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Abstract. The deformation of concrete dam can be regarded as the result of the 

synergistic action of hydraulic component, temperature component and aging 

component. According to the different component characteristics of deformation 

and the correlation of different time scales, a multi-scale combined prediction 

model for concrete dam deformation based on VMD-LSTM-ARIMA is pro-

posed. Firstly, using the adaptive analysis function of VMD, the trend term and 

cycle term of dam deformation are decomposed. Secondly, LSTM model is used 

to effectively predict the cycle term and trend term under different scales, and 

ARIMA model is used to identify the effective information of the remaining term. 

Finally, based on a practical project, the effectiveness and superiority of the pro-

posed model are verified by comparing with the conventional combination algo-

rithm. The calculation results show that the combined model fully considers the 

characteristics of the dam deformation, and can effectively fit and predict the dam 

deformation.  

Keywords: Concrete dam; Deformation prediction; Variational mode decom-
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1 Introduction 

Concrete dams have the advantages of large scale, stable behavior and long service 

time, and have achieved great practical benefits in flood control, power generation and 

irrigation [1]. Deformation is a comprehensive reflection of the structural state changes 

of the dam body and foundation, and is an important symbol to monitor the dam behav-

ior change [2]. According to relevant literature statistics, the common deformation pre-

diction of concrete dams is mainly divided into three types of models: (1) Based on the 

statistical model of regression, the deformation sequence is divided into water pressure 

factor, temperature factor and time factor according to the characteristics of effect size 
[3]. (2) In order to expand the performance of traditional statistical models in the field 

of nonlinear mapping, various intelligent algorithms, such as neural networks and sup-

port vector machines (SVM), are introduced [4-5]. Although such methods can obtain 

relevant information in the field of nonlinear mapping, they still have shortcomings. (3)  
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Various combined prediction models [6-7] proposed to further optimize performance are 
mainly based on the idea of ‘decomposition before prediction’. After the original signal 
is decomposed into multiple groups of components with different frequencies, various 
methods are used to analyze and predict on this basis. These methods have been suc-
cessfully applied in practical engineering, and have achieved great social and economic 
effects, but there no clear standard for the selection of decomposition scale. 

The dam deformation sequence can be regarded as the superposition of a series of 
factors, among which the water pressure deformation and temperature deformation are 
mainly caused by the changes of reservoir water level and temperature, and have obvi-
ous periodic characteristics. The aging amount mainly reflects the creep and plastic 
deformation of the concrete and bedrock of the dam body and the compressive defor-
mation of the geological structure of the bedrock, which is reflected as the trend com-
ponent of the total deformation [8]. Therefore, according to the characteristics of the 
dam deformation, this paper makes full use of the advantages of the three existing meth-
ods, and uses the idea of composite modeling to build models for signals of different 
frequencies respectively, so as to realize the effective prediction of dam deformation. 
Firstly, variational mode decomposition (VMD) is proposed to separate the dam defor-
mation time series on multiple scales. By adjusting the correlation adaptive weight fac-
tors, the characteristics of different time series can be perfectly adapted to avoid the 
phenomenon of mode aliasing. Secondly, for the decomposed sequences, long short-
term memory neural network (LSTM) is introduced to predict the deformation at dif-
ferent scales [9]. Finally, in order to extract the effective information of the remaining 
terms, this paper adopts the autoregressive differential moving average model [10] 
(ARIMA) for residual correction.  

In summary, this paper proposes a combined prediction model for dam deformation 
based on VMD-LSTM-ARIMA, which combines the advantages of VMD, LSTM and 
ARIMA in dealing with non-stationary nonlinear time series problems at different 
scales, and applies the combination to dam deformation prediction. Taking the defor-
mation monitoring data of a concrete gravity dam as an example, the combined model 
is used to predict the dam deformation and is compared with the prediction results of 
other models to test the prediction effect of the combined model. 

2 Research theory of deformation effect size combination 
model 

2.1 Variational mode decomposition of deformation 

VMD is a non-recursive and quasi-orthogonal decomposition algorithm based on Wie-
ner filter, which can perform adaptive signal processing [11]. The essence of VMD is to 
transform the problem of decomposition into a variational optimization problem, and 
determine the central frequency and bandwidth of each intrinsic mode function (IMF) 
by searching the optimal solution of the constrained variational model. 

Step1 Unilateral spectrum of analytical signal of structural dam deformation time 
series. 
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Where, the number of modal functions is k , the analytic signal is  ku t . 

Step2 Fuses the center frequency predicted by the analytic signal, and moves the 
spectrum under different scales to the concentrated frequency band, and the result is as 
follows. 
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Step3 Find the L2 norm of the frequency shift signal and estimate the bandwidth. 
The process can be described as formula (3). 
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Where, ku  is kth intrinsic mode function obtained after decomposition, k  is 

the center frequency obtained after decomposition 
This is to solve the variational constraint problem. In order to transform the con-

straint problem into a non-constraint problem, Lagrange multiplication operator  t
and quadratic penalty factor are introduced. The optimization model is shown as 
equation (4). 
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The "saddle point" obtained by solving equation (4) with multipliers alternating di-
rection algorithm is the optimal solution of the problem. In the process of solving, the 
appropriate IMF component and center frequency can be determined, and the signals 
of different frequencies can be separated adaptively. 

