
An Efficient Method for Custom Instruction Mapping

Under the Safety Assurance of Code Generation

Yongping Luo

Dept. of Computer Engineering

Hunan University

Changsha, China

luoyongping@hnu.edu.cn

Yuchun Ma
EDA Lab of Computer Science

Tsinghua University

Beijing, China

myc@mail.tsinghua.edu.cn

Qiang Wu

Dept. of Computer Engineering

Hunan University

Changsha, China

wuqiang2000@gmail.com

Abstract—In the work flow of embedded systems, processor

design is the critical technology to directly affect the

performance of whole system. In this process, instruction

mapping is responsible for identifying the portions of target

application program which match with custom instruction

(CI) and implementing code generation for extension

processor. However, traditional instruction mapping

approaches would not consider the problem of mapping

safety so that the mapping result is not reliable. In addition,

as target applications get more complex, the drawback of

large time cost makes embedded system less efficient. In this

paper, we build safety check to ensure that the matched

subgraphs can really be executed by hardware accelerator.

And we propose an efficient matching method according the

logic information of application program to reduce

matching time and search space. For overlapping matched

subgraphs, we also build up Maximal Weight Independent

Set-based model to obtain better speedup of extension

processor and the experiment results show the superiority of

our method.

Keywords-pattern matching; custom instruction; extension

processor

I. INTRODUCTION

The improvement of embedded application program’s
complexity makes the traditional embedded system meet
the greater challenge from their power, chip area and
performance goals. Since the general-purpose processor
is more limited in computational efficiency for large
subject application, application specific integrated
circuits(ASICs) are used as cushions to the conflicts in
computational speed demands. But ASICs are custom
hardware modules for execution of the portions which
demand for acceleration in application program and their
functionality can not be changed once modules are
integrated into system. Thus, the cost of the system may
be expensive for handing different applications.

In order to accommodate specification changes,
application specific instruction set processor (ASIP)
provides a good designing scheme to balance the
performance demands and flexibility. During the design
process, custom instructions (CIs) are generated by
analyzing application program, so the computation
intensive portions of application can be executed by
custom function units (CFUs) which augment the
instruction set of ASIP. Here, ASIP can invoke CFUs to
implement acceleration through dynamic mapping
mechanism. Thus, the system can modify the software
tool chain to select corresponding configuration scheme
for different applications. This reduces the hardware cost
of the system and the design time consuming.

However, the process of CI design is a hard work
especially for the large application programs. A key step
in this process is instruction mapping which has two main
phase to handing. The first phase is pattern matching that
it identifies the portions of application program which
match with custom instruction. Pattern matching is
regarded as NP-complete problem and the matching time
increase exponentially when the application is too large.
The second phase is instruction covering which selects
final portions of application to maximize the speedup of
accelerator. This problem is also difficult because the
number of final selected matched subgraphs should be
minimized. Clearly, instruction mapping is a challenge
work for researches.

Many researchers had studied the utility of custom
instructions. For pattern matching, The approach by Clark
et al. [1] uses vflib graph matching library to regard
pattern matching as a subgraph isomorphism problem.
But the matching time is too long when dealing with large
applications. A tree matching approach is presented to
tackle subgraph mapping in [2]. In this approach, the
matching process is very quick because the date flow
graph (DFG) of subject application is partitioned into
trees. The drawback of this method is that the matching
result is suboptimal since many DFGs are not trees.

Here, we classify the subgraph isomorphism and tree
matching as structural matching. Unlike structural
matching, a method based on symbolic algebra is
presented in [4] that it performs functional matching
through polynomial expression which is from the
decomposition of application. This technique can not
hand bit-wise operations and the matching time is also
exponential in the worst case. Similar methods are
presented in [3] [7].

For instruction covering, unate covering [5] is used to
minimize the number of execution cycle on accelerator.
As this method dose not consider the situation of
overlapping subgraphs, it loses more opportunities for
speedup. Work by Cong [6] attacked the same problem by
using a binate covering formulation and the overlapping
subgraphs are allowed. But the risks of mapping
confusion for accelerator are increased during the code
generation phase.

