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Abstract. The transesterification of hexanol (HeOH) with n-butyl acetate (BuAc) 

has a low conversion rate and high energy consumption in reactor-separator sys-

tem due to its unfavorable reaction kinetics and thermodynamic properties. The 

conventional reactive distillation column (CRDC) and the reactive single divid-

ing-wall distillation column (R-SDWDC) consider the coupling between the re-

action and separation operations, but their inherent structural deficiencies still 

prevent them from effectively reducing the irreversibility of separation opera-

tions. In this work, the recently proposed principle of co-process intensification 

is adopted for the process synthesis and design. Full consideration is given to 

process intensification of the remaining separation operations based on the non-

sharp separation mode in the reaction column, resulting in a step-by-step deriva-

tion of the reactive double dividing-wall distillation column (R-DDWDC). The 

resultant outcomes indicate that the R-DDWDC is the optimal topological struc-

ture for implementing transesterification of HeOH with BuAc. The advantages 

are certainly attributed to the inclusion of the process intensification between the 

separation operations and its coordination with the process intensification be-

tween the reaction operation and associated separation operations involved. Alt-

hough the proposed methodology is derived in terms of the transesterification of 

HeOH with BuAc, it has universal guiding significance for reaction systems with 

unfavorable kinetics and thermodynamic properties. 

Keywords: process intensification; co-process intensification principle; energy-

efficient design; reactive double dividing-wall distillation column; process de-
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1 Introduction 

Hexyl acetate (HeAc) with a banana aroma is widely used in desserts, beverages, and 

baked foods and holds significant economic value. The transesterification of hexanol 

(HeOH) with n-butyl acetate (BuAc) represents a viable pathway for the synthesis of 

the HeAc. However, due to unfavorable kinetic and thermodynamic properties, the con-

version rate of reactor-separator system is low, and there are disadvantages such as high  
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energy consumption and prolonged reaction times [1]. Thus, it is necessary to explore 

the feasibility of using process intensified reactive distillation devices. 

As depicted in Fig. 1(a), conventional reactive distillation column (CRDC) inte-

grates reaction and separation operations within a single unit and reduces energy con-

sumption and equipment investment by intensifying the coupling between reaction and 

separation operations of the HeOH with BuAc transesterification system [2]. The sharp 

separation of BuOH/HeAc from BuAc and HeOH, respectively, in the rectifica-

tion/stripping section leads to great irreversibility (exergy losses caused by mass and 

heat transfer [3]), which lowers the thermodynamic efficiency of CRDC. Therefore, it is 

necessary to consider the coupling between the rectification section and the stripping 

section. 
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Fig. 1. Schematic of the CRDC, R-SDWDC and its thermodynamics equivalent. 

Fig. 1(b) shows a schematic diagram of the structure of the reactive single dividing-

wall distillation column (R-SDWDC). The coupling between the rectification section 

and the stripping section and the inclusion of circulation stream increases the strength 

of system integration, inevitably leading to an improvement in the steady-state perfor-

mance of the R-SDWDC [4–6]. Egger [7,8] developed an enzyme catalyzed R-SDWDC 

for the transesterification of HeOH with BuAc and yielded promising outcomes. Fig. 

1(c) shows a schematic diagram of the thermodynamic equivalent structure of R-

SDWDC. Although the R-SDWDC considers the coupling between the rectification 

section and the stripping section of the CRDC, it only relies on the limited external 

coupling method of side withdrawal and cannot fully reduce the irreversibility of sepa-

ration operations. Therefore, the R-SDWDC fails to effectively tap the potential of cou-

pling owing to its internal structural deficiency. 
In order to tap fully the potential of process intensification, our research group re-

cently proposed the co-process intensification principle for the design of reactive divid-

ing-wall distillation column, as shown in Fig. 2. It can be found that process intensifi-

cation is simultaneously performed in the two subsystems: one is between the reaction 

operation and associated separation operations involved; the other is between the re-

maining separation operations involved. Further coordination of the two subsystems 

132             H. Li et al.



will inevitably result in a reactive double dividing-wall distillation column (R-

DDWDC). Huang and Zang [9,10] fully considered the coupling between the remaining 

separation operations, and used the dividing-wall column or Kaibel dividing-wall col-

umn for the remaining separation operations. By carefully coordinating the relationship 

between the two coupling subsystems, they proposed the optimal R-DDWDC structure 

design under the most unfavorable and somewhat unfavorable ranking of relative vol-

atilities respectively. 

This article focuses on the energy-efficient structure design for the transesterification 

of BuAc with HeOH. The topological configurations of the R-DDWDC are derived via 

co-process intensification principle. Intensive comparison between the CRDC, R-

SDWDC, and R-DDWDC is conducted to reveal the advantages of the principle, and 

some important results are given in the conclusion section. 
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Fig. 2. A novel principle of co-process intensification. 

2 System dynamics properties and operating conditions 

The transesterification of the HeOH with BuAc to produce butanol (BuOH) and HeAc 

can be represented by equation (1): 

 BuAc + HeOH ↔ BuOH + HeAc (1) 

Under three atmospheric pressures, the boiling points of BuOH, BuAc, HeOH, and 

HeAc are 425.82 K, 442.12 K, 470.30 K, and 490.78 K, respectively, making them the 

most favorable reactant system for relative volatility ranking. The given operating con-

ditions and product specifications are listed in Table 1. The relevant dynamic parame-

ters are all taken from the literature of Fieg [1].  

