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Abstract. Marine operations, engineering activities, and transportation are 

highly influenced by sea waves, and accurately predicting the 2D wave field is 

crucial for ensuring safe and efficient project execution and avoiding the sea 

wave disaster. While existing deep learning applications for wave height predic-

tion primarily focus on single-point forecasts, it's important to note that single-

point data may not capture the overall regional trends effectively. Therefore, 

this paper establishes two spatiotemporal network models based on LSTM cells 

for Lianyungang Port and compares their performance. The results demonstrate 

that PredRNN, with its newly designed spatiotemporal memory cell which is 

able to deliver memory states through layers and laysers on current node and 

can learn the short-term non-linear variation, outperforms ConvLSTM, espe-

cially when dealing with unbalanced input samples. With the forecasting lead-

ing time increasing from 6h to 12h the correlation coefficient of PreRNN is 

over 0.9, ConvLSTM decreases to 0.849. Under the lower accuracy of input 

samples condition, PredRNN also performs better. In summary, PredRNN is 

less affected by the quality of input samples, which has engineering value in 

significant wave forecasting for marine operations. 

Keywords: significant wave height prediction; deep learning; spatiotemporal 

network; PredRNN. 

1 Introduction 

Waves in sea areas exhibit strong nonlinear characteristics and greatly influence 

ocean engineering, offshore operations, and maritime transportation. Especially for 

dredging construction areas, it can accurately and promptly predict wave height fluc-

tuations in a relatively short time, which is a crucial basis for operators to take safe 

and efficient actions in time, such as issuing emergency warnings for large waves, 

providing environmental guidance for construction, and forming a long-term predic-

tion model. Therefore, short-term wave height prediction emerges as a vital issue in 

the field of marine science. 
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Traditional wave forecasting is often implemented through numerical simulation, 
using computer models to simulate the physical processes of wave propagation and 
calculate the characteristic parameters of the waves. However, this approach requires 
significant computational resources and lengthy computation time, making it more 
suitable for large-scale ocean wave simulations. Additionally, in real marine opera-
tions, obtaining forecasted wave heights using numerical models requires operators 
with a certain level of model knowledge. As a result, numerical models have various 
limitations in practical use cases. 

With the rapid development of AI technology, its excellent feature extraction and 
information representation capabilities have led to widespread applications. Gradual-
ly, it has demonstrated its advantages in wave prediction, primarily focusing on sin-
gle-point prediction. For instance, Deo et al. initially employed artificial neural net-
works (ANN) or autoregressive (AR) to predict point waves in time series[1, 2]. Sub-
sequently, researchers like Mandal and Prabaharan[3] and Srinivasan et al.[4] argued 
that recurrent neural networks (RNN) outperformed traditional methods in time series 
problems. In recent years, the deformed long short-term memory (LSTM) variant of 
RNN has gained prominence in wave prediction. Hochreiter and Schmidhuber[5] first 
introduced this network, which selectively remembers long-term information through 
a series of gates. This feature proves highly useful for rapidly changing wave predic-
tion over time. Numerous scholars have demonstrated that this network is superior to 
traditional models in wave prediction[6-9]. However, it is worth noting that deep 
learning applications in wave prediction have predominantly focused on single-point 
prediction. This limitation contrasts with numerical models, as real-world scenarios 
and requirements involve two-dimensional and spatially correlated wave patterns. 
Single-point features alone cannot capture spatial correlation, so they cannot represent 
regional features for analysis. As a result, in recent years, there has been a shift to-
wards using spatio-temporal networks for regional wave prediction[10, 11]. This pa-
per uses two spatio-temporal network models based on LSTM cells to study the short-
term prediction of wave fields in the sea area near Lianyungang. The two models are 
the ConvLSTM algorithm proposed by Shi et al.[12] and the PredRNN algorithm 
proposed by Wang et al.[13]. ConvLSTM replaces the traditional fully connected 
layer with a convolutional layer, making it possible to input two-dimensional matrix 
data. Compared with the LSTM model, this model, with excellent spatio-temporal 
characteristics, can address the issue of spatial information loss and improve the accu-
racy of two-dimensional prediction. In contrast, the PredRNN algorithm seeks to 
overcome a drawback of ConvLSTM, where storage units between layers are inde-
pendent, leading to the neglect of upper-level memory by lower-level memory in 
subsequent time steps. Thus, this algorithm modifies a new spatio-temporal unit (ST-
LSTM) to transfer memory states vertically and horizontally. 
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2 Research area and methodology 