Above all, most of previous works are ineffective in
reducing the matching search space and matching time.
Furthermore, traditional approaches neglect the safety of
instruction covering so that many matched subgraphs can
not really be executed by processor. In this paper, we give
consideration to system computation efficiency and
performance under the premise of mapping safety.

Our contributions of this paper as follows:

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 184

app:ds:designing
app:ds:scheme

 We introduce control data flow graph (CDFG) as
intermediary representation of application program.
According the information of basic block (BB) in
CDFG, we propose a set of strategies to reduce the
matching time.

 In order to ensure the safety of instruction covering,
we adopt maximal weight independent set-based
model to hand overlapping subgraphs and build
safety check mechanism for avoiding the mistakes
of code generation.

II. PROBLEM STATEMENT

During the process of code generation, most of the
previous works are focused on how to improve the
performance of accelerator. These works include
matching more subgraphs in subject application and
selecting matched subgraphs which can minimize the
compute cycle or execution time. Nevertheless, the safety
of mapping, which is related to the correctness of
compute result of application program is neglected. The
problem of mapping safety mainly involves considering
the control information between nodes, maintaining the
same data dependence before and after instruction
covering, and avoiding mistake when dealing with
complex mapping such as for the situation of overlapping
matched subgraphs.

MUL

SHL CMP

5

4

MUL

ADD 3

7

6

MUL MUL1 2

BB0

BB1 BB2

MUL
8

XORADD

MUL

ADD

SUB
10

XOR

MUL 9

SHR 11

12

(b)

(a) (c)
Figure 1. Some examples of the mapping safety issue

Three cases which are relevant to unsafe mapping are
shown in Fig. 1. DFG is generally used as the
representation of application program. But it lacks the
logic information of application program such as
conditional statement so that the nodes of matched
subgraph may be included in different basic blocks (BBs)
as shown in Fig. 1 (a). Such matched subgraph is hard to
be mapped into accelerator because basic block (BB) is
the smallest logic execution sequence. The unsafe
mapping of the second case is occurred when the matched
subgraph is replaced by custom instruction. For instance
of Fig. 1 (b), the data dependence becomes cyclic after
matched subgraph 9-10-12 is replaced by a CI node,
which would cause destruction of data dependence. The
third case is about how to handing overlapping subgraphs

during instruction covering. Overlapping subgraphs(as
shown in Fig. 1 (c)) can provide more opportunities to
obtain high speedup, but in the meanwhile it is easy to
cause mapping confusion during code generation. So the
key of this problem is that how to obtain higher
performance and there are no overlapping subgraphs
which are finally mapped to processor.

In this work, our goal is to guarantee the accuracy of
compute result of subject program and the normal
execution on accelerator. In addition, we use some
techniques to improve the efficiency of matching process
and the speedup performance of accelerator.

III. PATTERN MATCHING

Let G(V, E) be a subject graph from application
program, Pset be a CI pattern set, pattern matching is to
find all subgraphs in G(V, E) which match with each CI of
Pset . As mentioned before, the search space of traditional
matching approach is too large and the safety of matching
is neglected. To solve the problem, we introduce CDFG
to obtain the information of BB such as the number of
instruction nodes and iteration times in each BB.

A. Matching based on BB

During the pattern matching, we adopt CDFG as the
representation of application program for analyzing the
whole structure information of program. A CDFG
contains many BBs and the dependence of instruction
nodes in each BB can be represented as DFG. Through
CDFG, we can obtain the execution sequence between
BBs which is important for the problem of mapping
safety. Here, we chose BB as the elementary matching
search unit because it is coarse-grained to improve the
efficiency of matching process and is more safe for
instruction covering. In order to reduce the matching
search space, we classify the BBs into two groups
according the number of instruction nodes in BB and CI.
One group is big BB and the other is small BB.

