
An Analysis of Characters and Structures of Web Pages
Based on Regular Expressions

Lei Xu
Faculty of Physics and Electronic Science

Hubei University
Wuhan, China

e-mail: ceifei@hubu.edu.cn

Abstract—This paper introduces a method to analyze
characters and structures of web pages via regular expressions.
From encoding to HMTL elements, characters in Web pages
are counted one by one. The effectiveness of this tool is proven
in experiments with more than one hundred real-world web
pages. All work can be ready for massive web information
extraction.

information extraction; HTML; regular expressions

I. INTRODUCTION
Web pages are plain text documents written in HTML.

The syntax follows the W3C (World Wide Web Consortium)
HTML technical documents, which latest version is HTML
51. Web information extraction requires well-formed HTML
documents, but there are lots of syntax errors and structural
defects in real-world pages because of the loose nature of the
HTML syntax itself. So it is very important to web
information extraction to preprocess web pages.
Regular expressions is the key to powerful, flexible, and

efficient text processing. Regular expressions themselves,
with a general pattern notation almost like a mini
programming language, allow you to describe and parse text
[1]. It is the mainstream extraction rule type of tools for
information extraction (IE). About 80 percent (15 of 19)
adopts regular expressions to parse semi-structured inputs,
especially template-based pages [2].
Our focus is on the flexibility of extraction rules. The

existing proposals work on one or more input web document
and search for repetitive structures that hopefully identify the
regions where the relevant information insides [3]. But the
structures of documents varies enormously in a real-world
application. Extraction rules must be adjusted to the target
pages.
In this paper, we introduce regular expressions based on

Unicode character properties, which are very suited to
process multiple languages and multiple domains. The
details of structures of Web pages are discussed in Section II.
Through experiments in Section III, the effectiveness of this
method will be clear.

1 http://www.w3.org/TR/html5/

II. HTML DOCUMENT STRUCTURE
HTML is the core language of Web and HTML

documents are written in HTML. According to the W3C
specification, an HTML document must consist of the
following parts, in the given order:2
1. Optionally, a single U+FEFF BYTE ORDER MARK

(BOM) character.
2. Any number of comments and space characters.
3. A DOCTYPE.
4. Any number of comments and space characters.
5. The root element, in the form of an html element.
6. Any number of comments and space characters.
Here BOM is actually a Unicode character and can be

detected by regular expressions via the property in Unicode
Character Database (UCD)[5]. After removing BOM and
redundant space characters, there are only DOCTYPE,
elements and comments left in a document.
Note that all these components are wrapped by a pair of

angle brackets (<>).
A. DOCTYPE and Comments
A DOCTYPE determines the type of the document and

ensures that the browser makes a best-effort attempt at
following the relevant specifications.
One document only can have one DOCTYPE, which

must come in front of an html element. The content of a
DOCTYPE must begin with an exclamation mark (!) and
then follow the string “DOCTYPE” (usually capitalized).
These is no non-ASCII characters in a DOCTYPE. The
regular expression of a DOCTYPE can be designed like this:
<!DOCTYPE(.*?)>.
Unlike a DOCTYPE, a comment can be inserted

anywhere in a document and any character can be accepted
in a comment except for another comment. The content of a
comment must be wrapped by two continuous hyphens (--)
and do not accept the string “-->” in order to prevent nested
comments. The regular expression of a comment should be
like this: <!--(.*?)-->.
B. Elements
Elements in HTML can be divided into normal ones and

void ones. Most elements are normal, which means children

2 http://www.whatwg.org/specs/web-apps/current-work/multipage/syntax.html#writing

Figure 1. HTML element structure.