2.1 Research areas and data sources 

This study focuses on the sea area near Lianyungang, spanning from 122° to 124°E 
longitude and 30° to 33°N latitude. The data relies on the WW3 reanalysis dataset of 
the National Oceanic and Atmospheric Administration (NOAA) in the United States. 
According to the simulation requirements, we mainly select significant wave height 
and wind field elements (including wind direction and 10-meter wind speed), cover-
ing the time range from January 1, 2017, to December 31, 2020, with a temporal reso-
lution of 1 h and a spatial resolution of 0.5° × 0.5°. Many scholars have verified this 
dataset’s appropriateness, showing favorable consistency with the observed values 
[14]. In the model established in this paper, the input consists of the preceding n 
hours, and the output comprises the subsequent n hours, with the n selected as 6 h and 
12 h, respectively. Among them, the data from 2017 to 2019 serve as training data, 
while the data in 2020 are used for predictions. To ensure the accuracy and quality of 
the model, all data are linearly interpolated to 0.05° × 0.05° based on the original 
spatial resolution. 

2.2 Research methodology 

2.2.1 ConvLSTM. ConvLSTM evolves from the LSTM network, which is often uti-
lized for two-dimensional prediction. Classical LSTM network controls the infor-
mation transmission between units through the input gate, output gate, and forgetting 
gate, realizing the prediction of time series data. However, suppose it is applied to 
two-dimensional data. In that case, it needs to expand the data to fully connected lay-
er, which consumes substantial computing resources and makes it challenging to cap-
ture the spatial correlation and characteristics of the two-dimensional spatial field. 
Therefore, Shi et al. [12] proposed to replace FC-LSTM with a convolutional layer, 
that is, to replace matrix multiplication with a convolution operation, whose specific 
expression in a unit is: 

 𝑖 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ ℎ 𝑊 ∘ 𝑐 𝑏  (1) 

 𝑓 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ ℎ 𝑊 ∘ 𝑐 𝑏  (2) 

 𝑐 𝑓 ∘ 𝑐 𝑡 ∘ tanh 𝑊 ∗ 𝑥 𝑊 ∗ ℎ 𝑏  (3) 

 𝑜 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ ℎ 𝑊 ∘ 𝑐 𝑏  (4) 

 ℎ 𝑜 ∘ tanh 𝑐  (5) 

where 𝑖  represents the input gate; 𝑓 represents the forget gate; 𝑜  represents the 
output gate; 𝑐  represents the current moment state; 𝑐  represents the previous mo-
ment state; ℎ  represents the final output; W represents the weight coefficient of a 
given gate; b represents the bias coefficient of a given gate; ∘ represents the Hada-
mard product; σ represents the sigmoid function; * denotes convolution operation. 
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The convolution operation is highly effective at capturing the spatial characteristics of 
data, while LSTM excels at tracking changes in data over time. Consequently, Con-
vLSTM, which combines these two techniques, is well-suited for describing the spa-
tial-temporal characteristics of variables. 

2.2.2 PredRNN. Although the ConvLSTM network can decode the spatial structure, 
the memory units of each layer are independent and only pass between the time do-
mains of the same layer. In other words, they solely update in the time domain. In this 
case, the bottom layer will entirely disregard the contents remembered by the upper 
layer in the previous time step. Therefore, Wang et al. [13] proposed a new ST-LSTM 
cell for PredRNN, which can transfer memory states in both vertical and horizontal 
directions, as expressed as follows: 

 𝑔 tanh 𝑊 ∗ 𝑥 𝑊 ∗ 𝐻 𝑏  (6) 

 𝑖 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ 𝐻 𝑏  (7) 

 𝑓 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ 𝐻 𝑏  (8) 

 𝐶 𝑓 ∘ 𝐶 𝑖 ∘ 𝑔  (9) 

 𝑔 tanh 𝑊 ∗ 𝑥 𝑊 ∗ 𝑀 𝑏  (10) 

 𝑖 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ 𝑀 𝑏  (11) 

 𝑓 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ 𝑀 𝑏  (12) 

 𝑀 𝑓 ∘ 𝑀 𝑖 ∘ 𝑔  (13) 

 𝑜 𝜎 𝑊 ∗ 𝑥 𝑊 ∗ 𝐻 𝑊 ∗ 𝐶 𝑊 ∗ 𝑀 𝑏  (14) 

 𝐻 𝑜 ∘ tanh 𝑊 ∗ 𝐶 , 𝑀  (15) 

