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Abstract. This study presents a novel approach to augment the accuracy and 

granularity of mental health assessment using a combination of Experience 

Sampling Methodology (ESM) and the Affective Ising Model. Traditional 

methods often lack the ability to capture the dynamic and nuanced nature of an 

individual's mental health. We propose a data-driven framework that leverages 

ESM data to construct an individual's positive and negative affect space, thus 

enabling a comprehensive analysis of their emotion landscape. To achieve this, 

we utilize the Affective Ising Model, a statistical physics-based framework that 

extracts the energy landscape of an individual's affect space, providing insights 

into their underlying mental state dynamics. We illustrate our approach using 

synthetic data generated from existing ESM datasets, ensuring a controlled yet 

realistic representation of affective states. Parameter estimates of the Affective 

Ising Model were shown to categorize different potential mental health states. 

This characterization aids in identifying potential markers or indicators of 

specific mental health challenges, thus facilitating early diagnosis and possible 

personalized interventions. The proposed method is hoped to provide a robust 

framework for augmenting mental health assessment, offering a more 

comprehensive understanding of an individual’s emotional experiences and their 

potential mental health states. 
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1 Introduction 

In recent years, the recognition of mental health as a critical component of overall well-

being has gained significant momentum. The global prevalence of mental health 

disorders underscores the urgent need for effective and innovative diagnostic 

methodologies that can better address the complex nature of human emotional 

experiences. Mental health concerns have become a global challenge, with statistics 

indicating that approximately 1 in 4 individuals worldwide will be affected by mental 

health disorders at some point in their lives (World Health Organization, 2021). As 

mental health and well-being are explicitly integrated into the United Nations 

Sustainable Development Goals (SDGs), the imperative to develop advanced 

diagnostic techniques is more pressing than ever before. 
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Traditionally, mental health diagnosis has relied upon clinical assessments and 
subjective evaluations, leading to several limitations. This approach often necessitates 
a case-to-case examination, making it challenging to capture the dynamic and transient 
nature of affective states. Moreover, the individualized nature of mental health requires 
customized therapeutic interventions that are tailored to each person's unique emotional 
landscape [1]. The inadequacies of these conventional diagnostic methods hinder the 
timely identification of mental health issues and limit the efficacy of treatment 
strategies. On the other hand, although artificial intelligence has been directed towards 
achieving highly accurate diagnosis and treatment of mental health conditions [2], 
being mechanism-agnostic, it lacks a comprehensive understanding of the underlying 
disorders and caution is necessary in the interpretation of its results. 

To address these challenges, computational models have emerged as a promising 
avenue for augmenting mental health diagnosis [3, 4]. These models harness the power 
of data-driven analysis to capture the intricate interplay of affective states within an 
individual's emotional spectrum. By integrating computational methodologies with 
established psychological frameworks, such as Experience Sampling Methodology 
(ESM), new horizons are opened for a more comprehensive and precise understanding 
of human emotional experiences. ESM allows for the collection of real-time data on 
individuals' emotional experiences in their natural environment, offering a unique 
opportunity to capture the dynamics of affective states as they unfold. On the other 
hand, the Affective Ising Model is a computational framework rooted in statistical 
physics, which provides a formalized approach to understanding the dynamic 
interactions between positive and negative affective states within an individual's 
emotional landscape, enabling a deeper analysis of emotional transitions and 
fluctuations. In this paper, we present the approach that combines the principles of ESM 
with the Affective Ising Model to augment mental health diagnosis. This may shed light 
into the possible shortcomings of traditional diagnostic techniques, highlighting the 
need for a more nuanced and data-driven methodology. By harnessing the capabilities 
of such computational models, we aspire to bridge the gap between traditional 
diagnostic practices and the evolving landscape of mental health assessment. 

As mental health continues to take center stage in the global agenda, the integration 
of computational models holds the potential to redefine how we approach and address 
mental health challenges. Through this interdisciplinary endeavor, we seek to 
contribute to a more comprehensive understanding of mental health and well-being, 
fostering early detection and personalized interventions that are rooted in empirical data 
and advanced computational analyses. 

2 Affective Ising Model 

The Affective Ising Model (AIM) [5] is a computational framework used to study and 
analyze the dynamics of affective states, particularly in the context of psychology, 
social sciences, and neuroscience. It draws inspiration from the Ising model, a 
fundamental concept in statistical physics that is used to describe the behavior of 
magnetic spins in a lattice structure. The Affective Ising Model extends this idea to 
describe the interactions between positive and negative affective states within an 
individual's emotional landscape. The positive and negative affective states are 
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processed each by a population of neurons modelled as Ising spins as shown in Figure 
1. The populations receive self-excitation and mutual inhibition from each other and 
may also receive external excitation from other sources. 
 

