
An Efficient Method for Custom Instruction Mapping  

Under the Safety Assurance of Code Generation 

Yongping Luo                              

Dept. of Computer Engineering  

Hunan University 

Changsha, China 

luoyongping@hnu.edu.cn 

Yuchun Ma 
EDA Lab of Computer Science 

Tsinghua University 

Beijing, China 

myc@mail.tsinghua.edu.cn 

Qiang Wu 

Dept. of Computer Engineering 

Hunan University 

Changsha, China 

wuqiang2000@gmail.com 

 

 

 

Abstract—In the work flow of embedded systems, processor 

design is the critical technology to directly affect the 

performance of whole system. In this process, instruction 

mapping is responsible for identifying the portions of target 

application program which match with custom instruction 

(CI) and implementing code generation for extension 

processor. However, traditional instruction mapping 

approaches would not consider the problem of mapping 

safety so that the mapping result is not reliable. In addition, 

as target applications get more complex, the drawback of 

large time cost makes embedded system less efficient. In this 

paper, we build safety check to ensure that the matched 

subgraphs can really be executed by hardware accelerator. 

And we propose an efficient matching method according the 

logic information of application program to reduce 

matching time and search space. For overlapping matched 

subgraphs, we also build up Maximal Weight Independent 

Set-based model to obtain better speedup of extension 

processor and the experiment results show the superiority of 

our method. 

Keywords-pattern matching; custom instruction; extension 

processor  

I. INTRODUCTION  

The improvement of embedded application program’s 
complexity makes the traditional embedded system meet 
the greater challenge from their power, chip area and 
performance goals. Since the general-purpose processor 
is more limited in computational efficiency for large 
subject application, application specific integrated 
circuits(ASICs) are used as cushions to the conflicts in 
computational speed demands. But ASICs are custom 
hardware modules for execution of the portions which 
demand for acceleration in application program and their 
functionality can not be changed once modules are 
integrated into system. Thus, the cost of the system may 
be expensive for handing different applications.  

In order to accommodate specification changes, 
application specific instruction set processor (ASIP) 
provides a good designing scheme to balance the 
performance demands and flexibility. During the design 
process, custom instructions (CIs) are generated by 
analyzing application program, so the computation 
intensive portions of application can be executed by 
custom function units (CFUs) which augment the 
instruction set of ASIP. Here, ASIP can invoke CFUs to 
implement acceleration through dynamic mapping 
mechanism. Thus, the system can modify the software 
tool chain to select corresponding configuration scheme 
for different applications. This reduces the hardware cost 
of the system and the design time consuming.   

 

However, the process of CI design is a hard work 
especially for the large application programs. A key step 
in this process is instruction mapping which has two main 
phase to handing. The first phase is pattern matching that 
it identifies the portions of application program which 
match with custom instruction. Pattern matching is 
regarded as NP-complete problem and the matching time 
increase exponentially when the application is too large. 
The second phase is instruction covering which selects 
final portions of application to maximize the speedup of 
accelerator. This problem is also difficult because the 
number of final selected matched subgraphs should be 
minimized. Clearly, instruction mapping is a challenge 
work for researches. 

Many researchers had studied the utility of custom 
instructions. For pattern matching, The approach by Clark 
et al. [1] uses vflib graph matching library to regard 
pattern matching as a subgraph isomorphism problem. 
But the matching time is too long when dealing with large 
applications. A tree matching approach is presented to 
tackle subgraph mapping in [2]. In this approach, the 
matching process is very quick because the date flow 
graph (DFG) of subject application is partitioned into 
trees. The drawback of this method is that the matching 
result is suboptimal since many DFGs are not trees.  

Here, we classify the subgraph isomorphism and tree 
matching as structural matching. Unlike structural 
matching, a method based on symbolic algebra is 
presented in [4] that it performs functional matching 
through polynomial expression which is from the 
decomposition of application. This technique can not 
hand bit-wise operations and the matching time is also 
exponential in the worst case. Similar methods are 
presented in [3] [7].  

For instruction covering, unate covering [5] is used to 
minimize the number of execution cycle on accelerator. 
As this method dose not consider the situation of 
overlapping subgraphs, it loses more opportunities for 
speedup. Work by Cong [6] attacked the same problem by 
using a binate covering formulation and the overlapping 
subgraphs are allowed. But the risks of mapping 
confusion for accelerator are increased during the code 
generation phase. 

Above all, most of previous works are ineffective in 
reducing the matching search space and matching time. 
Furthermore, traditional approaches neglect the safety of 
instruction covering so that many matched subgraphs can 
not really be executed by processor. In this paper, we give 
consideration to system computation efficiency and 
performance under the premise of mapping safety.  