In the formula, there are two memory units: 𝐶  represents the time memory unit 
transferred from the previous time step to the current time step in the traditional 
LSTM cell, while 𝑀  is a spatio-temporal memory unit, which is passed vertically 
from the previous layer to the current node at the same time step. In particular, the 
memory state received for the bottom layer units is transmitted by the top layer units 
of the previous time step, creating a zigzag pattern in their memory state transmission, 
as illustrated in Figure 1. The above is achieved by constructing another set of gate 
structures for 𝑀  in the ST-LSTM cell while preserving the original 𝐶  gate structure. 
Then, the two kinds of memories are spliced together, seamlessly integrating them 
through a shared output gate. This process effectively stimulates shape changes and 
motion trajectories within spatio-temporal sequences. 
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Fig. 1. ST-LSTM Cell Structure and PredRNN Spatio-temporal Memory Flow (quoted from 
Wang et al. (2017) 

2.3 Prediction model framework and parameter setting 

This study establishes two wave prediction models based on the ConvLSTM network 
and PredRNN network, with their frameworks shown in Figure 2. The significant 
wave height, wind direction, and 10-meter wind speed of the first n continuous time 
steps are taken as inputs to predict the wave height of the later n time steps. The net-
work structure of the PredRNN spatio-temporal wave prediction model consists of 
three PredRNN layers, followed by an additional Conv2d layer serving as the output 
to obtain the prediction results of significant wave height in the future n hours. The 
ConvLSTM spatio-temporal wave prediction model obtains the prediction results of 
wave height in the next n hours through three ConvLSTM layers and one Conv3d 
output layer. We do not add a pooling or up-sampling layer in the convolution pro-
cess. Still, we use a filling setting to make the feature graph generated by the interme-
diate process consistent in size. PredRNN model employs L1 + L2 loss as its loss 
function, while ConvLSTM only adopts L2 loss, both with a learning rate of 0.0001. 

 
(a)PredRNN Wave Height Prediction Model Frame-work Diagram 
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(b)ConvLSTM Wave Height Prediction Model Framework Diagram 

Fig. 2. Model Framework Diagrams 

2.4 Evaluation methods 

This study takes the root mean square error (RMSE) and mean absolute error (MAE) 
as indicators to evaluate the model prediction error. RMSE can depict the dispersion 
between the model prediction data and the reanalysis data, while MAE can measure 
the actual situation and error ratio. Their expressions are as follows: 

 𝑅𝑀𝑆𝐸 ∑ 𝐻 𝐻  (16) 

 𝑀𝐴𝐸 ∑ 𝐻 𝐻  (17) 

where n is the total amount of time series; 𝐻  represents the wave height predicted 
by the model;  𝐻  represents the wave height of the reanalysis data of the WW3. The 
model also selects the correlation coefficient (CC) to express the correlation between 
the predicted data and the reanalysis data, and its expression is as follows: 

 𝐶𝐶
∑

∑ ∙ ∑
 (18) 

Where  𝐻  represents the average wave height predicted by the model and 𝐻  rep-
resents the average wave height of the reanalysis data of the WW3. 
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3 Research results 

3.1 Comparison of model prediction results 

This section presents the results of applying spatio-temporal network prediction mod-
els to waves. As shown in Figure 3, both models exhibit excellent overall trends in 
predicting data and can accurately predict the positions of wave peaks and troughs. 
Comparatively, ConvLSTM has an unavoidable time delay, which becomes more 
noticeable when the prediction time series increases to 12 h forward. In contrast, 
PredRNN demonstrates minimal time delay in both 6-hour and 12-hour forward pre-
dictions, delivering excellent predicting performance. Regarding the accuracy of nu-
merical predictions at wave peaks and troughs, PredRNN performs quite accurately in 
both 6-hour and 12-hour forward predictions. ConvLSTM, on the other hand, exhibits 
a bias in predicting wave heights at peak positions, resulting in lower predicted val-
ues. This bias is especially prominent as the predicting series lengthens or the actual 
wave height increases. The reason behind this is that the whole year data are selected 
to train the two models, in which the data with wave height surpassing 3 m (corre-
sponding to the 5-level sea state) merely accounts for 8% of the whole year data. This 
data imbalance often results in a lack of learning from the larger wave height samples 
during training. Obviously, ConvLSTM is more sensitive to this data imbalance prob-
lem, leading to its suboptimal performance in predicting larger wave heights. In con-
trast, PredRNN effectively overcomes this issue during prediction, making it an ideal 
spatio-temporal wave prediction model. 