 
Figure 1. The Affective Ising Model consists of two interacting populations of neurons, 
one processing the positive affect, and the other, the negative affect of an individual. 
Excitatory feedback is shown in red while inhibitory feedback is shown in blue. 
 

Let’s denote the populations of neurons as PA and NA, which are processing the 
positive and negative affective states, respectively. The PA and NA populations 
respectively consist of N1 and N2 stochastic binary neurons. While the neurons toggle 
their states over time, the average activations also undergo temporal variations, 
resulting in noticeable fluctuations in the affective state 𝑦(𝑡)  = (𝑦 (𝑡), 𝑦 (𝑡)). The 
probability density function (pdf) of 𝑦(𝑡) is given by: 

  𝑝(𝑦) = 𝑒
( )

 (1) 

where 𝐹(𝑦) is the free energy function given by 

𝐹(𝑦) = −𝜆 𝑦 + 𝜃 𝑦 +
𝑁

𝛽
(𝑦 𝑙𝑛 𝑙𝑛 𝑦  ) + (1 − 𝑦 ) 𝑙𝑛 𝑙𝑛 (1 − 𝑦 ) )  

+𝜆 𝑦 𝑦                                                                (2) 

while Z is the partition function or the normalization constant of the pdf. The parameter 
β is associated with the inverse temperature in statistical mechanics. Within the AIM 
framework, the parameter is arbitrary and is assigned a value of 1 for simplicity. Other 
parameters of the free energy equation are summarized in Table 1. 

Generally, higher 𝑁  and 𝜆  (than 𝑁  and 𝜆 , respectively) and lower 𝜃  
values (than 𝜃 ) would imply that the individual’s affect state is more positive. On 
the other hand, a high value of 𝜆  indicates that the strengthening of one affective state 
inhibits the growth of the other. In simpler terms, if positive affect is high, it would tend 
to inhibit the persistence of negative affect, and vice versa. Finally, with the assumption 
of stochastic binary neurons, the dynamics of the affect states are given by 

 𝑑𝑦 (𝑡) = −𝛽 𝑑𝑡 + √2𝐷𝑑𝑊 (𝑡)                                  (3) 
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where {𝑊 (𝑡)} are the associated Wiener processes that are uncorrelated to each 

other [6]. The diffusion parameter 𝐷 =
( ) ∆

 determines how an affect state 

moves across the energy landscape. Lower D value would indicate that an 
individual would linger longer on its current affect state. 
 

Table 1. Internal parameters of the AIM 

Parameter Description 

NPA population of PA neurons 

NNA population of NA neurons 

λPA strength of self-excitation of PA 

λNA strength of self-excitation of NA 

λij strength of mutual inhibition 

θPA activation threshold of PA 

D diffusion parameter 

 
 

3 Method 

3.1 Synthetic Data 

The data used in this study were synthesized from the data based on Experience 
Sampling Methodology (ESM) used in [7]. ESM are generally considered to be the 
golden standard to study affect dynamics in an ecologically valid manner - a 
participant’s affect state is measured repeatedly throughout the day during several days, 
giving researchers a window into their affective experiences during their daily lives. 

An example of an ESM-based affect data is shown in Figure 2. The positive and 
negative affect values were calculated based on the participant’s responses during the 
experiment. The data was synthesized from actual data [1] to illustrate a 70-30 PANA 
landscape. This implies that 70% of the responses showed higher positive than negative 
affect state and 30% of the responses showed higher negative than positive affect state. 

 
 

 
Figure 2. An example of an ESM-derived data consisting of 64 records of a 
participant’s positive (green) and negative (red) affect based on his/her responses. The 
left plot shows the data in sequence while the right plot shows the participant’s affect 
scatter plot from which the emotion landscape is derived. 
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3.2 Parameter Estimation 

We employed GradientDiffusion [5] developed by Loossens et al. to estimate the 
parameters of the AIM from data using maximum likelihood estimation. The method 
specifically estimates an individual's affect dynamics in the absence of an external 
stimulus, focusing solely on the internal system. This is implemented using Julia, a 
platform for fast scientific computing [8]. In most cases, there are numerous local 
minima, thus, a global optimum is sought using a differential evolution heuristic [9]. 

4 Results and Discussion 

Using the synthetic data, we performed parameter estimation of the AIM. From the 
estimated parameters, we can plot the emotion landscapes given by the free energy 
function in Equation (1). The contour plots in Fig. 3 show these free energy landscapes. 
Using an individual’s emotional landscape, we can see the affect state that is frequently 
experienced by an individual which is the mode of the distribution. Moreover, we can 
also derive the conditional probability given an observed state of the individual, and its 
temporal evolution, which gives us the most likely affect state that the individual will 
experience in the succeeding future. 