Our contributions of this paper as follows: 
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 We introduce control data flow graph (CDFG) as 
intermediary representation of application program. 
According the information of basic block (BB) in 
CDFG, we propose a set of strategies to reduce the 
matching time. 

 In order to ensure the safety of instruction covering, 
we adopt maximal weight independent set-based 
model to hand overlapping subgraphs and build 
safety check mechanism for avoiding the mistakes 
of code generation.  

II. PROBLEM STATEMENT 

During the process of code generation, most of the 
previous works are focused on how to improve the 
performance of accelerator. These works include 
matching more subgraphs in subject application and 
selecting matched subgraphs which can minimize the 
compute cycle or execution time. Nevertheless, the safety 
of mapping, which is related to the correctness of 
compute result of application program is neglected. The 
problem of mapping safety mainly involves considering 
the control information between nodes, maintaining the 
same data dependence before and after instruction 
covering, and avoiding mistake when dealing with 
complex mapping such as for the situation of overlapping 
matched subgraphs. 
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Figure 1.  Some examples of the mapping safety issue 

Three cases which are relevant to unsafe mapping are 
shown in Fig. 1. DFG is generally used as the 
representation of application program. But it lacks the 
logic information of application program such as 
conditional statement so that the nodes of matched 
subgraph may be included in different basic blocks (BBs) 
as shown in Fig. 1 (a). Such matched subgraph is hard to 
be mapped into accelerator because basic block (BB) is 
the smallest logic execution sequence. The unsafe 
mapping of the second case is occurred when the matched 
subgraph is replaced by custom instruction. For instance 
of Fig. 1 (b), the data dependence becomes cyclic after 
matched subgraph 9-10-12 is replaced by a CI node, 
which would cause destruction of data dependence. The 
third case is about how to handing overlapping subgraphs 

during instruction covering. Overlapping subgraphs(as 
shown in Fig. 1 (c)) can provide more opportunities to 
obtain high speedup, but in the meanwhile it is easy to 
cause mapping confusion during code generation. So the 
key of this problem is that how to obtain higher 
performance and there are no overlapping subgraphs 
which are finally mapped to processor. 

In this work, our goal is to guarantee the accuracy of 
compute result of subject program and the normal 
execution on accelerator. In addition, we use some 
techniques to improve the efficiency of matching process 
and the speedup performance of accelerator. 

III. PATTERN MATCHING 

Let G(V, E) be a subject graph from application 
program, Pset be a CI pattern set, pattern matching is to 
find all subgraphs in G(V, E) which match with each CI of 
Pset . As mentioned before, the search space of traditional 
matching approach is too large and the safety of matching 
is neglected. To solve the problem, we introduce CDFG 
to obtain the information of BB such as the number of 
instruction nodes and iteration times in each BB.  

A. Matching based on BB 

During the pattern matching, we adopt CDFG as the 
representation of application program for analyzing the 
whole structure information of program. A CDFG 
contains many BBs and the dependence of instruction 
nodes in each BB can be represented as DFG. Through 
CDFG, we can obtain the execution sequence between 
BBs which is important for the problem of mapping 
safety. Here, we chose BB as the elementary matching 
search unit because it is coarse-grained to improve the 
efficiency of matching process and is more safe for 
instruction covering. In order to reduce the matching 
search space, we classify the BBs into two groups 
according the number of instruction nodes in BB and CI. 
One group is big BB and the other is small BB.  

To better describe the classification of BB, we denote 
the number of instruction nodes of BB as NBB and NCI is 
the number of instructions of CI. If NBB ≥ NCI, then we 
classify the BB as big BB, otherwise, the BB is small BB.  
As BB is the smallest execution unit, there is no need to 
do matching work for all small BBs. Such as in Fig. 2, 
NCI of CI pattern Pset-1 is 4 so that we prune the search 
space of the basic blocks BB2 and BB3 which the NBB is 
respectively 1 and 2. Here, BB2 and BB3 are classified as 
small BB and BB1 is big BB. Through the classification 
of BB, the matching search space can be obviously 
reduced. 

B. Comparing the Performance for Overlapping 

Subgraphs 

For overlapping subgraphs in big BB, we compare the 
performance gain between overlapping subgraphs in 
advance. The performance gain is calculated through (1) 
and (2).  
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Figure 2.  (a) Subject Graph    (b) CI Pattern 

Cycle(bi) is the number of execution cycles for a basic 
instruction. Csw is the sum number of software execution 
cycles for all primitive instructions in subgraph. Chw is the 
number of execution cycles for critical path when the 
subgraph is regard as a custom instruction. fBB is the 
execution times of BB. Csav is the number of saving 
cycles when the subgraph is implemented by hardware.  