  
(a)Prediction Results of the 6-hour Forward 

Model 
(b)Prediction Results of the 12-hour 

Forward Model 

Fig. 3. Model Prediction of the wave height (shown at the center point) 

To further evaluate the prediction ability of the two models, we calculated the 
MAE (its spatial distribution is shown in Figure 4), RMSE, and CC between the pre-
diction results of the two models and the reanalysis data, respectively, as shown in 
Table 1. The MAE diagram elucidates that in the 6-hour forward prediction, both 
models exhibit relatively small MAE, and the spatial distribution is pretty uniform. 
The values in the grid are all within 0.15 m, even with the MAE of the PredRNN 
model of only 0.055 m. When the prediction step increases to 12 h forward, the MAE 
values of the two models grow. In this conjuncture, ConvLSTM displays more signif-
icant errors, particularly in an area where errors are notably more prominent in the 
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upper triangular region. This phenomenon arises because wave heights in the sea area 
inherently exhibit higher values in the upper triangular region. Combined with Con-
vLSTM’s higher errors in predicting larger wave heights, this becomes more pro-
nounced as the prediction step increases, as observed in Figure 4. The PredRNN mod-
el obviously improves this problem, showing a more balanced distribution of errors in 
wave height. Meanwhile, Table 1 reveals the RMSE and CC values for both models. 
The RMSE values for both models rise with the increase of time steps, with Con-
vLSTM exhibiting higher RMSE values, indicating a higher presence of outliers in its 
predictions. In terms of CC values, PredRNN consistently maintains CC values above 
0.9, whether in 6-hour or 12-hour forward prediction. In contrast, ConvLSTM’s CC 
values decrease to 0.849 in the 12-hour forward prediction, indicating that PredRNN 
is a more suitable spatio-temporal prediction model. 

 

Fig. 4. MAE Spatial Distribution of PredRNN (a, c) and ConvLSTM (b, d) predictions: a), b) 6 
h; c), d) 12 h 

Table 1. Evaluation parameters of model prediction performance 

 
MAE(m) RMSE(m) CC 

6h 12h 6h 12h 6h 12h 

PredRNN 0.055 0.120 0.134 0.237 0.976 0.924 

ConvLSTM 0.096 0.228 0.179 0.326 0.956 0.849 

3.2 Application of the models in improving prediction accuracy 

From the previous section, the two models have favorable results in the 6-hour for-
ward prediction, with their CC above 0.95. Therefore, we further propose applying 
the models to predictions while striving for increased precision. This section selects 
the Delft3d finite volume flow model to establish the wave numerical model for the 
selected sea area. The wave data generated by the simulation are shown in Figure 5. 
This numerical model, established with some roughness, exhibits more significant 
errors and lower accuracy. The numerical simulation data are used as the input data of 
the two spatio-temporal network models established in this paper (continuous data for 
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the first 6 h), and the reanalysis data of WW3 is still employed as the output (the later 
6 hours). 

 

Fig. 5. Numerical Simulation Prediction Results (shown at the center point) 

Figure 6 demonstrates that the predicted values of the two models are significantly 
higher than those of the numerical model while forecasting forward. Notably, the 
PredRNN model stands out with better performance, delivering not only more accu-
rate numerical values at wave peaks and troughs but also smoother prediction curves. 
Although ConvLSTM also demonstrates improved prediction accuracy, the prediction 
curve exhibits noticeable spikes, and with lower prediction values, its performance at 
the peak position is slightly worse than that of the PredRNN model. 

The text of your paper should be formatted as follows: 

 

Fig. 6. Comparison of Model Prediction Results 

Furthermore, the evaluation parameters are calculated to evaluate the prediction ef-
fect of the two models. As depicted in Figure 7, both models exhibit MAE and RMSE 
values that skew towards the higher end on the right side of the predicted sea area, 
accompanied by gridlines. Comparatively, the PredRNN model displays smaller error 
values, while the ConvLSTM model shows more significant errors with more distinct 
gridlines. The presence of these gridlines may be attributed to the input numerical 
simulation data with a grid resolution of 0.5° × 0.5°, resulting in suboptimal transi-
tions at grid intersections. The reason for the larger error values on the right side of 
the predicted marine area could stem from the fact that the study area, near Lianyun-
gang, experiences predominantly east-to-west winds throughout the year, that is, from 
right to left. Since this region’s waves are primarily wind-driven, it is conceivable that 
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the input data may not adequately account for wave generation beyond the attention 
area to the right (eastern side). 

