

Input-output benefit analysis of automobile industry based on grey correlation method

Hao Chen*, Jiarong Li, Weiwei Bao

China Automotive Technology and Research Centre Ltd., Tianjin, China.

chenhao2015@catarc.ac.cn

Abstract. The automotive industry is an important pillar and strategic industry of the national economy, as well as an important area for stabilizing growth, promoting consumption, and ensuring employment. This article selects 11 listed vehicle companies as samples, and based on input-output theory, constructs a financial indicator system for input-output using the financial statement correlation data of the companies. The grey correlation method is used for systematic analysis, and based on the analysis results, countermeasures and suggestions for the sustainable development of China's vehicle companies are proposed.

Keywords: whole vehicle enterprises; Grey correlation method; Input-output efficiency; financial data

1 Introduction

With the rapid development of the global economy, the automotive industry has become increasingly significant in the national economy. As a key industrial field, the input-output benefit analysis of vehicle enterprises is of great significance for understanding the development trend of the automotive industry, optimising resource allocation and formulating relevant policies. Grey correlation analysis is an analytical method that examines the degree of correlation between multiple factors and is suitable for small samples and incomplete information^[1].In this paper, the grey correlation method is used to analyse the input-output benefits of the automotive industry, aiming to reveal the degree of influence of each factor on the economic benefits of the automotive industry, and to provide reference for the sustainable development of the automotive industry.

2 Data sources

Based on the "Market Capitalisation of Major Domestic Traditional Vehicle and Dealership Listed Companies in September 2023" released publicly by the Automotive Market Capitalisation Research Group of China Automotive News in September 2023, we have selected the top 15 companies in the order of BYD, Great Wall Motor, SAIC, Changan Automobile, Guangzhou Automobile Group, Geely Automobile, Sailis, Zhongsheng Holdings, FAW Jiefang, BAIC Blue Valley, Yutong Bus, JAC, Foton Motor, Brilliance China, Beijing Automobile. On this basis, due to the difference in the statistical calibre of the relevant financial statements of Hong Kong stocks and A-shares, part of the data is not easy to obtain, so "Geely Automobile", "Brilliance China" and "Beijing Automobile" are excluded. Because "Zhongsheng Holdings" is a dealer group, it is excluded. This article is based on the financial statements automotive from 2020 of 11 companies to 2022 (data from "https://www.10jqka.com.cn/").

3 Grey correlation analysis

Grey correlation analysis as an important method used to analyse the closeness of the relationship between the resultant factors and the influencing factors in a system, the basic idea is to judge whether the connection is close or not based on the similarity of the data series, firstly, by calculating the relative correlation and absolute correlation matrices of the system characteristics and the factor series, and then calculating the comprehensive grey correlation.

Input-output analysis is a method of economic analysis based on both inputs and outputs that provides a comprehensive picture of the interrelationships between industries in an economic system^[2]. T. A. Alageel et al. used a cost-benefit analysis model to evaluate the input-output benefits of introducing smart grid technology into infrastructure^[3].Shakila et al. used a two-stage data envelopment analysis method to evaluate the efficiency of 21 solar mini grids in Bangladesh for the first time, including land cost, number of service users, unit user consumption, power generation, distribution network, and annual electricity consumption^[4].The input indicators selected in this paper are "operating revenues"; "total profits", and the output indicators selected are "cash paid for purchasing goods and services", "selling expenses", "management expenses", "research and development expenses", "Cash paid for acquisition of fixed assets, intangible assets and other long-term assets", "Cash paid for goods and services", "Cash paid to and for employees".

OEMs	Year	Y1	Y ₂	X1	X2	X3	X4	X5	X6
	2022	4240606	210797	150606	100073	186544	974568	2208425	535197
	2022	4	3	8	7	5	6	0	3
BYD	2021	2161424 0	451800	608168	571019	799097	373436 1	1043991 2	287597 5
	2020	1565976 9	688259	505561	432149	746486	117740 9	6926012	225214 7
Great Wall Motors	2022	1373399 9	880655	587616	489345	644516	163008 2	1206745 7	125525 2
	2021	1364046 6	748210	519218	404307	448957	130910 4	1060866 6	989289
	2020	1033076 1	622729	410339	255267	306748	806159	9057052	729520
SAIC Motor	2022	7440628 8	280710 8	301754 0	256413 8	180309 2	229347 2	4558837 3	370162 5
	2021	7798457	415576	295051	241035	196685	187427	5264965	390271
	2021	9	6	0	3	0	0	5	0