2.2 LSTM network prediction of deformation 

In the field of dam deformation prediction, deformation monitoring data in different 
time scale are correlated. LSTM, as a backpropagated recurrent neural network, im-
proves the simple nodes of traditional neural networks into the form of storage units in 
order to learn the correlation between data [12]. 
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2.3 ARIMA model 

The principle of ARIMA model is to treat the time series to be predicted as a random 
series, and use a mathematical model to describe the series approximately. In this paper, 
the random component composed of the remaind term of the VMD model can be re-
garded as non-stationary random time series. First, the random components are trans-
formed into stationary time series by differential processing, and then the regression 
modeling process is carried out. The model can be expressed as formula (10) 
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Where,  1,2, ,m m p   is autoregressive coefficient,  1,2, ,j j q    is moving 

average base, p  is the order of the autoregressive part, q is the order of the moving 

average part; ta is white noise part. 

2.4 Model evaluation index 

Average absolute error (MAE), average absolute percentage error (MAPE) and root 
mean square error (RMSE) are usually used as evaluation indexes in order to objec-
tively evaluate the accuracy of VMD-LSTM-ARIMA combined prediction model for 
dam deformation. Specifics are shown as formula (11) ~ (13). 
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3 Implementation steps of dam deformation combination 
model 

The process of realizing VMD-LSTM-ARIMA combined prediction model for con-
crete dam deformation is shown in Figure 1. 
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Fig. 1. Flow chart of VMD-LSTM-ARIMA combined prediction model 

4 Project example 

A concrete gravity dam is divided into 19 sections from the left bank to the right bank, 
numbered 1#~19#. A monitoring point is set up in each dam section to monitor the 
horizontal displacement of the dam body. The specific monitoring point arrangement 
of the gravity dam is shown in Figure 2. In this paper, a total of 163 sets of horizontal 
deformation data of dam section 7# and monitoring point EX7-1 from November 1, 
2011 to April 11, 2012 were selected for analysis. The first 153 sets of measured values 
were selected as the training set, and the last 10 sets of measured values were selected 
as the test set. In order to facilitate multi-scale comparison and analysis, the time seris 
of horizontal deformation, water level and temperature of the 7# dam section during 
this period is shown in Figure 3. 
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Fig. 2. Concrete dam horizontal displacement monitoring point layout 

 

Fig. 3. Time series of point EX7-1 horizontal deformation, reservoir water level and tempera-
ture 

4.1 Decomposition of monitored sequence 

VMD decomposition is performed on the monitoring time series of horizontal defor-
mation at EX7-1. It is adaptive decomposed by VMD into 7 groups of IMF and one 
remaining term, and the decomposition results are shown in Figure 4. It can be seen 
from the decomposition results that the frequency characteristics of all components are 
obvious. The frequency of IMF1~IMF4 component is high, which is similar to the var-
iation law of reservoir water level. The process line of IMF5~IMF7 component is 
smooth and has obvious periodic characteristics, which is roughly consistent with the 
law of temperature first decreasing and then increasing in reservoir area. The remaining 
term Z is a random component, which basically conforms to the normal distribution. 
The results show that the decomposition effect of VMD in dam deformation monitoring 
sequence is good, and more obvious multi-scale effect size of dam deformation can be 
obtained. 
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Fig. 4. Results of VMD decomposition of deformation 

4.2 Component prediction 

The components of each group obtained after VMD decomposition are trained by 
LSTM algorithm. For the high frequency component, according to the characteristics 
of the upstream water level, the LSTM parameters are reasonably input. When the win-
dow length is 12 and the hidden layer node is 18, the model accuracy is higher. For 
low-frequency components, the relevant parameters are also substituted into the train-
ing. In order to comprehensively compare the prediction accuracy of each algorithm, 
LSTM, MLR and SVM methods were used to predict the above 7 groups of effect com-
ponents at different scales, and the results were shown in Figure 5. By comparing the 
predicted values, it can be found that for the high frequency variable components, SVM 
and MLR prediction results tend to be linear, while LSTM prediction method can relate 
the time correlation characteristics of deformation, so it is more accurate. For the low-
frequency effect component, the description equation is simple, MLR not only does not 
need iterative operation and has higher precision, it is a faster and more effective 
method. 

The accuracy of the prediction results of the above 7 groups of components was 
calculated, and the results were shown in Table 1. As can be seen, for high-frequency 
components, all indexes of LSTM algorithm are lower than MLR and SVM. Moreover, 
it can be seen from the trend of the prediction chart that the prediction trend of the 
LSTM algorithm is closer to the measured situation, while other algorithms are in the 
shape of horizontal lines and cannot clearly identify the trend. In summary, LSTM is a 
more accurate and effective prediction algorithm for high-frequency components. For 
the low-frequency component, the accuracy indexes of MLR are much lower than other 
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algorithms, indicating that this MLR algorithm can accurately and quickly predict pe-
riodic time series. 