and end tags existed. A typical example of normal HTML
element is shown in Fig. 1.[6]
A normal HTML element usually consist of four parts:

start tag, attributes, content and end tag, of which attributes
and content are optional. The start tag (also called open tag)
contains the name of the element, surrounded by angle
brackets.
Except for headings (h1-h6), the name of elements is

made of pure Latin letters and is less than 10 characters. So
the accurate regular expression for element names is as
follow: h[1-6]|[a-z]{1,10}.
The end tag is similar to the start one and must have a

same name with the start if it exists. To distinguish the end
tag from the start tag, the end tag has a slash after the
opening angle bracket (in the form </element>). There are no
attributes in the end tag. In the case of excluding attributes
and children, the normal elements can be expressed as follow:
<(?P<name>h[1-6]|[a-z]{1,10})>
([^<>]*)
</(?P=name)>
The regular expression “(?P=name)” in the end tag is a

back-reference via captured name, meaning the same to the
part of “name”.
Unlike normal elements, void elements, also called

empty elements, have no children and end tags. Even though
accepted in HTML 5, self-closing slashes in the start tag are
not necessary. They are not many, so can be inserted into a
regular expression directly: <(area |base |br |col
|command |embed |hr |img |input |keygen
|link |meta |param |source|track|wbr)/?>.
This regular expression will match exactly void elements
without considering attributes.

C. Attributes
The structure of attributes is complicated. Attributes only

can exist in the start tag, separated by spaces. Each attribute
have a name and may have a value that may be in
apostrophes (') or double quotes ("). There are four possible
forms of an attribute:
1. id="books"
2. id='books'
3. disabled
4. border=1

The last form is often considered as valid, but actually
should not be used. Because, if so, the boundary between
names and values is not clear and it is difficult to exactly
split the previous value and the next name if used. All
attributes in Form 4 will be converted to Form 1 by default in
Section III.
For Form 1, the value of an attribute itself could not

contain any double quotes, that is the following is not
allowed: id="I met a man, named "Sherlock
Holmes".".
On the same, the value in Form 2 could not contain any

apostrophes. In the last form, both double quotes and
apostrophes are not allowed as well as spaces. To summarize,
the regular expression for an attribute can be coded like this:
([\x20][a-z][\w]*(=("[^"]*"|'[^']*'))?)*
D. Children and Content
Elements can be and usually be nested by each other.

One element (normal or void), even a span of text could be a
child of another normal element.
Elements should be nested properly so that overlapping

does not occur. Not surprisingly, the most difficult thing in
parsing HTML documents is arbitrary nesting. A powerful
feature in regular expressions is recursive expressions, which
is designed to matching nested constructs arbitrarily.
The sequence “(?R)” means “recursively apply the

entire expression at this point,” while “(?num)” sequence
means “recursively apply the sequence within the number ed
set of capturing parentheses at this point.” The named-
capture version of the latter uses a “(?P>name)” notation.
[1]
With recursive expressions, arbitrary nested elements can

be indicated as follow. Attributes are removed for the sake of
clarity:
<(?P<name>h[1-6]|[a-z]{1,10})>

((?R)*)
</(?P=name)>
E. Foreign Elements
HTML is an open language and other available languages

can be inserted as a part of documents. For example, an SVG
image can be embedded between the <svg> and </svg> tags
like this [6]:
<svg xmlns="http://www.w3.org/2000/svg">

<rect
stroke="black"
fill="blue"
x="50px"
y="50px"
width="300px"
height="150px"
strokewidth="2">

</svg>
In the case like this, names excluded in HTML5 may be

used in element names, so the regular expression should
evolve to like this: [a-z][\w]*. It may be not accurate,
but more compatible and practical.

F. Special Elements
Two kinds of elements are so special that we have to an

extra discussion about them [1]. A <script> section is
important because it may have raw '<' and '>' within it, and
so is the element of style. In principle, other elements cannot
contain raw angle brackets in their content. Scripts and styles
in HTML documents can be represented as follow:
<(script|style)([^>]*)>(.*?)</\1>
At last, An complete regular expression for elements can

be described as follow:
<(script|style)([^>]*)>(.*?)</\1>
|
<(area|base|br|col|command|embed|hr|img|
input|keygen|link|meta|param|source|trac
k|wbr)
(([\x20][a-
z][\w]*(=("[^"]*"|'[^']*'))?)*
)/?>
|
<(?P<name>[a-z][\w]*)
(([\x20][a-
z][\w]*(=("[^"]*"|'[^']*'))?)*
)>((?R)*)</(?P=name)>|[^<>]+

