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Abstract — In this paper, we consider a telecommunication 

service company with time-varying demand and capacity. The 

firm applies a uniform lead-time policy, i.e. a lead time which 

corresponds to the maximum time span a customer has to wait 

before receiving the required service is uniformly quoted to all 

customers. The objective is to schedule service jobs such that 

the shortest possible lead-time can be quoted to customers. We 

present an easy-to-compute approach to tackle this problem. 
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I.  PROBLEM DESCRIPTION 

We consider a major telecommunication service 
company. The company uses an integrated planning system, 
based on hierarchical planning concepts that allow to 
decompose the entire planning problem into partial planning 
tasks while still considering their interdependencies and 
coordinating their solutions. This planning system consists of 
different modules, such as demand forecasting, resource 
planning and work scheduling, which are interlinked. It 
makes use of solution approaches known as mathematical 
programming and meta-heuristics and provides support at 
different levels for planning tasks along the company's 
service chain, from long-term strategic decision making to 
short-term operational decisions. The levels of planning may 
overlap or may be distinct. Either way, there is a flow of 
information from strategic to tactical planning and then to 
operational planning and vice versa.  

 
Demand The firm faces seasonal demand for a particular 

service, e.g. broadband installation. The estimated demand 
data are provided by the responsible module for forecasting 
demand. Thus, the start and the end point of the seasonal 
cycle are known. Further, the seasonal demand pattern, 
which repeats itself every cycle, is also given. By dividing 
the seasonal cycle into time periods 1,…,M, the demand 

pattern can be expressed by a vector [1,…,M]
T
 . Each 

element of this vector represents the demand (measured by 
the number of jobs) that occurs throughout a particular time 
period. 

 
Capacity The firm has a fixed number of permanent 

employees and a number of seasonal technicians with 
repeated fixed term contracts. The latter are retained in order 
to meet peaks in demand (e.g. surge of demand for 

broadband installations at the beginning of school terms). 
The information concerning availability of the workforce per 
time period is provided by means of the medium-term, 
anticipatory deployment plan. As it is possible to estimate 
the average time a technician needs to complete a job, we 
represent capacity during a time period in terms of the 
number of jobs to better match it with customer demand. 
Capacity levels are assumed to follow a cycle of N time 
periods with the pattern [c1,…, cN]

T
 . 

 

Planning horizon The planning horizon  is the minimum 
time interval after which both demand and capacity pattern 

will repeat themselves. Thus,  is determined as the least 

common multiple of M and N,  = lcm(M,N). Throughout 

this paper, we use the notations i, j  {1,…,} to denote, 
respectively, arrival periods and completion periods. Note 

that all computations with i and j are performed modulo . 

For ease of notation, we suppress the notation mod  when 
referring to time periods. For example, we write i + 1 instead 

of (i + 1) mod . The demand and the available capacity 
during the planning horizon are represented by the vectors  

 = [i] and c = [cj ]. The vector  is obtained by /M-times 

concatenation of [1,…,M]
T
 , and the vector c by /N-times 

concatenation of [c1, …, cN]T . 
 
Lead-time A uniform lead-time L, which corresponds to 

the maximum time span a customer has to wait before 
receiving the required service, is quoted to all customers. In 
practice, to prevent the firm from breaking promises to 
customers, lead-time is usually computed based on empirical 
data as the longest period of time needed for completing a 
service and is offered as part of a service level agreement to 
customer [4]. A manually and inaccurately calculated lead-
time may lead to inefficient resource utilization due to the 
mismatch between customer demand and the firm's capacity. 

Let ℓ denote the minimum waiting time before which a job 

cannot be processed; thus L is bounded by 1 + ℓ and  + ℓ. 

This means ℓ < L ≤  + ℓ 
The central questions addressed in this paper are: 
1. Given demand and capacity, what is the shortest 

possible lead-time to quote, which is not too long so 
as not to frustrate customers, and not too short so 
that the firm does not end up handling customer 
demand inefficiently? 

2. How to find a job scheduling scheme which ensures 
that all demands are met within the quoted lead-time? 
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Such a scheduling scheme is referred to as an 
optimal solution in this paper. 

The remainder of this paper is structured as follows: a 
literature review is presented in Section 2. In Section 3, 
structural properties of a class of optimal solutions are 
derived, based on which an easy-to-compute approach for 
finding the shortest possible lead-time is presented in Section 
4. Finally, conclusions are given in Section 5. 

II. LITERATURE REVIEW 

A number of studies are related to ours in some ways, but 
with different emphases. For lead-time quotation, research 
has developed in multiple directions. Most of the research 
deals with quoting lead-time in real-time for each customer. 
See [16, 2] for examples in manufacturing environments, 
where problems about lead-time quotation and production 
planning decisions are investigated. See also [15] and 
references therein for studies on service systems (e.g. 
telephone call centers) that make lead-time predictions in 
order to improve customer waiting experience. 