 

Fig. 5. EX7-1 Deformation component prediction results 

Table 1. Prediction accuracy index of each scale component 

Index 
IMF1 IMF2 IMF3 

LSTM MLR SVM LSTM MLR SVM LSTM MLR SVM 

MAE/mm 0.0015 0.0032 0.0028 0.0013 0.0024 0.0029 0.0019 0.0042 0.0042 

MAPE 0.8804 1.2870 1.0064 0.6084 0.8471 1.0626 0.5561 1.5426 0.9628 

RMSE/mm 0.0021 0.0039 0.0032 0.0013 0.0029 0.0036 0.0024 0.0052 0.0052 
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table 1(continue) 

IMF4 IMF5 IMF6 IMF7 

LSTM MLR SVM LSTM MLR SVM LSTM MLR SVM LSTM MLR SVM 

0.0049 0.0028 0.0172 0.0052 0.0018 0.0082 0.0014 0.0006 0.0029 0.0459 0.0049 0.0683 

0.0643 0.0375 0.2249 0.0617 0.0188 0.0863 1.4229 0.6359 2.8511 0.1350 0.0119 0.1823 

0.0052 0.0032 0.0161 0.0054 0.0020 0.0087 0.0016 0.0008 0.0028 0.0472 0.0046 0.0723 

4.3 Residual term prediction 

For the random component Z composed of residual term, this paper builds ARIMA to 
model and predict it. In the actual modeling process, with the help of correlation graph 
test method and information criteria, this paper considers the relatively good conver-
gence of BIC criteria, and finally determines ARIMA (2,1,0). The final dam defor-
mation prediction result can be obtained by reconstructing the sequence of the IMF 
component prediction results obtained by the above algorithms. The fitting and predic-
tion results of the combined model of monitoring point EX7-1deformation are shown 
in Figure 6. 

 

Fig. 6. Deformation of multi-scale combined model fitting and prediction results  

4.4 Model comparison and precision analysis 

In order to reflect the superiority of VMD for signal multi-scale adaptive processing, 
VMD is compared with traditional decomposition methods EMD and EEMD. As can 
be seen from Figure 7(a), VMD can decompose according to the characteristics of the 
signal itself, and the prediction results of this method (VLA) are obviously superior in 
accuracy compared with ELA and EELA. It can be seen that the multi-scale combined 
prediction model based on VLA can fully consider the component characteristics of 
deformation and the correlation of different time scales, and has good prediction accu-
racy. 

On the other hand, in order to verify the advantages of VLA multi-scale combination 
algorithm, its prediction results were compared with the following common combina-
tion algorithms: 
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(1) VMD-LSTM(VL), only LSTM algorithm was used to predict each IMF compo-
nent; 

(2) VMD-MLR(VM), only MLR prediction is used for each IMF component;  
(3) VMD-SVM(VS), only SVM regression prediction was used for each IMF com-

ponent; 
(4) VMD-LSTM-ARIMA(VLA), LSTM algorithm was used to predict each IMF 

component, and ARIMA was used to extract relevant information in the remaining 
items, and finally reconstructed into predicted values. 

The comparison of prediction results of the above models is shown in Figure 7(b). It 
can be seen that VLA algorithm and VM algorithm are better than VL and VS in the 
final prediction results of measured values. This is because LSTM can identify the cor-
relation between time series and better reflect the working characteristics of actual de-
formation. The information in the residual value can be extracted effectively, and the 
prediction accuracy is the highest. 

 
(a) VMD-EMD-EEMD (b) VL-VM-VS-VLA 

Fig. 7. Comparison of different prediction methods 

5 Conclusion 

Aiming at non-stationary and nonlinear dam deformation data, a combined prediction 
model based on VMD-LSTM-ARIMA(VLA) is proposed by combining variational 
mode decomposition, long short-term memory neural network and autoregressive dif-
ferential moving average model. Through the analysis of project example, the predic-
tion results of this model are compared with the conventional methods, and the follow-
ing conclusions are obtained: 

(1) The VMD decomposition of the original monitoring sequence of dam defor-
mation can effectively avoid the mode aliasing phenomenon, and at the same time, 
multiple groups of dam deformation components with different characteristics can be 
adaptive, which is conducive to multi-scale exploration of dam deformation rules. 

(2) The model adopts different modeling and prediction methods for the high-fre-
quency periodic component and the low-frequency trend component of the dam defor-
mation component, which is conducive to fully exploring the dam deformation infor-
mation and has the characteristics of both accuracy and convenience. The example 
shows that the VLA combination model has certain advantages in dam deformation 
prediction and can provide reference for the corresponding work. 
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