
An efficient mixed scheduling algorithm for the
hybrid task set on heterogeneous multiprocessor

Hui Wang
School of Information Science

and Engineering, Hunan University
Lushan South Rood, Changsha

410082, P.R. China
Email: wanghui2007321@163.com

Cheng Xu
School of Information Science

and Engineering, Hunan University
Lushan South Rood, Changsha

410082, P.R. China
Email: cheng xu@yeah.net

Lining Zeng
School of Information Science

and Engineering, Hunan University
Lushan South Rood, Changsha

410082, P.R. China
Email: will120120@126.com

Abstract—In this paper we study the schedulability conditions
of multiple types of real-time tasks (periodic real-time tasks,
sporadic real-time tasks and aperiodic soft real-time tasks) in a
heterogeneous multiprocessing environment. With the practical
application of complicated environment, we propose a mixed
scheduling algorithm in this paper, which itegrates UEDF algo-
rithm with Task-Centric with Slack Defragmentation algorithm
in the heterogeneous multiprocessor. Due to its characteristics
that making the most of the processor which is already in use at
first in the process of scheduling in order to reserve more free
resources for future tasks, this algorithm can effectively improve
the success rate of the entire hybrid task set scheduling. The
results in simulation experiments show that the performance of
the proposed algorithm scheduling on both the monotonic per-
formance ordering and the non-monotonic performance ordering
resource have obvious advantages over that of the current other
combination algorithms.

Index Terms—hybrid task set, sporadic real-time task, hetero-
geneous multiprocessor, UEDF algorithm

I. INTRODUCTION

With the rapid development and popularization of computer
technology, real-time system has been an indispensable part of
human production and life. Real-time system means the cor-
rectness of computation highly depends on not only accurate
of logic result but also the generation time of the result. As the
advanced development of real-time system, it is increasingly
common that multiple types of real-time tasks coexist in
the system so that the complexity of real-time system is
consistently increased. Therefore the scheduling of the hybrid
real-time task set has become a hot research problem, it
represents the future direction of real-time systems. Scheduling
algorithm is the critical issue of real-time task scheduling, and
there are strong theoretical and practical values in the aspect
of studying hybrid real-time task scheduling algorithm.

Our work is to study a hybrid task set which consists of the
periodic hard real-time tasks, sporadic hard real-time tasks and
aperiodic soft real-time tasks in heterogeneous multi-processor
environment. The scheduling problem of hybrid task sets has
been a hot and difficult research, therefore proposing a new
hybrid task scheduling algorithm makes the success rate of
hybrid task set scheduling increase in this paper.

II. RELATED WORK

The scheduling problem of sporadic task has become a hot
and difficult issue since it was a widespread phenomenon in
the real-time system. S.L.Vieira focused on the scheduling of
sporadic real-time tasks in a single processor environment by
simplifying the sporadic tasks as a special class of periodic
real-time tasks to schedule using classical algorithm named
EDF in[4]; However, due to the pessimistic view of the prob-
lem ,this method resulted in a waste of resource reserve in the
real situation. Kevin Jeffay considered not only the presence
of periodic real-time task on single-processor environment,
but also sporadic real-time task coexisting in it. Then they
schedule a set of periodic real-time tasks or sporadic real-time
tasks in the conditions that idle time could not been inserted
into the system and without preemption, and also proposed
a necessary and sufficient condition that a set of periodic or
sporadic real-time tasks released at any time is schedulable[5].

Manuel Coutinho considered the hybrid task set consisting
of a set of periodic real-time tasks and a set of sporadic
real-time tasks coexisted in a system, but they only regarded
the sporadic real-time tasks as periodic real-time tasks which
reach according to the maximum frequency in [6]. Jiafu
wan studied a scheduling problem about a hybrid task set
which consists of the time-based triggered periodic real-time
tasks and the event-based triggered aperiodic real-time tasks
in a preemptive priority system in[7], the innovation of the
hybrid scheduling task set is divided into two-layer scheduling
scheme, the uniform of the second layer uses EDF algorithm
to schedule, this will help reducing the complexity of the
hybrid task scheduling, and fully takes the real-time and the
characteristic of different tasks into account. It considers the
real-time performance of the tasks and the characteristics of
the distributed operating platform in [8].