Table 1. Operating conditions and product specifications. 

Parameter  Value 

Operation pressure (atm)  3 

Feed flow rate (kmol/h) 
HeOH 50 

BuAc 50 

Product specification (mole 

fraction) 

BuOH 0.99 

HeAc 0.99 
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3 Synthesis and design of the HeOH with BuAc 

transesterification reaction system 

3.1 Derivation of the topological structure of the R-DDWDC based on the co-

process intensification principle 

According to the ranking of relative volatilities, it is recommended to position the re-

action section in the middle of the column. For the CRDC to include process intensifi-

cation between the remaining separation operations involved, the CRDC must be mod-

ified to allow non-sharp separations between the unconverted reactant and generated 

products. It can be inferred that the CRDC only has two more favorable non-sharp sep-

aration modes. One mode is to extract the BuOH from the top of the CRDC and extract 

all four components from the bottom of the CRDC. The corresponding topology, 

CRDC-DWDC, is shown in the Fig. 3(a), which contains two coupling subsystems of 

reaction-separation and separation-separation. It can be observed that, compared to the 

CRDC in Fig. 1(a), this system exhibits relatively soft operating conditions, thereby 

enhancing the potential exploitation of the separation-separation coupling subsystem. 

This approach not only simplifies system design, but also improves the steady-state 

performance of the system. The BuOH and HeAc are extracted from the top and bottom 

of DWDC, respectively, and the reflux of reactants still allowed them to meet the given 

product specifications. 
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Fig. 3. Derivation of the R-DDWDC by the principle of co-process intensification: (a) CRDC-

DWDC (b) R-DDWDC1 (c) R-DDWDC2 (d) R-DDWDC3. 

The incomplete coupling structure termed R-DDWDC1 shown in Fig. 3(b) can be 

obtained by introducing the coupling of mass and energy between the CRDC and 

DWDC. The left dividing-wall is positioned at the top, while the right dividing-wall is 

located in the bottom of the left dividing-wall. The inclusion of mass and energy cou-

pling can mitigate the back-mixing degree of the CRDC and improve the steady-state 

performance of the whole system. The mass and energy coupling can be further intro-

duced into the R-DDWDC1 to obtain the full coupling structure termed R-DDWDC2 

shown in Fig. 3(c). The improvement can be achieved simply by relocating the left 

dividing-wall, shifting it from the top to the middle position, while maintaining the 

relative position of the right dividing-wall unchanged. The inclusion of mass and en-

ergy coupling realizes the full coupling of the system design, which can further reduce 

the back-mixing degree of the CRDC and improve the steady-state performance of the 

system.  

Another mode is to extract all four components from the top of the CRDC, while the 

HeAc is extracted from the bottom of the CRDC. The R-DDWDC3 in Fig. 3(d) can be 

derived in the same way. The systems shown in Fig. 3(c) and Fig. 3(d) are the final 

structure of R-DDWDC obtained based on the co-process intensification principle in 

this article. 

3.2 System optimization design simulation 

For the convenience of comparing and analyzing the steady-state performance of the 

CRDC, R-SDWDC, and R-DDWDC, it is assumed that all structures have the same 

number of trays and catalyst amounts. System optimization design takes the heat duty 

of the reboiler (Qreb) as the objective function and uses grid search method to search 

for operational design variables (including reflux rate and gas/liquid separation ratio 

αV/βL) and structural design variables (including reaction section and recycle stream 
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location). The optimal design results are shown in Fig. 4. It is found that the R-

DDWDC2 is the optimal energy-efficient configuration.  
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Fig. 4. Designs of the CRDC, R-SDWDC, R-DDWDC2, and R-DDWDC3. 

The energy consumption of R-DDWDC2 is reduced by 15.07% and 7.78% com-

pared with the CRDC and R-SDWDC. The comparison between the topological struc-

tures is shown in Table 2. 

Table 2. Comparisons of the CRDC, R-SDWDC, R-DDWDC2, and R-DDWDC3. 

Process design Reboiler heat duty (KW) Comparison (%) 

CRDC 3132.08 100 

R-SDWDC 2903.70 92.71 

R-DDWDC2 2659.92 84.93 

R-DDWDC3 2730.99 87.20 

4 Discussion 

The results clearly demonstrate the optimality of R-DDWDC, as it not only accounts 

for the coupling between reaction-separation and separation-separation operations but 

also effectively coordinates them through the implementation of left and right dividing-

walls and a circulation stream, thereby ensuring its superior thermodynamic efficiency. 

Furthermore, the comprehensive system design with full coupling also induces notable 
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alterations in the composition profiles of the system, as evidenced by variations in the 

composition of the external circulation stream. Moreover, the relatively similar peak 

concentrations of HeOH and BuAc contribute to enhancing the steady-state perfor-

mance of R-DDWDC. 

5 Conclusion 

For the transesterification of HeOH with BuAc featuring the most favorable relative 

volatility ranking, the CRDC and R-SDWDC cannot fully tap the potentiality of process 

intensification. It is necessary to include the coupling between separation operations 

and fully coordinate its interaction with the coupling subsystem of reaction-separation 

operations, and this leads inevitably to the R-DDWDC. The intensive comparison be-

tween the CRDC, R-SDWDC and R-DDWDC reveals that the R-DDWDC is the en-

ergy-efficient topological structure and highlights the feasibility, effectiveness, and op-

timality of the co-process intensification principle.  
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