There have been several research efforts studying the use 
of uniform quoted lead-times in service firms, such as [14, 8, 
13], and [12]. These papers are concerned with the optimal 
selection of capacity level, lead-time and/or price to 
maximize overall profit. Here, the decision problem is 
modeled as a M/M/1 queue and a linear or log-linear 
relationship between demand, lead-time or price is assumed. 
However, time variation of neither demand nor capacity is 
considered. Our decision problem falls within the context of 
an integrated planning system consisting of modules for 
supporting diverse planning tasks. While such systems for 
the service industry are still in a nascent stage, they are 
widely used in manufacturing environments under the term 
Advanced Planning Systems (APS). The class of planning 
problem that is supported by APS, and is somewhat related 
to our topic, is called Demand Fulfillment (DF). The prime 
task of DF is order promising, i.e. determining whether to 
accept a given customer request and quoting the delivery 
quantity and lead-time. The basis for these decisions are the 
so-called available-to-promise (ATP) quantities. The 
quantity of ATP at a given point in time is given by the 
forecast-driven medium-term master planning, and is 
computed as inventory on hand plus scheduled 
replenishments which have not yet been committed to 
customers. Models and solution methods have been 
developed for DF problems in different manufacturing 
environments, such as make-to-order [1, 9], assembly-to-
order [17, 5], make-to-stock [6, 10, 11]. However, none of 
these papers are concerned with determining an optimal 
uniform lead-time. 

The problem under consideration was first investigated 
by [3], who solved it in two steps: 

1. First, in order to improve capacity utilization, the 
workload must be balanced across time periods. For 
a given lead-time, they proposed an approach to 
solve a combinatorial problem of scheduling jobs to 
match the firm’s capacity to customer demand in 
such a way that: a) the quoted uniform lead-time is 
satisfied and b) the capacity utilization rate per 

period is distributed as equally as possible along the 
time line. We refer to this problem as the Workload 
Balancing Problem (WBP).  

2. Second, they find the shortest possible lead-time L
*
 

in an iterative manner. The search is limited to the 

range between 1+ ℓ and  + ℓ. In each iteration the 

WBP is solved, given the value of L. The search 
stops when a schedule is obtained where the 
optimized capacity utilization rate in each time 
period is less than or equal 100%. 

In this paper, we show that the lead-time quotation 
problem can be solved independently from the WBP and we 
propose an easy-to-compute approach to tackle this problem. 
New efficient solution algorithms for the WBP can be found 
in [7]. 

III. STRUCTURAL PROPERTIES 

Let X = [xij] be a matrix that represents a job 
assignment scheme, where xij denotes the number of jobs 
that arrive in period i and are scheduled to be completed in 
period j. We now analyze some structural properties of a 
class of optimal solutions that are useful for solution finding. 

 
Property 1 There always exists an optimal solution which 

has “first come first served” (FCFS) structure. 
The FCFS property means that the allocation scheme has 

a pattern like the one depicted below: 
 

 
 
with each x indicating a node on the assignment route, 

which at every step moves either to the right or down. 
Further, at the circled position in each row i of the matrix, 

the value of x is positive and the demand i is completely 
fulfilled. 
 

Insight: If this property does not hold, then there exist 
problems for which all optimal solutions have the following 
structure 
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with both xi,j+1 and xi+1,j being positive, meaning that the 

processing of i+1 begins before the processing of i has 
finished. Write y = min(xi+1,j , xi,j+1) > 0 and consider the new 
solution 

 
 

One of the elements, xi,j+1 − y or xi+1,j − y, is now zero, 
while the remainder of the solution is untouched. This 
solution is still feasible with respect to the quoted lead-time, 

but may have moved the completion of demand i forward in 
time. 

 
Property 2 In at least one period it must be true that some 

of its demand is met at the earliest possible point of time. 
 
Insight: Suppose there exists an optimal solution where 

demand in every period is delayed beyond its earliest point. 
Fix one such period. We have a solution in the following 
form 

 

 
 

Note that the allocated quantities of jobs at the circled 
positions are positive. Call the smallest of them y. We can 
construct a new solution as illustrated below: 

 
 
The resulting solution still satisfies all demands within 

the quoted lead-time, but moves all completions forward and 
now occupies the “earliest completion date”. 

 

IV. SHORTEST POSSIBLE LEAD-TIME 

In order to determine the shortest possible lead-time 
L

*
, we distinguish between the following two cases: 

 If the total demand during the planning horizon 
exceeds the total capacity, the firm will not be able 

to accommodate the total demand within  + ℓ 
periods without exceeding the total capacity. In this 
case, the firm is better off increasing capacity by 
hiring more labor or outsourcing part of its service 
activities, but modeling these aspects is out of scope 
of this paper. 