Geoffrey Nelissen presented a single-processor classical
EDF algorithm to be promoted another form U-EDF in a
multi-processor environment in [1], which is different from
most forms of promotion on a multi-processor G-EDF which
allows early to start the arrived task execution, while U-
EDF algorithm tries to execute tasks on fewer processors
when it ensures the task set to meet their deadlines. Hsiang-

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 175

Kuo Tang has studied hard periodic and soft aperiodic real-
time task on heterogeneous processors, and has proposed
the good scheduling algorithm, such as HEDF or Fastest
First (FF) algorithm for periodic real-time task , Resource-
Centric (RC), Task-Centric (TC) and Task-Centric with Slack
Defragmentation (TCSD) algorithm for aperiodic soft real-
time task in [3].

III. PROBLEM DESCRIPTION

A. Task Model

We consider the task set which contains periodic hard real-
time task set τpi which is composed of n periodic hard real-
time tasks, sporadic real-time task set τsi which is composed
of t sporadic real-time tasks and aperiodic soft real-time task
set τai which is composed of q aperiodic tasks ,which is
denoted by TS = {τp, τs, τa}.
Periodic hard real-time task τp = {τp1, τp2, ..., τpn}

Any task τpi of a periodic task set is denoted by the
arrival time api, the deadline Dpi, the period Tpi and the
computation time Cpij (define by computing time of task τpi
on the resource Rj).
Sporadic hard real-time task τs = {τs1, τs2, ..., τst}

Any task τsi of sporadic real-time task set, the arrival time
asi , the deadline Dsi, the minimum arrival time Tsi and the
computation time Csij(define by computing time of task τsi
on a resource Rj) .
Aperiodic soft real-time task τa = {τa1, τa2, ..., τaq}

Any task τai of aperiodic soft real-time task set, the arrival
time aai, deadline Dai, the minimum arrival interval time Tai
and the computation time Caij (defined by computing time of
task τai on a resource Rj).

B. System Model

1) monotonic performance ordering resources: We sum-
marize the potential heterogeneity into two different types:
monotonic performance ordering and non-monotonic perfor-
mance ordering. Considering a system with two processors A
and B, a monotonic performance ordering processor resources
mean that all tasks on processor A are better than them on
processor B. There is a case that more one task execute faster
on processor A, but another task executing on the processor
B is better than that on processor A, which does not exist.

2) non-monotonic performance ordering resources: There
is a non-monotonic performance ordering system which is not
defined the same order to keep all tasks meet the requirement
as (1). Consider a system with two types of resources: P
is an instruction-based processor and F is the FPGA logic.
Some tasks may obtain more acceleration on resources F than
these on the resource P, while the execution of other tasks
which have complex control flow or data-dependent behavior
is relatively slow on resources F. This system is non-monotonic
performance ordering.

The below experiment is conducted on the monotonic per-
formance ordering resources and non-monotonic performance
ordering resources to schedule the hybrid task set, and it

verifies the performance of the proposed mixed scheduling
algorithm.

IV. ALGORITHM

A. the scheduling algorithm of periodic real-time takes

Centralized scheduling algorithms: U-EDF
U-EDF algorithm is another generation form of a classical

algorithm EDF on multiprocessors. Periodic tasks in accor-
dance with the deadline arrive in ascending order into a global
queue, the global task scheduler checks to see whether the
front of the queue is assigned at first to execute the task on this
resource which is already in use without missing deadlines. It
is different from main features of the H-EDF algorithm which
allows scheduling the arrived tasks as soon as possible to begin
the task. But on the premise that all tasks are required to meet
the deadline, using as fewer processors as possible to schedule
the execution in order to generate enough idle processor time
to execute the task which will arrive in future.

B. Sporadic or aperiodic task scheduler

Task-Centric with Slack Defragmentation (TCSD)[3]
The purpose of scheduling periodic tasks assigned to each

task execution on a resource is to determine its latest start
time. Because it exists that the slack time between the arrival
time of many periodic tasks and their latest starting time.
TCSD algorithm uses this fact that moving the periodic task
instances earlier than its latest starting time to execute, and
doing this can create a more idle time window after periodic
task is completed in order to schedule aperiodic task. When
aperiodic task arrives, TCSD algorithm first checks whether
there is a large enough idle time interval to execute this task;
If not, check each periodic task which is surrounded by two
idle time window and decide to move periodic task to execute
earlier, and the next window will be extended to accommodate
aperiodic tasks. If the extended idle time window can not still
meet the requirement of the aperiodic tasks, it will be rejected.
Theorem 1 The periodic task set τp = {Tp1, Tp2, ..., Tpn}
and the sporadic task set τs = {Ts1, T s2, ..., T sq} are sched-
uled on processor resource set R = {R1, R2, ..., Rm}. Task
TPi executed on the processor resource Rj can be denoted
by (Cpij , Tpi), similarly using (Csij , T si) represents any
sporadic real-time task. If they are schedulable then
(1)