III. EXPERIMENTS
To test the regular expressions in Section II, we sampled

a set of pages from a variety of websites home and abroad.
To be broadly representative, multiple languages, such as
Chinese, English, Japanese, French, German, Spanish, Italian,
Russian, Arabic and Sverige, are included. On the other hand,
multiple domains are also involved such as education,
government, news, video, sports, SNS, software, stock etc.
These documents may not be encoded by UTF-8, but all

translated into it at the very beginning. After cleaning and
standardization, the characters of the documents are analyzed
in detail. And then the accuracy of recognition to tags and
elements is computed by particular programs. In these
experiments, all programs are written in PHP. Fig. 2 shows
the basic flow of the test.

A. Data
For an empirical study, we collected 113 web documents

from 104 websites3, which cover the most common domains
of lives. Our collection includes some famous search engines,
such as Google and Baidu. Instead of boring home pages, we
chose the pages of search results by the keyword “apple” for
these search engines. Other documents are all home pages.

B. Procedure
1) Encoding Translation
All documents are detected by the function

mb_detect_encoding()4 with an encoding list “UFT-8,
CP936, GB18030, ISO-8859-1” and strict mode. All non-
UTF-8 documents are translated into UTF-8 by the software
of Notepad2 because of supporting to substantial encodings.

3 http://ms.n.blog.163.com/blog/static/18595352014087593237/
4 http://cn2.php.net/manual/en/function.mb-detect-encoding.php

Figure 2. Flow of experiments.

The number of characters of documents will keep the same
after the conversion, but the bytes will change.

2) Cleaning
Remove control characters and separators. Carriage

returns (\r), line feeds (\n) and vertical tabs (\t) in Category C
and spaces (\x20) in Category Z in UCD need to be reserved
temporarily, and other characters in these two Categories
will be removed. Notably, there is a modifier ‘u’ in the
regular express, meaning that pattern strings are treated as
UTF-85. Otherwise, symbols such as“\pL” could not be
recognised.
Process Newlines and Vertical Tabs. Generally

Speaking, newlines and tabs are meaningless in an HTML
document, but it does not mean they can be removed directly.
Consider the case that there are not spaces but newlines or
tabs existed between the tag name and an attribute. If
removing these control characters, the name of the tag will
change and cause unexpected errors. But if not remove, as a
matter of fact, these codes can be interpreted correctly by
any real-world browser. So it is necessary to convert
newlines and tabs to spaces before further processing.
Remove redundant spaces. According to the HTML

specification, two or more continuous blank spaces are
totally equivalent to just one in effect, so need to be replaced.
Meanwhile, the leading and trailing whitespaces in a
document are also useless, should removed.
3) Standardization

5 http://cn2.php.net/manual/en/reference.pcre.pattern.modifiers.php

The looseness of HTML makes Web pages different
from XML documents, good for designers and bad for
programmers. The number of syntax errors in real-world
HTML documents are so huge that we have to fix them up as
possible. Most errors are unexpected and often come from
the last failure.
The most sophisticated structure brings the most difficult

problem. Attributes are misused hardly in every document
we collected and most problems are related with them.
4) Characters Analysis
As for characters, what we want to know is the variation

after cleaning and standardization. According to General
Category property, Every character in documents is counted
by codes like this:

$str=preg_replace(‘/\pL/u’,’’,$str,-
1,$n);
5) Tags & Elements Analysis
Based on the standard version of documents, we grouped

tags by name and counted them separately. After replacing
all tags, the rest string was examined by a generic regular
expression (<[^<>]+>), which can make sure that there are
no angle brackets left.
The analysis of elements are very similar to the previous

except including children or content. All normal elements are
considered as a whole that can contain another element or
some raw text.