To better describe the classification of BB, we denote
the number of instruction nodes of BB as NBB and NCI is
the number of instructions of CI. If NBB ≥ NCI, then we
classify the BB as big BB, otherwise, the BB is small BB.
As BB is the smallest execution unit, there is no need to
do matching work for all small BBs. Such as in Fig. 2,
NCI of CI pattern Pset-1 is 4 so that we prune the search
space of the basic blocks BB2 and BB3 which the NBB is
respectively 1 and 2. Here, BB2 and BB3 are classified as
small BB and BB1 is big BB. Through the classification
of BB, the matching search space can be obviously
reduced.

B. Comparing the Performance for Overlapping

Subgraphs

For overlapping subgraphs in big BB, we compare the
performance gain between overlapping subgraphs in
advance. The performance gain is calculated through (1)
and (2).

)-C(CfC hwswBBsav  (1)

 




CIi

isw)Cycle(bC (2)

185

MUL

SHL

8

6

MUL

ADD

XOR

ADD

ADD

3

10

5

MUL SUB
1

2 4

ADD 7

MUL

SHL

D

MUL

ADD C

C

MUL SUBA B

A

MUL

B

Pset-1

BB1

BB2

BB3

Pset-2

(a) (b)

M1 M2

9

Figure 2. (a) Subject Graph (b) CI Pattern

Cycle(bi) is the number of execution cycles for a basic
instruction. Csw is the sum number of software execution
cycles for all primitive instructions in subgraph. Chw is the
number of execution cycles for critical path when the
subgraph is regard as a custom instruction. fBB is the
execution times of BB. Csav is the number of saving
cycles when the subgraph is implemented by hardware.

In Fig. 2, assuming that the matching work of Pset-1
have been completed (M1 is identified), it finds the same
instruction operation(MUL operation) between M1 and
Pset-2 during the matching process of Pset-2. Thus, we
compare the performance between Pset-1 and Pset-2. If
Csav(Pset-2)≤ Csav(Pset-1), we will no longer do the matching
work of Pset-2 at the neighborhood of nodes 1 and 6
although subgraph M2 match with Pset-2. The reason is
that we only select one subgraph to be mapped to
processor for mapping safety. Therefore by comparing the
performance gain between overlapping matched subgraph
in advance, the matching search space can be reduced.

IV. INSTRUCTION COVERING

A. Safety Check for Matched Subgraph

After the work of pattern matching, the matched
subgraphs are replaced by CIs. During the process of
replacement, most of previous works neglect the safety of
instruction covering. Here, we describe the detail of the
process of safety check for Fig. 3 which is from Fig. 1(b).

SUB
10

XOR

MUL 9

SHR

12

11

Figure 3. An example from Fig. 1(b)

The safe matched subgraph is a closed subgraph that
all nodes in the paths between two arbitrary nodes are
contained within subgraph. Otherwise, it is a non-closed
subgraph. For example, node 11 is in the path between
nodes 9 and 12, but it is not included in subgraph 9-10-12.
So we call subgraph 9-10-12 a non-closed subgraph and it
is unsafe to be mapped to processor.

Fig. 4 shows the algorithm of safety check for
matched subgraph. We find all paths between two
arbitrary nodes firstly and then check whether the nodes
of all paths is in matched subgraph.

Figure 4. Algorithm of Safety Check

B. Instruction Covering

When the unsafe matched subgraphs have been
pruned, it is important to determine which matched
subgraphs can be finally mapped to accelerator. But as
mentioned previously, the mapping safety of overlapping
subgraphs and high performance should simultaneously
be considered.

SA

SB

SC SD

SE

Figure 5. The model of independent set

To solve the problem, we build up maximal weight
independent set-based model. The model of independent
set is shown in Fig. 5. The graph vertex (such as SA)
represents matched subgraph. There is an edge between
vertexes if matched subgraph is overlapped. The weight
of each vertex is the number of saving cycles which is
calculated by (1) and (2).