n∑
i=1

m∑
j=1

Cpij
Tpi

Locij +
n∑
i=1

m∑
j=1

Csij
Tsi

Locij < m,

assuming any task only executes on a processor, therefore
m∑
j=1

Locij = 1

means only the value of a variable among Locij that is 1, and
any processor Rk meets the condition:

n∑
i=1

Cpik
Tpi

Locik +

q∑
i=1

Csik
Tsi

Locik < 1

176

whereLocij indicates whether any task τi executes on the
processor Rj .
(2) Periodic real-time task sort by their periods in non-
decreasing order,∀i, 1 < i ≤ n; Periodic real-time task sort
by their periods in non-decreasing order, all periodic real-time
tasks which execute on any processor Rk need to meet the
condition:

∀L, Tp1 < L < Tpi;L ≥ Cpik +
i−1∑
j=1

bL− 1

Tpj
cCpjk

Condition 1 can be considered as a necessary condition
for a hybrid tasks set that can be scheduled to ensure that
the processor is not overloaded. The cumulative processor
utilization of all tasks in the hybrid task set can not exceed the
sum of the processing power of multiple processors, and the
sum of the utilization of the tasks on each processor must
be strictly less than 1, otherwise the task set must not be
scheduled to execute.

Condition 2 means the load of the processor within a certain
time interval L, which needs to satisfy the conditions. In order
that a tasks set can be scheduled, the demand within the time
interval L must always be less than the length of the interval
L.
Theorem 2 let τs is a set of sporadic real-time task
{(Cs1, T s1), (Cs2, T s2), ...(Csn, T sn)}, they are sorted by
the period of the task in non-decreasing order. If a task set
τs which meets condition 1 and condition 2 from theorem 1,
then EDF algorithm can schedule any sporadic real-time task
set generated from the task set τs.
Theorem 3 a task set ΓS = {τpi(ap0

i , Cpi, Dpi, Tpi), i =
1..n} is schedulable, Only when any pair of task (τi, τj) which
derives from the task set meets the condition:

Cpi ≤ (ap0
j − ap0

i)mod gij − Cpj(1)

gij is the Greatest Common Divisor of two period tasks
τpi, τpj .ap

0
i and ap0

j denote task arrival time.
When a periodic task has been scheduled to execute in order

to study the schedulability of sporadic task, we must decide
a critical moment which is the worst-case response time of a
sporadic task [2].

The following lemma is given the calculation requirement
of time t for sporadic tasks that release at the time S ∈ Ψ.
Theorem 4 Consider that a strict periodic task set ΓS and a
sporadic task set hpNS(i) have been scheduled to execute on
each processor. Let τsi represents any sporadic task whose
release time is at S ∈ Ψ, the sum of execution time at time t
is given by the following formula:

Wi(t) = Csi +
∑

τi∈hpNS(i)

d t

Tsj
eCsj +

∑
τj∈ΓS

d t− apj
Tpj

eCpj

According to the release time S, apj is equivalent to the start
time apkj .

apj = ap0
j + d

S − ap0
j

Tpj
eTpj − S

Proof
Consider that a sporadic task τsi is the first release of task

at time S ∈ Ψ, the total of execution time at time t is the
accumulative of the execution time about the following case:
1. The execution time of a sporadic task τsi at start time S:
Csi
2. All strict periodic task (all task have higher priority than
the task τsi) :

∑
τpi∈ΓSd t−apjTpj

e
3. All the sporadic tasks which have higher priority than the
sporadic task τsi :

∑
τsi∈hpNS(i)d t

Tsj
e Csj

The following lemma gives a necessary and sufficient
schedulability condition of a set of sporadic tasks [2].
Lemma 3 Consider that a strict periodic task set ΓS have been
scheduled, a sporadic task set ΓNS is schedulable, if and only
if ∀τsi ∈ ΓNS : Ri ≤ Di, where Ri is the worst response time
of a task , which is the solution of Ri = W (Ri) computed by
the iteration.
Proof

The proof is identical to the one given in [10] which states
that the worst Case Response Time of any task should be less
than or equal to its deadline.
An example of GEDF or UEDF algorithm

Fig. 1. Use GEDF algorithm and UEDF algorithm to schedule three different
tasks

Assuming that there are three tasks which reach at time
0, namely the task τ1, τ2, τ3. Their execution time are two
time units, three time units, nine time units respectively, their
deadline at the time instant 10. In (a) part of figure 1 it uses
G-EDF algorithm to schedule two of these three tasks on
the processors in order to let each task begin to execute as
soon as possible, it will schedule at first task τ1 and τ2 on
the processor 1 and processor 2 for beginning immediately
to perform respectively. Then the task τ3 only waits for the
first two tasks to complete before we can use a processor to
execute the task τ3, we can put the task on any one of two
processors to execute as soon as possible, but task τ3 misses
its deadline.