C. Results
Tab. I reports on the character compositions of collected

data in experiments. The criteria of classification are
character properties in UCD. Surprisingly, there are some
other characters in documents, which are not realized by
people before. They are unprintable and meaningless to the
structure of a document. It is impossible to typewrite them
via a keyboard. The existence of these characters indicates
that some programs could accidentally make pieces of
normal characters, which are ignored by programmers. The
significance of cleaning and standardization is shown in Tab.
II. All newlines and vertical tabs and 56.74% whitespaces
are removed. In total, about 13 percent of characters are
saved.

TABLE I. STATISTICS OF CHARACTERS

Total Letter M Num Punc Sym \n \r \t Space Other

12165509 7003418 107 850496 1858625 774666 152432 60695 151624 1311359 2087

TABLE II. COMPARISON BETWEEN RAW AND CLEANED

\n \r Tabs Spaces Other Total

Raw 152432 60695 151624 1311359 2087 12165509

Cleaned 0 0 0 567320 0 10546593

Cut-off(%) 100 100 100 56.74 100 13.31

TABLE III. STATISTICS OF TAGS

pages DT Comment Raw Empty Normal Left Acc. (%)

113 111 3982 2487 7542 201985 267 99.877

Tab. III shows the performance of regular expressions
while extracting tags in documents. The first column lists the
number of documents. The second column reports on the
number of DOCTYPEs (DT) followed by comments (C),
raw elements (R, including script, style and textarea), Empty
elements (E), normal elements (N) and unavailable elements
(L). The last column shows the accuracy (Acc.) of extraction,
which is calculated in (1).

LNERCDT
NERCDTAcc



  

IV. CONCLUSION
A new Web information extraction method based on

regular expressions is proposed to extract the basic structure
of HTML documents including characters, tags and elements.
The accuracy is 100% for characters, more than 99% for tags
and more than 98% for elements. Considering solvable
problems existed, there is still room for the accuracy to
advance.
The extraction rules in the method are not unalterable.

On the contrary, more different rules are encouraged to use
when facing different tasks. In addition, two third-party tools
can function together: HTML tidy [3] and HTML Parser [7].
The former is a proposal that is intended to preprocess web
documents by fixing their HTML code and converting it into
XHTML. And the latter is a famous open source project to
extract information from a Web page. The study will remain
deeply involved in the future.

ACKNOWLEDGMENT
Thanks to Jeffrey Friedl, his outstanding book inspiring

me. Thanks to my collogues Song Su, Zhonghan Zhou, and
my student Jiqiang Li.

REFERENCES
[1] J. E. F. Friedl, Mastering Regular Expressions, 3rd ed., Sebastopol:

O'Reilly Media, p. 1, 2006
[2] C. H. Chang, M. Kayed, M. R. Girgis, K. Shaalan, “A servey of Web

information extraction systems”, IEEE Transactions on Knowledge
and Data Engineering (TKDE), pp. 1411-1428, October 2006.

[3] H. A. Sleiman, R. Corchuelo, “TEX: A efficient and effective
unsupervised Web information extractor”, Knowledge-Based Systems,
pp.109-123, 2013

[4] J. Spolsky, “The absolute minimum every software developer
absolutely, positively must know about unicode and character sets”,
http://www.joelonsoftware.com/articles/Unicode.html, October 2008

[5] J. D. Allen, The Unicode Standard Version 6.2, the Unicode Inc.,
2012

[6] L. F. Sikos, Web standards: mastering HTML5, CSS3 and XML, Apress,
p. 67, 2011

[7] X. Ji, J. Zeng, S. Zhang, C. Wu, “Tag tree template for Web information
and data extraction”, Expert Systems with Applications, pp.8492-8498,
2010

	INTRODUCTION
	HTMLDOCUMENTSTRUCTURE
	DOCTYPEandComments
	Elements
	Attributes
	ChildrenandContent
	ForeignElements
	SpecialElements

	EXPERIMENTS
	Data
	Procedure
	EncodingTranslation
	Cleaning
	Standardization
	CharactersAnalysis
	Tags&ElementsAnalysis

	Results

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

