as in Structure 2 of item (1). Thus, R� is clas-
sical sound if R�

1 and R�

2 are L-safe with respect to this structure.

Case 3: This MIX-JOIN has the components �u, y� > E�E�, and �v, y� > E�,
where C�u, y� � ε and C�v, y� > Σ.
For this case, these components of this MIX-JOIN merging at y in R is
transformed into R�

k, k � 1,2, as an arc that is unconstrained whenever the
u or v of R (or their corresponding vertex u� or v� of R�

k) is reached. Note
that the activity extraction algorithm ignores �v, y� when evaluating �u, y�
(and vice versa) since they are not type-alike in R. This is also true for
their corresponding structure in R�

k, k � 1,2. That is, R�

k forms an OR-JOIN
corresponding to this MIX-JOIN in R. By Theorem Theorem 4, we know
that an L-safe R�

1 with OR-JOINs have its R (with no MIX- or AND-JOINs
in its RBS) to be also L-safe. Therefore, R� is classical sound if R�

1 is L-safe
with respect to this structure.

Accounting all the cases and structures above, we have proved that for R
that has a MIX- and/or AND-JOIN, with or without an RBS, R is classical
sound if both R�

1 and R�

2 are L-safe.
Ì

Remark 2. Classical soundness of an input RDLT R with at least one RBS can
be verified in O�cSE4S� and O��SV S � SES�2� time and space complexity, where c
is the number of cycles in R. Essentially, the time and space complexity of the
EVSA transformation that produces R�

1 and R�

2 from R, i.e. O�SV S2�, is smaller
than the time and space complexity of verifying R�

1 and R�

2, if necessary, i.e.
O�cSE4S� and O�SES2� as per Theorem 1. For precision, we generalize the space
complexity of verifying classical soundness to O��SV S � SES�2� .

4 CONCLUSIONS AND FUTURE WORK

In this research, we were able to address the existing gap in literature pertaining
to the verification of classical soundness of RDLTs with a presence of reset-bound
subsystems. Along the process, we were able to extend the vertex simplification
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concept of RDLTs that segments an input RDLT R with RBS into two levels
of abstraction R�

1 and R�

2 without losing or wrongly adding structural and be-
havioral aspects of/to the former. We were also able to prove that expanded
vertex simplification process preserves the information of R within R�

1 and R�

2

in the context of activities despite the abstractions. With the multi-level nature
of RDLTs with resets, we were able to generalize the concept of critical and
non-critical arcs and relate ideal configurations of their neighborhood profiles,
e.g. type-alikeness to their escape arcs, L-safeness across the levels, etc., that
help achieve classical soundness of R. We were able to capture and prove cer-
tain profiles for which R�

1 is already representative of both R�

2 and R, and those
which would need both R�

1 and R�

2 to prove classical soundness of R. Lastly, we
were able to demonstrate the time and space complexity of verifying classical
soundness of RDLTs with RBS.

As a recommendation for a future work on RDLTs, we recommend that re-
searchers formalize the concept of the other notions of soundness, e.g. weak
soundness, generalized soundness, up-to-k soundness, etc., in the context of
RDLTs with RBS. Thereafter, researchers can pose efficient verification strate-
gies for such properties in RDLTs. As an input to this future work, we find that
there is a need to implement a parallel implementation of the activity extraction
algorithm, proceed with analogous formalisms of the concepts and strategies
of the case dimension relative to certain groups of activities defined over com-
ponent similarities/categories in RDLTs, among others. Furthermore, we also
recommend that researchers closely look into the concept of well-handledness
of Workflow Nets, formalize such property in RDLTs, and check the impact or
relevance of having MIX-JOIN structures in RDLTs with RBS on this property,
and finally, relate these results to classical soundness of RDLTs.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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