We use the U-EDF algorithm to schedule these three tasks

177

on two processor resources for executing in part (b) of Figure
1. The characteristic of U-EDF algorithm differs from one of
G-EDF algorithm that each task executes as soon as possible,
while it ensures that all tasks is on the premise that they meet
their deadline, we use minimal processor resources to execute
the current tasks. It will help to ensure that the task which
arrives afterwards can have enough spare resources to execute
successfully.We use UEDF algorithm to schedule the tree task
on the two processor successfully.

From the above example, it is obvious that U-EDF algorithm
has some advantage over the widely used G-EDF algorithm,
it reserves more free processor resource for tasks arriving
in future in order to facilitate scheduling them to meet the
deadline.

V. EXPERIMENT SIMULATION

The paper considers two kind of different periodic tasks
(synchronous and asynchronous periodic task) and three kind
of different aperiodic tasks (task deadline is less than the task
period (constrained sporadic task), the task deadline is equal
to the task period (fixed sporadic task), the task deadline is
greater than the task periodic (any sporadic tasks)). In this
paper, the main study is a hybrid tasks set consisting of
synchronized periodic real-time tasks, constrained sporadic
real-time tasks and aperiodic soft real-time tasks, compared
the performance by using the four kinds of combination-
type scheduling algorithms: H-EDF/RC, FF/RC, H-EDF/TC,
FF/TC algorithm in [3] with that by using this paper propos-
ing combination-type scheduling algorithms: U-EDF/RC, U-
EDF/TC, U-EDF/TCSD algorithm. We also need to consider
the characteristic of processor resources, resources are mainly
divided into two categories such as monotonic performance
ordering and non-monotonic performance ordering. It analyzes
each processor utilization by using different scheduling algo-
rithms to schedule the same task set.

A. Task Set Generation

We generate randomly task sets. They are scheduled for
execution on a heterogeneous multiprocessor platform which
provides enough computing capacity to execute hard deadline
periodic tasks, sporadic hard real-time tasks and aperiodic soft
real-time tasks in the applications. Depending on the utilization
of periodic tasks, we will have 50 different periodic task sets.
Similar to the former, we also have 10 different sporadic real-
time task sets and aperiodic soft real-time task sets. It can
form 500 different combinations from periodic real-time task
sets and sporadic real-time task sets, soft real-time aperiodic
task sets.

Below generated periodic real-time tasks, Sporadic real-
time and aperiodic soft real-time tasks in accordance with
the above requirements, we assume that scheduling them on
three heterogeneous processors in this experiment. In the case
of monotonic performance ordering, these three resources are
respectively slow processor resources, general speed proces-
sor resources, fast processor resources. In the case of non-
monotonic performance ordering, it is three different speed

processing resources for each task, not as monotonic as a
unified performance ordering corresponding relationship.

Fig. 2. The total utilization of any one of processors on the monotonic
performance ordering processors(sporadic task)

Fig. 3. The total utilization of any one of processors on the non-monotonic
performance ordering processors(sporadic task)

Experimental results in the previous three groups in Figure
2 show 3 heterogeneous processor utilization distribution in
the case of different total utilization of the hybrid task set in
the monotonic performance ordering processor resources by
using HEDF algorithms to schedule periodic real-time tasks
and using TCSD algorithms to schedule sporadic real-time
tasks and aperiodic soft real-time tasks. The latter three groups
of results in the experiment shows 3 heterogeneous processor
utilization distribution in the same situation with the previous
three groups ones by using UEDF algorithm to schedule
periodic real-time tasks and using RC or TCSD algorithm to
schedule sporadic real-time tasks and aperiodic soft real-time
tasks. Figure 3 is similar to Figure 2, which shows that the
hybrid tasks set is scheduled on a non-monotonic performance
ordering processor to execute and display the utilization of
each processor. Combining Figure 2 with Figure 3, we find
that HEDF algorithm allows each processor to be early used,
which results in a premature start of each processor; the
UEDF algorithm tries to consider the task assignment on the

178

processor which has been used to perform, let processors as
idle as possible in order to set aside enough free resources for
executing tasks which arrive afterwards.