  In this study, we investigated the case of hypothetical individuals with probability 
density functions that non-Gaussian. This is interesting as it may have implications 
about an individual experiencing different mental states such as in persons with 
borderline personality disorder [10]. However, in the absence of actual data, we 
generated synthetic data derived from actual ESM data. We kept the percentage of PA-
NA states but added constants such that the PA-NA states become more separated until 
a multimodal landscape is obtained as shown in the right plots of Figure 3. By looking 
into the results of the parameter estimation of each of the generated data in Figure 3, 
we may be able to derive insights regarding the observed transition from unimodal to 
multimodal emotion landscape of an individual. 
 
 

 
Figure 3. Transition of the free energy landscapes from unimodal to multimode. From 
top to bottom: PA states are higher than NA states in 70%, 60%, and 50% of the ESM 
responses, respectively. From left to right: Increasing separation of PA - NA states by 
adding constants to PA and NA values. 
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Figure 4. Parameter estimation results derived with the 70% PA - 30% NA data. The 
x-axis corresponds to increasing separation of PA-NA states by adding constants to 
PA and NA values (refer to Figure 3). 

 

 

Figure 5. Parameter estimation results derived with the 50% PA - 50% NA data.  

 
For discussion, we look at the results on the hypothetical landscapes with 70% more 

positive-, 30% more negative- affect state (these correspond to the first row of Figure 
3). The results of the parameter estimation for this data are shown in Table 2 above. 
Several nonlinearities can be observed based on the results of the parameter estimation. 
For example, the number of positive affect neurons or processing units increases as the 
landscape transitions from unimodal to multimodal but decreases again as the second 
mode becomes more apparent. This observation is the same with the strength of self-
excitation and threshold of excitation of the PA population. On the other hand, the 
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number of negative affect neurons, the strength of self-excitation, and the threshold of 
self-excitation of the negative affect neurons generally decreases as the emotion 
landscape transitions from one to two mode modes. From these results, we can 
generalize that at the transition point, the estimated values of the parameters for the 
positive affect processing units are high while that for the negative affect processing 
units are lower compared to when the landscape is unimodal. When the values of the 
NA parameters continue to decrease along with decrease in the values of the PA 
parameters and together with a decreased mutual inhibition, a multimodal landscape 
appears. This observed physio-biological mechanism based on AIM may augment our 
understanding of how an individual who previously manifested a generally normal 
mental behavior would suddenly exhibit a distinct mental state. Finally, we look into 
the diffusion parameter, which tells how the emotion landscape is explored. Generally, 
a low diffusion parameter means that an individual’s mental state is stable and vice 
versa. From the estimated values in Figure 4, we can say that the hypothetical individual 
likely experiences an unstable mental state at the point of transition in which the 
diffusion parameter is highest. When the individual’s emotion landscape becomes 
multimodal, the diffusion parameter becomes lower, which could imply that the 
individual lingers at one mental health state longer before they exhibit a different 
mental health state corresponding to the second mode. Similar observations were found 
with the 60% PA - 40% NA data. However, with the 50% PA - 50% NA data, the trend 
is different for the population of PA/NA neurons, strength of self-excitation and 
threshold of excitation. Interestingly, the same trend was found for the strength of 
mutual inhibition and the diffusion parameter. This suggests that these parameters are 
possible indicators of transition from unimodal to multimodal affect landscape. 

5 Conclusion and Recommendations 

This study illustrates how to augment mental health assessment of clinicians using a 
model-based approach. The model uses mutually inhibiting populations of stochastic 
Ising neurons that are processing the positive and negative affect of an individual. By 
performing maximum likelihood of a free energy function, we may be able to get 
insights regarding the observed mental states of an individual. We demonstrated the 
ability of the model to give insights regarding individuals who may be experiencing 
transitioning from generally normal to a mental health disorder that may be 
characterized by a multimodal emotion landscape such as in individuals with borderline 
personality or bipolar disorder. Specifically, we found that decreasing strength of 
mutual inhibition and high diffusion parameter seem to be a possible indicator of 
transition. 

While the approach may be promising, the study is hoped to be validated using 
actual data and consultations with psychologists and clinicians. The study shall be 
extended to include external excitations that are hypothesized to be events or situations 
experienced by individuals that could critically affect their mental health state and could 
be the reason for transitioning to a multimodal emotion landscape. With this 
computational approach, it may be possible to reverse engineer an individual’s mental 
health state by providing appropriate interventions.  
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