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Abstract— Vision perception plays a key role in the 

research on humanoid robot. A new version of particle filters 
called coevolution based adaptive particle filters (CEAPF) is 
proposed for robot localization. Using vision and odometer, 
a robust perception model extracting from environmental 
features, which are unscented by Kalman filter, is 
established by effective fixed scale feature-transformation 
method. Dimensional feature points matching algorithms 
are used to match the feature points based on KD-Tree to 
merge a species of cooperative coevolution competition 
mechanisms into particle filters. Coevolution adaptive 
particle filters are proposed to track the different 
assumptions and the samples in inter-species evolution can 
be moved towards the larger desired regions by using the 
crossover and mutation operators in evolutionary 
computation. Finally, results of success and precision 
localization are shown by experiment.   
Keywords— vision; evolutionary computation; humanoid 

robot; global localization 

I. INTRODUCTION 

 In global localization, the robot is required to 
estimate its pose by local and incomplete observed 
information under the condition of uncertain initial pose. 
Recently, several approaches based on probabilistic 
theory are proposed for global localization [1-3]. Among 
them approaches based on particle filters [4], which are 
also called Monte Carlo localization (MCL), have 
attracted wide attention.  

But traditional MCL has some shortcomings. Since 
samples are actually drawn from a proposal density, if the 
observation density moves into one of the tails of the 
proposal density, most of the samples’ non-normalized 
importance factors will be small. So a large sample size is 
needed to represent the true posterior density to ensure 
stable and precise localization. Another problem is that 
samples often converge too quickly to a single high 
likelihood pose. This might be undesirable in the case of 
localization in symmetric environments, where multiple 
distinct hypotheses have to be tracked for extended 
periods of time. To make the samples represent the 
posterior density better, Thrun et al. proposed 
mixture-MCL [5], but it needs much additional 
computation in the sampling process. To improve the 
efficiency of MCL, a method adjusting sample size 
adaptively over time has been proposed [6], but it 
increases the probability of premature convergence.  

In CEAPF samples are clustered into groups which 
are also called species. A coevolutionary model derived 

from competition of ecological species is introduced to 
make the species evolve cooperatively, so the premature 
convergence in highly symmetric environment can be 
prevented. The population growth model of species 
enables the sample size to be adjusted according to the 
total environment resources which represent uncertainty 
of the pose of the robot. And genetic operators are used 
for intra-species evolution to search for optimal samples 
in each species. So the samples can represent the desired 
posterior density better, and precise localization can be 
realized with a small sample size. 

II.COEVOLUTION BASED ADAPTIVE 

PARTICLE FILTERS 

The concept of coevolution is derived from ecologic 
science [7]. In ecology, much of the early theoretical 
work on the interaction between species started with the 
Lotka-Volterra model of competition [8]. The model itself 
is a modification of the logistic model of the growth of a 
single population and represents the result of competition 
between species by the change of the population size of 
each species.  

A. Inter-Species Competition 

Inspired by ecology, the population growth of a 
species can be modeled using the Lotka-Volterra 
competition model when competing with other species. 
Assuming there are two species, the Lotka-Volterra 
competition model includes two equations of population 
growth, one for each of two competing species.  
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Where 
)(ir  is the maximum possible rate of 

population growth, 
)(i

tN  is the population size and 

)(i

tK  is the upper limit of population size of species i 

that the environment resource can support at time step t 

respectively, and 
)(ij

t  refers to the impact of an 
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individual of species j on population growth of species i; 

here i, j ∈{1,2}.  

These equations can be used to predict the outcome 
of competition over time. To do this, we should determine 
equilibrium, i.e. the condition that population growth of 
both species will be zero.  Let 

0/)1( dtdNt and 0/)2( dtdNt . If 
)1()1(
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tNr do not equal 0, we get four kinds of competition 

results determined by the relationship between 
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For an environment that includes t  species, the 

competition equation can be modified as: 
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B. Intra-Species Evolution 

Since genetic algorithm and sequential Monte Carlo 
importance sampling have many common aspects, 
Higuchi has merged them together [9]. In CEAPF the 
genetic operators, crossover and mutation, are applied to 
search for optimal samples in each species independently.  

In CEAPF, the crossover operator will perform with 
probability pc and mutation operator will perform with 
probability pm. Because the genetic operator can search 
for optimal samples, the sampling process is more 
efficient and the number of samples required to represent 
the posterior density can be reduced considerably. 