Table 1. List of data relating to the financial statements

OEMs	Year	Y1	Y2	X_1	X2	X3	X4	X5	X6
	2020	7421324 5	358916 2	255513 3	218184 1	133950 4	151378 2	5323979 5	367275 8
	2022	1212528 6	770826	513827	353246	431544	140500	9736998	918824
Automobile	2021	1051418 8	382061	464565	349965	351503	200977	9021468	760005
	2020	8456554	259659	340591	417177	288887	296005	6346893	604864
Guangzhou	2022	1100064 4	746251	422846	416780	170679	801351	1145279 6	841418
Group	2021	7567577	723688	433976	393391	98870	624294	7551899	721582
Group	2020	6315699	569508	364148	335611	97638	658556	6321690	635825
	2022	3410500	-49304 1	481962	177534	131366	74976	2269869	226889
Sailis	2021	1671792	-26098 6	127996	108875	94799	105610	1419500	173441
	2020	1430248	-21871 8	72853	89253	83698	47749	1188282	132444
	2022	3833175	18257	125588	204034	289566	282878	4267201	476723
EAW Listona	2021	9875124	410918	175434	245360	332895	249185	6161271	535253
FAW Jielang	2020	1136810 9	348837	265403	271647	283647	190614	8687841	519131
	2022	951427	-54245 8	199185	76867	124897	206086	1014878	64282
BAIC Blue Valley	2021	869683	-51798 7	167171	79768	120816	226203	785476	80128
-	2020	527247	-65614 1	100807	74842	97319	107287	1413552	106351
	2022	2179896	70776	163900	84625	169431	97566	1701203	269497
Yutong Bus	2021	2323346	54346	169474	89359	156077	69180	2124144	295705
	2020	2170505	34771	155333	83509	155201	95700	1991435	283390
Li c	2022	3657736	-13896 8	145813	159529	153697	24023	2354028	273787
JAC	2021	4031052	19208	143727	175014	137411	16840	1646011	184680
	2020	4290597	13491	153783	179131	167669	10135	625223	93656
	2022	4644674	13614	178833	148582	159240	158642	2721800	348825
Foton Motor	2021	5497387	-49492 2	221247	187538	171509	201403	2862954	392860
	2020	5776540	9189	254727	177229	183434	176131	2446578	380230

3.1 Relevance calculation

The analysis of an abstract system or phenomenon requires, first of all, the selection of data series that characterise the behaviour of the system, i.e., the mapping quantities of the system behaviour[5]. The mapping quantity is used to indirectly characterise the system behaviour. In the output efficiency system of vehicle enterprises analyzed in this paper, the operating revenues and total profits of China's head vehicle enterprises from 2020 to 2022 are selected to characterize the system, after which the characteristic mapping quantities and sequences of effective factors are processed into dimensionless data, and finally the system can be analyzed using the grey correlation axiom.

As illustrated in Table 1, The operating revenue of the automobile enterprise, which characterises the system behaviour, is marked as Y1, and the total profit of the automobile enterprise is marked as Y2, and the factors affecting the automobile enterprise, are marked as X1~X6.

Based on the above data, the grey correlation between Y1 and X1-X6 is firstly found, and then the grey correlation between Y2 and X1-X6 is found, in order to get the correlation factors affecting the sustainable development of vehicle enterprises.

21

Firstly,	the corr	elation of	calculation	1 betwee	n Yl a	and X1-2	X6 is c	carried	out to	calculate
the cori	relation of	coefficie	nt of the c	lata, and	the co	efficient	matrix	is as ir	n Table	2:

Table 2.	Table of	correlation	coefficients	between	Y_1 as	nd X1-X6

0.9308	0.8323	0.7567	0.3335	0.8520	0.6468
0.9023	0.9350	0.9284	0.5982	0.9015	0.7612
0.9528	0.9612	0.8686	0.9464	0.9129	0.7888
0.9808	0.9772	0.8874	0.8212	0.9350	0.9421
0.9919	0.9804	0.9833	0.8857	0.9674	0.9999
0.9994	0.9592	0.9947	0.9565	0.9508	0.9953
0.9667	0.9246	0.7855	0.6037	0.8856	0.7090
0.9461	0.9406	0.8049	0.5444	0.9899	0.7019
0.8575	0.8924	0.6518	0.5341	0.9345	0.7072
0.9852	0.9794	0.9676	0.8531	0.9636	0.9915
0.9791	0.9956	0.9842	0.8873	0.9546	0.9994
0.9975	0.9287	0.9839	0.9396	0.9854	0.9981
0.9953	0.9690	0.9135	0.9686	0.9078	0.9905
0.9439	0.9264	0.9297	0.9590	0.9422	0.9608
0.9520	0.9344	0.9484	0.9309	0.9509	0.9596
0.8670	0.9655	0.9854	0.9633	0.9991	0.9954
0.9737	0.9718	0.9762	1.0000	0.9932	0.9881
0.9932	0.9778	0.9782	0.9890	0.9949	0.9936
0.9891	0.9591	0.9110	0.9881	0.9595	0.9549
0.9136	0.9616	0.9836	0.9072	0.9863	0.9583
0.9252	0.9507	0.9646	0.8735	0.9765	0.9315
0.9336	0.9762	0.9486	0.9607	0.9911	0.9993
0.9448	0.9733	0.9494	0.9542	0.9955	0.9964
0.9662	0.9702	0.9562	0.9799	0.9740	0.9843
0.9671	0.9930	0.9451	0.9899	0.9949	0.9744
0.9671	0.9929	0.9543	0.9797	0.9867	0.9708
0.9705	0.9934	0.9523	0.9895	0.9874	0.9711
0.9999	0.9788	0.9773	0.9463	0.9970	0.9985
0.9936	0.9771	0.9927	0.9387	0.9730	0.9750
0.9935	0.9793	0.9803	0.9330	0.9447	0.9505
0.9984	0.9994	0.9910	0.9651	0.9893	0.9978
0.9986	0.9954	0.9988	0.9624	0.9784	0.9988
0.9888	0.9951	0.9969	0.9514	0.9637	0.9910

Based on the correlation coefficient, the correlation between Y1 and X1-X6 is found to be 0.9626, 0.9620, 0.9343, 0.8798, 0.9612, 0.9328, which shows that in this sequence, $X1>X2>X5>X3>X6>X4_{\circ}$

On the other hand, correlation calculations between Y2 and X1-X6 were carried out to calculate the correlation coefficients of the data with the following coefficient matrix in Table 3:

Table 3. Table of correlation coefficients between Y ₂ and	X_{1}	-Х	6
--	---------	----	---

0.7195	0.6509	0.9382	0.3336	0.6648	0.7550
0.9423	0.9042	0.7837	0.5100	0.9433	0.6458
0.8931	0.9017	0.8998	0.9977	0.8528	0.8029
0.8448	0.8480	0.9433	0.9586	0.8880	0.8807

0.8728	0.8625	0.8963	0.9881	0.9120	0.8800
0.8831	0.8453	0.8770	0.9255	0.9316	0.8776
0.9972	0.9523	0.7363	0.5556	0.8387	0.6595
0.5622	0.5600	0.5020	0.3735	0.5798	0.4541
0.5992	0.6187	0.4778	0.4028	0.7165	0.5117
0.8614	0.8309	0.8775	0.7259	0.8813	0.8559
0.9743	0.9932	0.9802	0.8739	0.9465	1.0000
0.9705	0.8961	0.9557	0.9559	0.9573	0.9763
0.8376	0.8692	0.7707	0.8695	0.9342	0.8501
0.8505	0.8676	0.7506	0.8368	0.8521	0.8353
0.8876	0.9060	0.8011	0.9098	0.8887	0.8802
0.6594	0.7242	0.7371	0.7724	0.7476	0.7500
0.8277	0.8261	0.8298	0.8496	0.8440	0.8397
0.8645	0.8510	0.8514	0.8810	0.8660	0.8648
0.9493	0.8959	0.8478	0.9251	0.8963	0.8917
0.8805	0.9322	0.9935	0.8737	0.9590	0.9287
0.9473	0.9783	0.9953	0.8854	0.9391	0.9550
0.7147	0.7433	0.7248	0.7329	0.7532	0.7602
0.7302	0.7498	0.7334	0.7367	0.7649	0.7655
0.7084	0.7109	0.7022	0.7169	0.7133	0.7196
0.9578	0.9872	0.9331	0.9934	0.9893	0.9661
0.9470	0.9756	0.9329	0.9933	0.9687	0.9511
0.9439	0.9689	0.9241	0.9889	0.9623	0.9445
0.8694	0.8511	0.8498	0.9229	0.8730	0.8683
0.9415	0.9111	0.9267	0.9956	0.9638	0.9616
0.9342	0.9064	0.9074	0.9966	0.9897	0.9824
0.9233	0.9223	0.9120	0.9586	0.9324	0.9186
0.7223	0.7204	0.7225	0.7481	0.7373	0.7244
0.8895	0.9054	0.8970	0.9512	0.9374	0.9093