Fig. 4. The success ratio of the task set scheduling on the monotonic
performance ordering processors(sporadic task)

Fig. 5. The success ratio of the task set scheduling on the non-monotonic
performance ordering processors(sporadic task)

Considering that under different the total utilization of task
sets, we use several different mixed scheduling algorithms
to schedule the hybrid task set on monotonic performance
ordering resources. We will find that it has a higher success
ratio than other combination algorithms that combining UEDF
algorithm with TCSD algorithm schedule the hybrid real-
time task set consist of periodic real-time task, sporadic real-
time tasks and aperiodic soft real-time task in Figure 4.The
experiments in Figure 5 are that schedule a hybrid task set
on non-monotonic performance ordering resource, its result is
similar to the result in Figure 4. It has higher success rate than
other combination scheduling algorithms that a combination of
UEDF algorithm and TCSD algorithm schedule the hybrid task
set whether on a monotonic performance ordering processors
or on non-monotonic performance ordering processors in this
paper.

VI. CONCLUSION

The paper considers that the periodic real-time task, s-
poradic real-time tasks and aperiodic soft real-time tasks
scheduling are composed of the hybrid task scheduling in
heterogeneous processor multiprocessor environment. When
the sporadic task arrives, we need to validate the schedulability
of the entire task set, and then take advantage of the better
aperiodic soft real-time task scheduling algorithms to steal
free time to schedule the sporadic tasks, which effectively
guarantees the deadline of periodic real-time tasks and spo-
radic real-time tasks. Characteristics of the new scheduling
algorithm UEDF is that use minimal processor to execute the
entire task set on the premise of guaranteeing the deadline,
and each tries to assigned it on the processor which is already
used to execute tasks. It is conducive to be ready to set aside
the idle processor resources for scheduling the task which
arrives in future successfully. It verifies both in theory and
in the experiment very well. This paper presents that a new
mixed scheduling algorithm-combined UEDF algorithm with
TCSD algorithm schedules the hybrid task sets which generate
in accordance with the appropriate rules, and we find that
the proposed mixed scheduling algorithm significantly have a
higher success rate than the combination of HEDF algorithms
and TCSD algorithms. While the scheduling problem about the
hybrid task set is improved in heterogeneous multiprocessor
environment, but more complex task sets need to be considered
for further research.

REFERENCES

[1] Geoffery Nelissen, Vandy Berten, Vincent Nelis, Joel Goossens, Dragomir
Milojevic.“U-EDF: An Unfair but Optimal Multiprocessor Scheduling
Algorithm for Sporadic Tasks”,24th Euromicro Conference on Real-Time
System,2012

[2] Mohamed MAROUF, Laurent GEORGE, Y ves SOREL. “Schedulability
analysis for a combination of non-preemptive strict periodic tasks and
preemptive sporadic tasks”, 18th IEEE International Conference on E-
merging Technologies & Factory Automation, 2012.

[3] Hsiang-Kuo Tang, Parmesh Ramanathan, Katherine Comp-
ton.“Combining Hard Periodic and Soft Aperiodic Real-Time Task
Scheduling on Heterogeneous Compute Resources”, 2011 International
Conference on Parallel Processing, 2011.

[4] S.L.Vieira, M.F. Magalhaes. “On-line Sporadic Task Scheduling in Hard
Real-Time System*”, IEEE, 1994.

[5] Kevin Jeffay*, Donald F.Stanat, Charles U.Martel**. On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks, IEEE, 1991.

[6] Manuel Coutinho, Jose Rufino, Carlos Almeida. “Response Time Analy-
sis of Asynchronous Periodic and Sporadic Tasks scheduled by a Fixed-
Priority Preemptive Algorithm”, Euromicro Conference on Real-Time
Systems,2008.

[7] Jiafu wan el at. “A Two-level Hierarchical Scheduling Scheme for Hybrid
Tasks in Priority-Based Preemptive Systems”, Networking, Sensing and
Control Conference , pp.32-36,2008

[8] Gautam H.Thaker, Patrick J. Lardieri, Dr. Donald K. Krecker, and
Michael Price. “Empirical Quantification of Pessimism in State-of-the-Art
Scheduling Theory Techniques for Perioidic and Sporadic DRE Tasks”,
Proceedings of the 10th IEEE Real-Time and Embedded Technology and
Application Symposium, 2004.

[9] Joel Goossens, Christophe Macq. “Limitation of the Hyper-Period in
Real-Time Periodic Task Set Generation”, Proc. In RTS, 2001,pp. 133-
148.

[10] M.Joseph and P. K. Pandya. “Finding response times in a real-time
system”, Comput.J., 29(5):390-395, 1986.

179