III.ENVIRONMENT RESOURCE MODEL 

Each species will occupy a part of the state space, 
which is called living domain of that species. Let matrix 

)(i

tQ  represent the covariance matrix calculated using 

the individuals in a species i. 
)(i

tQ is a symmetric matrix 

of nn , here n is the dimension of the state. Matrix 
)(i

tQ  can be decomposed using singular value 

decomposition: 
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Where nC  is a constant, depending on n, for example 

2C , 3/43 C . Environment resources are 

proportional to the size of the living domain. The 
environment resources occupied by a species are defined 
as: 
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Where   is the number of resources in a unit 

living domain, and  is the minimum living domain a 

species should maintain. Assuming a species can plunder 
the resources of other species through competition. The 
upper limit of population size that the environment 
resources can support of a species is determined by:  
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)(
 is the total 

resources of the system and 
)(i

tw  is the average 

importance factor of species i. It is obvious that the 
environment resources represent the uncertainty of the 
robot’s pose. And the upper limit of population of species 
will change according to the environment resources, but 
the change of the resources will not affect the competition 
results of the species. 

IV.EXPERIMENT RESULTS 

We have evaluated CEAPF in the context of indoor 
humanoid robot localization using data collected with a 
Pioneer3 robot. The data consist of a sequence of laser 
range-finder scans along with odometry measurements 
annotated with time-stamps to allow systematic real-time 
evaluations. The experimental field is a large hall in our 
laboratory building whose size is of 15*15m

2
, and the 

hall is partitioned into small rooms using boards to form a 
highly symmetric map as shown in Figure1 (a).  

 

 

 

 

 

 

 

Figure 1 Localization based on CEAPF 

(a) Map of the environment (b) Initial samples (c) Samples at the 7th second (d) Samples at the 16th second 

(b) (d) (a) (c) 
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In the localization experiments, the robot was placed 
at the center of one of the four rooms. And 1000 initial 
samples that have largest initial importance factor are 
selected from a lage test sample size of 1000000. Then 
the samples are clustered into species as shown in Figure1 
(b). The robot was commanded to go to the corner of 
another room. 5 times of experiments were conducted for 
each initial place. The three filters PF, GPF (genetic 
particle filters) and CEAPF were applied to localize the 
robot using the collected data in the experiments. Here 
genetic particle filters merge genetic operators into PF but 
without coevolution mechanism. The parameter 
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tw is the average 

importance factor of species i; parameter 
)(ir , the 

maximum possible rate of population growth of species, 
equals 0.2; and parameter  , the minimum living 

domain of species, equals 0.5m
2
; parameter  , the 

number of resources in a unit living domain which is m
2
 

in this paper, equals 80; the crossover probability cp is 

0.85; and the mutation probability mp is 0.15. Figure1 (c) 

and (d) show two inter moments when the robot ran from 
the center of room 1 to the goal using CEAPF for 
localization. 

To compare the localization precision of the three 
algorithms, we use the robot position tracked by using PF 
with 5000 samples and the known initial position to be 
the reference robot position. The average estimation 
errors along the running time are shown in Figure 2. 
Since the summary in CEAPF is based on the most likely 
species and the genetic operator in intra-species evolution 
can drive the samples to the regions with large 
importance factors, so localization error of CEAPF is 
much lower.  

The computational time needed for each iteration 
with 1000 initial samples on a computer with a CPU of 
PENTUM 800 is shown in Figure 3. From Figure 2 and 
Figure 3 we can see that the CEAPF can make precise 
localization with a small sample size. The change of the 
total environment resources and that of the total number 
of samples are shown in Figure 4. From the Figureure we 
can see that the resources will be reduced when the 
position becomes certain, the total sample size needed for 

robot localization will also be reduced. The parameter   

which represents the number of resources in a unit living 
domain is important in CEAPF, because it will affect the 

competition between species. Large   will reduce the 

competition between the species, since there is enough 
resource for them. The curve of total sample size with 

different   is shown in Figure 5.  
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Figure 2 Estimation Error 
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Figure 3 Computational time for each iteration 
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Figure 4 Change of resource and sample size 
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      Figure 5 Effect of   on sample size 
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V.CONCLUSION 

This paper proposes the coevolution based adaptive 
particle filters (CEAPF) and applies evolution strategy to 
particle filter, and combines with the scheme of adaptive 
sampling again to realize localization and map-creating 
simultaneously for indoor humanoid robot. CEAPF can 
adaptively adjust the sample size according to the total 
environment resources by using an ecological 
competition model. Coevolution between species ensures 
that the problem of premature convergence when using 
PF for localization in highly symmetric environments can 
be solved. Optimal samples in each species can be 
searched for by genetic operators in intra-species 
evolution, so CEAPF can realize precise localization with 
a small sample size. The efficiency of CEAPF in robot 
global localization have been proved by the experimental 
results. 
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