Based on the correlation coefficient, the correlation between Y1 and X1-X6 is found to be 0.8517, 0.8505, 0.8367, 0.8224, 0.8674, 0.8353, which shows that in this sequence, X5 > X1 > X2 > X3 > X6 > X4.

3.2 Analysis of results

Through the grey correlation measurement results can be seen, the various types of factors selected for operating income, total profit have a high degree of correlation, based on the results of the two sorting of various types of influencing factors, can be divided into four categories of influencing factors, namely, "cash paid for purchasing goods and services", "selling expenses" and "management expenses", for the largest impact. The second important influencing factor is "research and development expenses", the third factor is "cash paid to and for employees", for the impact of the payment of cash paid to and for the employees, the smallest impact is "cash paid for acquisition of fixed assets, intangible assets and other long-term assets".

Based on the analysis results of the grev correlation degree method, this paper puts forward the following suggestions for the sustainable development of OEMs: Firstly, the automotive industry is a highly competitive and policy-influenced industry, and OEMs should pay close attention to the market dynamics to understand the consumer demand, competitors' strategies, and changes in policies and regulations in order to adjust their strategies and business models in a timely manner. Secondly, as consumers' demands for automotive performance, safety and intelligence continue to rise, OEMs need to continuously strengthen their technological research and development to enhance product competitiveness. At the same time, through technological innovation, production costs can be reduced and the profitability of enterprises can be improved^[6]. R&D investment is an important input for enterprises to carry out technological innovation and product research and development, which is of great significance for improving the core competitiveness of enterprises and gaining market share^[7]. Thirdly, talent is the key to enterprise development, OEMs should pay attention to talent cultivation and introduction, establish a perfect talent incentive mechanism, and stimulate the innovation spirit and work enthusiasm of employees. In addition, OEMs can also reduce risks by diversifying their development, such as expanding into new energy, intelligent driving and other fields.

Acknowledgment

Special Project of National Key R&D Programme-Government-to-Government International Science and Technology Innovation Cooperation: Research on Cloud Manufacturing Collaboration Platform for Value Chain Networks; Fund No.: (2022YFE0197600)

References

- Qiu D M, Zhang L F. A Study of the Relationship between the Impact Factor of Scientific Journals and their Related Evaluation Indicators: A Perspective of Grey Relational Analysis [J]. Information Science, 2020, 38(9):5.
- Cheng G B, Li Y. Evaluation of Regional Differences and Efficiency of Digital Economic Development Level Based on Input-Output Perspective [J]. Statistics and Decision, 2022(8):109-113.
- T.A.Alageel,S.Suryanarayanan.A comprehensive cost-benefit analysis of thepenetration of Smart Grid technologies in the Saudi Arabian electricity infrastructure[JUtilities Policy.2019.60
- 4. Shakila A, Shahriar A C, Performance evaluation of solar mini-grids in Bangladesh: A two-stage Data Envelopment Analysis[J. Cleaner Environmental Systems,2021.2
- Xu X G, Li W H, Zhang Y X. A Study on the Innovation Path of China's Intelligent and Connected Vehicle Enterprises from the Perspective of Input-Output: Based on the Analysis of Financial Statement Data of Listed Vehicle Enterprises [J]. Business Accounting, 2022(11):5.

- Xu G Q, Zhou M. A Study on the Impact of Technology Innovation on Boosting the Global Value Chain of Manufacturing from the Perspective of Input-Output [J]. Soft Science, 2022, 36(4):7.
- Wang L, Liu P X, Shen P L. A Study on the Cumulative Effect of R&D Investment, Abnormal Returns and Enterprise Value [J]. Industrial Technology and Economy, 2020, 39(7):8.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