As presented in Table 2, both models show improvements in accuracy compared to 
numerical simulation predictions, with a significant CC enhancement. The correlation 
of the prediction data obtained by the PredRNN model is increased from the original 
0.914 of the numerical simulation results to 0.938, and the CC of the ConvLSTM 
model is increased to 0.929. MAE and RMSE values are significantly reduced, partic-
ularly for the PredRNN model, which reduces them by 72.3% and 56.9%, respective-
ly. This reduction not only enhances overall accuracy but also decreases the number 
of outliers. Therefore, it can be considered that the two models effectively enhance 
precision while predicting, among which PredRNN exhibits superior predictive capa-
bilities and is less affected by data quality limitations. 

 

Fig. 7. Spatial Distribution of MAE (a, b) and RMSE (c, d) of PredRNN (a, c) and ConvLSTM 
(b, d) predictions 

Table 2. Evaluation parameters of model prediction performance in improving accuracy 

 MAE (m) RMSE (m) CC 

PredRNN 0.146 0.252 0.938 

ConvLSTM 0.183 0.284 0.929 

Simu 0.527 0.585 0.914 

The research mentions that the model input exerts a certain influence on the predic-
tion effect, so it is necessary to discuss the impact of the combination of input data in 
the model on the prediction effect. The real-world waves are affected by many fac-
tors, including tides, currents, rainfall, etc. However, considering the model’s light 
weight, the consumption of calculation and storage resources, and the predominant 
influence of wind-driven waves in our study area [15], we focus on three key input 
parameters: 10-meter wind speed, wind direction, and wave height. The results of 
ablation tests are shown in Table 3. When the two wind field factors are removed, the 
influence on the model is almost the same, and the MAE and RMSE of the model are 
reduced by 0.015 m and 0.013 m, respectively, which suggests that the addition of 
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wind field factors in the study area brings adequate information support to the model. 
However, the historically significant wave height remains the dominant factor. Its 
inclusion effectively lowers the model’s MAE and RMSE by approximately 0.109 m 
and 0.105 m, respectively, roughly more than eight times the impact of wind field 
elements. 

Table 3. Ablation test of PredRNN model input parameters 

Experiment ID Removed factor MAE (m) RMSE (m) CC 

PredRNN Nothing 0.055 0.134 0.976 

R-wind direction Wind Direction 0.070 0.147 0.969 

R-wind velocity Wind velocity 0.069 0.147 0.969 

R-SWH SWH 0.164 0.239 0.922 

Overall, for wind-driven wave regions, including wind field information as input 
can enhance the model’s predictive performance, but significant wave height remains 
the dominant factor. The ablation test in this paper alone cannot well interpret the 
significance of wind field elements in wave prediction models. Future research should 
further select non-wind-driven sea areas or swell data for comparison to better verify 
the significance of wind field elements. 

Based on this study, we applied the established network to the real dredging opera-
tion process. By utilizing the historical wave height data  as input, we predicted the 
wave heights for the next 12 hours. The model let operators accurately know the time 
of wave height exceeds 2 meters, which gives the time for dredging vessel relocating 
to a safety zone. Moreover, operators added that the model is user-friendly because it 
can give the expected results without professional personnel.  

4 Conclusions 

This paper establishes two spatio-temporal network models for modeling and predict-
ing the reanalysis data (WW3) of the sea area near Lianyungang. The models employ 
significant wave height, wind direction, and 10-meter wind speed as inputs to predict 
the spatial distribution of waves. According to the above prediction results, compared 
to the ConvLSTM model, the PredRNN model maintains the correlation above 0.9 in 
both 6-hour and 12-hour forward predictions and displays insensitivity to the imbal-
ance of training data, thus accurately predicting larger wave heights (corresponding to 
Sea State 5, greater than 3 m). Both models show remarkable effects in improving the 
accuracy of wave height prediction. Nonetheless, the ConvLSTM model exhibits 
noticeable spikes in its prediction curve; meanwhile, the PredRNN model has a 
smoother curve and improves the CC of wave height from 0.914 (numerical simula-
tion) to 0.938 after prediction. Additionally, it reduced MAE and RMSE values by 
72.3% and 56.9%, respectively. These findings collectively indicate that the 
PredRNN model is less constrained by input data quality limitations and is a relatively 
ideal spatio-temporal model for predicting significant wave height. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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