In Fig. 2, assuming that the matching work of Pset-1 
have been completed (M1 is identified), it finds the same 
instruction operation( MUL operation) between M1 and 
Pset-2 during the matching process of Pset-2. Thus, we 
compare the performance between Pset-1 and Pset-2. If 
Csav(Pset-2)≤ Csav(Pset-1), we will no longer do the matching 
work of Pset-2 at the neighborhood of nodes 1 and 6 
although subgraph M2 match with Pset-2. The reason is 
that we only select one subgraph to be mapped to 
processor for mapping safety. Therefore by comparing the 
performance gain between overlapping matched subgraph 
in advance, the matching search space can be reduced.   

IV. INSTRUCTION COVERING 

A. Safety Check for Matched Subgraph 

After the work of pattern matching, the matched 
subgraphs are replaced by CIs. During the process of 
replacement, most of previous works neglect the safety of 
instruction covering. Here, we describe the detail of the 
process of safety check for Fig. 3 which is from Fig. 1(b).  
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Figure 3.  An example from Fig. 1(b) 

The safe matched subgraph is a closed subgraph that 
all nodes in the paths between two arbitrary nodes are 
contained within subgraph. Otherwise, it is a non-closed 
subgraph. For example, node 11 is in the path between 
nodes 9 and 12, but it is not included in subgraph 9-10-12. 
So we call subgraph 9-10-12 a non-closed subgraph and it 
is unsafe to be mapped to processor.  

Fig. 4 shows the algorithm of safety check for 
matched subgraph. We find all paths between two 
arbitrary nodes firstly and then check whether the nodes 
of all paths is in matched subgraph. 

 
Figure 4.  Algorithm of Safety Check 

B. Instruction Covering 

When the unsafe matched subgraphs have been 
pruned, it is important to determine which matched 
subgraphs can be finally mapped to accelerator. But as 
mentioned previously, the mapping safety of overlapping 
subgraphs and high performance should simultaneously 
be considered.  
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Figure 5.  The model of independent set 

To solve the problem, we build up maximal weight 
independent set-based model. The model of independent 
set is shown in Fig. 5. The graph vertex (such as SA) 
represents matched subgraph. There is an edge between 
vertexes if matched subgraph is overlapped. The weight 
of each vertex is the number of saving cycles which is 
calculated by (1) and (2).   
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V. EXPERIMENT 

We implemented our proposed approach with C++ for 
evaluating its effectiveness. There are two inputs to our 
framework: the C application programs which from 
Trimaran [8] and a CI pattern set which includes 30 CIs. 
Trimaran is a high-level synthesis tool and we can obtain 
CDFG or DFG from applications through the compilation 
of Trimaran. Our machine configuration is: Inter(R) 
Core(TM) i3 CPU, 2GB memory.  

Fig. 6 shows the number of unsafe matched subgraphs 
in each benchmark. Although the minimum number of 
unsafe pattern is only 4 in dag, the compute result may be 
incorrect. In other benchmarks, the number of unsafe 
instances are much higher than dag. So safety check is an 
essential step during instruction mapping. 

 
Figure 6.  The Number of Unsafe Matched Subgraphs 

To verify the effectiveness of our matching algorithm, 
we compare the matching time when intermediary 
representation of application program is DFG and CDFG 
respectively. It is evident from Figure 7 that our method 
(CDFG) take less time than the traditional approach using 
DFG as representation. Especially in fft and fib_rec, the 
matching time is reduced nearly by half. 

 
Figure 7.  Comparison of Matching Time  

We also compare the performance gain when 
overlapping subgraphs are considered or not during 
matching process. In the method of direct replace, there 
are no overlapping subgraphs during matching. The 
saving cycle are shown in Table I. “#Final” is the number 

of matched subgraphs which are finally mapped to 
processor. “Saving” is the saving cycles after replacement. 
The improvement of our method is shown in the column 
of “Inc”. From Table I, it can obtain more performance 
gain by adopting MWIS replace.  

TABLE I.  SAVING CYCLE OF TWO METHODS 

Benchmark MWIS Replace Direct Replace Inc 

#Final Saving  #Final Saving  

alloca_test 3 18771 1 2694 6.97x 

dag 11 24891 10 20618 1.21x 

fft 20 144281 12 71727 2.01x 

fib_rec 10 122570 7 103285 1.18x 

mm_int 10 82448 8 43955 1.88x 

nested 4 17434 3 13936 1.25x 

sqrt 9 54357 7 33636 1.62x 

VI. CONCLUSION 

In this paper, we introduce CDFG and independent set 
to ensure the safety of instruction mapping. And as some 
strategies based on the structure information of BB are 
adopted in our method, the matching search space is 
reduced. In addition, the performance gain is improved 
through maximal weight independent set-based model.  
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