 If the total capacity of the entire planning horizon is 
sufficient to accommodate the total demand, the 
shortest possible uniform lead-time L

*
 to quote is the 

minimum time by which all jobs have been 
completed. 

In the second case, L
*
 can be trivially determined by 

taking advantage of the structural properties of some optimal 
solutions. It is obvious that there exists a job scheduling 
scheme with shortest possible lead-time which possesses 
Properties 1 and 2 and which satisfies demand as much as 

possible at every step to the right or down. There are  such 

schemes; each starts to satisfy a different demand i as much 
as possible at its earliest completion date. Denote the set of 

these scheduling schemes as  = {t | t  {1,…,}. The 
shortest possible lead-time is determined as 

 L

minL 



where L(t) is the standard lead-time to be quoted if the 

schedule t is applied. Under each schedule t, L(t) 
corresponds to the longest time between the arrival of a 
demand and its completion. We illustrate the solution 
approach in the following example. 

 
Example 1 We consider a real-life problem scenario 

presented in [3]. The planning horizon is one week, i.e.  = 7. 
The demand pattern is forecasted as  

 = [i] = [178, 191, 106, 136, 55, 2, 2]
T
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The field force of the company is organized into multiple 
patches across the country. A patch covered by 8 technicians 
is considered. Only 6 of them work on Saturday and Sunday. 
Thus the number of available technicians during a week is 
presented as 

n = [nj ] = [8, 8, 8, 8, 8, 6, 6]
T
 

Each technician can complete a job within 30 minutes, i.e. 

the service rate  corresponds to 16 jobs per technician per 
day. Assuming that a technician works 8 hours per day, the 
weekly available capacity (measured in number of jobs) is 
given by 

c = [cj ] = [128, 128, 128, 128, 128, 96, 96]
T
 

Let the minimum time ℓ a job has to wait before being 

processed be 1 day. The set  = {1,…,7} then consists of 7 
scheduling schemes that need to be examined. 

 

 

Figure 1.  Scheduling scheme 1, L(1) = 4. 

  

Figure 2.  Scheduling scheme 2, L(2) = 7 

Consider, for instance, scheduling scheme 1 (Figure 1). 
Here, demands are satisfied as much as possible at every step 

to the right or down, starting with demand 1 arriving 
Monday (day 1) which cannot be completed earlier than 
Wednesday (day 3) of the same week. Since the capacity 
available on Wednesday is only sufficient for the completion 

of 128 jobs, demand 1 of 178 jobs can only be completely 
satisfied on the following Thursday (day 4). For jobs that 
arrive on Thursday (day 5), the earliest possible completion 
day is Saturday of the same week. However, a part of the 
capacity available in this day has already been allocated to 

jobs that arrived earlier, so that only 5 jobs of demand 3 can 

be fulfilled on Saturday. Thus, the remainder of demand 5 is 
scheduled for the following Sunday (96 jobs) and for 
Monday of the subsequent week (55 jobs). As a result, 

demand 7 can only be completely fulfilled 4 days after its 
arrival. This is also the longest waiting time under this 

scheme. In other words, if scheme 1 is applied, the standard 

lead-time to be quoted will be L(1) = 4 days. 
Analogously, the standard lead-time can be obtained for 

every scheduling scheme t  . Figure 2 shows scheduling 

scheme 2, which begins with the starting point from the cell 

[2,4] where demand 2 is satisfied as much as possible at its 
earliest possible completion date. Under this scheme, the 

maximum waiting time for a job to be completed is L(2) = 7 

days, because demand 1 that arises on Monday can only be 
completed on Monday of the subsequent week. Table 1 
shows the shortest possible lead-time that can be quoted to 
all customers is 4 days, which can be achieved under 

schemes 1, 5, 6 or 7. 

TABLE I.  COMPARISON OF DIFFERENT SCHEDULING SCHEMES 

 

V. CONCLUSION 

In this paper, we considered a telecommunication service 
that faces time-varying demand and capacity and quotes a 
uniform lead-time to all customers. This study is motivated 
by previous research by [3] who proposed an iterative 
approach for determining the shortest possible lead-time 
based on a combinatorial job scheduling problem. Thus, their 
solution method is time-consuming. We show that the 
optimal job schedule with respect to quoted lead-time has a 
simple, intuitive structure. Based on this result, we are able 
to derive a simple approach to determine the shortest 
possible lead-time. It would be interesting for future research 
to investigate the problem of lead-time quotation under 
stochastic demand. 
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