186

app:ds:critical
app:ds:path

V. EXPERIMENT

We implemented our proposed approach with C++ for
evaluating its effectiveness. There are two inputs to our
framework: the C application programs which from
Trimaran [8] and a CI pattern set which includes 30 CIs.
Trimaran is a high-level synthesis tool and we can obtain
CDFG or DFG from applications through the compilation
of Trimaran. Our machine configuration is: Inter(R)
Core(TM) i3 CPU, 2GB memory.

Fig. 6 shows the number of unsafe matched subgraphs
in each benchmark. Although the minimum number of
unsafe pattern is only 4 in dag, the compute result may be
incorrect. In other benchmarks, the number of unsafe
instances are much higher than dag. So safety check is an
essential step during instruction mapping.

Figure 6. The Number of Unsafe Matched Subgraphs

To verify the effectiveness of our matching algorithm,
we compare the matching time when intermediary
representation of application program is DFG and CDFG
respectively. It is evident from Figure 7 that our method
(CDFG) take less time than the traditional approach using
DFG as representation. Especially in fft and fib_rec, the
matching time is reduced nearly by half.

Figure 7. Comparison of Matching Time

We also compare the performance gain when
overlapping subgraphs are considered or not during
matching process. In the method of direct replace, there
are no overlapping subgraphs during matching. The
saving cycle are shown in Table I. “#Final” is the number

of matched subgraphs which are finally mapped to
processor. “Saving” is the saving cycles after replacement.
The improvement of our method is shown in the column
of “Inc”. From Table I, it can obtain more performance
gain by adopting MWIS replace.

TABLE I. SAVING CYCLE OF TWO METHODS

Benchmark MWIS Replace Direct Replace Inc

#Final Saving #Final Saving

alloca_test 3 18771 1 2694 6.97x

dag 11 24891 10 20618 1.21x

fft 20 144281 12 71727 2.01x

fib_rec 10 122570 7 103285 1.18x

mm_int 10 82448 8 43955 1.88x

nested 4 17434 3 13936 1.25x

sqrt 9 54357 7 33636 1.62x

VI. CONCLUSION

In this paper, we introduce CDFG and independent set
to ensure the safety of instruction mapping. And as some
strategies based on the structure information of BB are
adopted in our method, the matching search space is
reduced. In addition, the performance gain is improved
through maximal weight independent set-based model.

REFERENCES

[1] N. T. Clark, H. Zhong, and S. A. Mahlke. Automated custom
instruction generation for domain-specific processor
acceleration.IEEE Transactions on Computers, 54(10):1258–1270,
2005.

[2] A. Aho, M. Ganapathi, and S. Tijang. Code generation using tree
pattern matching and dynamic programming.ACM TOPLAS,
11(4):491–516, Oct. 1989.

[3] N. Arora, K. Chandramohan, N. Pothineni, A. Kumar. Instruction
Selection in ASIP Synthesis Using Functional Matching. In
Proceeding. IEEE International Conference on VLSI Design,
2010.

[4] A. Peymandoust, L. Pozzi, P. Ienne, and G. D. Micheli. Automatic
instruction set extension and utilization for embedded processors.
In Proceedings. IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, 2003,
pages 108– 118, 2003.

[5] N.Clark, A.Hormati, S.Mahlke, S.Yehia. Scalable Subgraph
Mapping for Acyclic Computation Accelerators. Proc.
International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. New York: ACM, pp. 147~157,
2006.

[6] Cong J, Fan Y, Han G, and Zhang Z, Application-specific
Instruction Generation for Configurable Processor Architectures.
FPGA, pp.183- 189, 2004.

[7] N. Cheung, S. Parameswaran, J. Henkel, and J. Chan. Mince:
matching instructions using combinational equivalence for
extensible processor. In Conference on Design, Automation and
Test in Europe, pages 1020–1025, 2004.

[8] http://www.trimaran.org.

187

