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Abstract—Energy-saving scheduling algorithm for parallel 

applications on heterogeneous computing systems has become 

an important research subject. Considering that the existing 

energy-efficient scheduling algorithms have strong locality and 

cannot flexibly adapt to the application performance  

(makespan /schedule length) requirements, the authors 

designed a weighted objective function, based on which an 

adaptive weight-based energy-efficient scheduling algorithm 

has been proposed with dynamic voltage scaling (DVS). It can 

effectively balance performance and power consumption by 

controlling the weight. The algorithm consists of two parts: (1) 

automatically calculate the optimum weight, thus consume less 

energy while guaranteeing makespan requirement; (2) use 

objective function to get the approximately optimal task 

allocation on the DVS-enabled processors through the idea of 

list scheduling algorithm. Compared to the other three existing 

task scheduling algorithms, the experimental results show that 

the new algorithm can much effectively balance schedule 

lengths and energy consumption. 

Keywords-heterogeneous computing system; dynamic voltage 

scaling (DVS); energy-efficient scheduling; green computing 

I.  INTRODUCTION 

Over the years, heterogeneous computing systems have 
been widely used for compute-intensive and data-intensive 
applications. Notably, the energy consumption of 
heterogeneous computing systems is huge. According to the 
current study [1], the power consumption by computing 
centers accounted for about 0.5% of the world's total 
electricity consumption. The study also indicates that 
electricity consumption is expected to double by 2020. 
Clearly, there are environment issues with the generation of 
electricity [2]. Therefore, green energy has become one of 
the important factors that must be considered in high-
performance computing. 

Due to the importance of energy consumption, various 
techniques have been investigated and developed [3]. DVS 
(dynamic voltage scaling) among these has been proven to 
be a very promising technique with its demonstrated 
capability for energy savings (e.g., [4], [5], and [6]). DVS 
enables processors to dynamically adjust voltage supply 
levels aiming to reduce power consumption; however, this 
reduction is achieved at the expense of sacrificing clock 
frequencies. 

Traditionally, the primary performance goal of 
heterogeneous computer systems has focused on reducing 
the execution time of applications. List scheduling algorithm 
[7] is a well-known algorithm for this performance goal, and 
has been studied separately with DVS. For reducing 
makespan the conventional list scheduling ignores that high-
frequency and high voltage lead to high energy consumption. 
Although some algorithms by proposing a novel target 
function combined list scheduling algorithm and DVS to 
reduce the energy consumption [8], but these objective 
functions of scheduling algorithms does not consider the 
impact of a task completion time on the total energy 
consumption, so they are localized strongly. In addition, they 
also cannot be automatically adjusted according to the 
application performance requirement. 

By analyzing the relationship of task completion time 
and energy consumption, we found that the energy 
consumption can be saved by executing task in lower voltage 
which will lead to extend the task completion time, however, 
because it can increase idle time, if left unchecked, the total 
energy consumption will increase instead. Thus this paper 
proposes a weighted objective function and comes up with 
an adaptive weight-Based energy-efficient scheduling 
algorithm (AWES). It combines list scheduling algorithm 
and DVS. AWES is essentially different from the existing 
scheduling algorithms. Firstly, with the relationship between 
task completion time and total energy consumption a novel 
target function with weight is proposed; secondly the optimal 
weight can be automatically calculated based on the 
performance requirements; finally, we can reduce energy 
consumption on the premise that makespan requirements can 
be met. 

II. RELATED WORK 

Due to the NP-hard nature of the task scheduling problem 
[9], heuristics are the most popular scheduling model 
adopted by many researchers. And for low complexity and 
high effect, the HEFT which is a well-known list-scheduling 
heuristic is widely used [7]. However, it ignores the energy 
problem. To solve this problem, LEE in [8] presented ECS 
and ECS+idle scheduling algorithm. The performance of 
these algorithms is very compelling in terms of both 
application completion time and energy consumption. But 
there are still lots of space for improvement. 
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Many algorithms have been developed for energy 
conservation, DVS is an important part of their. In [4] 
several different scheduling algorithms using the concept of 
slack sharing among DVS-enabled processors were proposed. 
Ma Yan et al. in [5] developed an algorithm based on integer 
linear programming (ILP) that chooses frequency and 
voltage level for executing parallel tasks. In [6] an adaptive 
threshold-based task duplication strategy was presented, it 
can meet the makespan requirement while reducing energy 
consumption. However, these previous studies on scheduling 
that take into consideration energy consumption are 
conducted on homogeneous computing systems. 

III. MODELS 

A. System Model 

In this paper, the target system consists of a set   of m 
heterogeneous processors that are fully interconnected with 
high-speed network. Each processor is DVS enabled; in 
other words, processing unit    has a number of discrete 

voltage levels, which are given by     , k=1, 2,     , where 

     denotes the total number of discrete voltage levels of   . 

The processor frequency of    at voltage level (VL)      is 

given by     . Since clock frequency transition overheads 

take a negligible amount of time (e.g., 10us-150us [10]), 
these overheads are not considered in our study. 
Interprocessor communications are assumed to perform with 
the same speed on all links without contentions. 

B. Application Model 

Parallel application with a set of precedence-constrained 
tasks can be represented in form of a directed acyclic graph 
(DAG). A DAG, G= (N, E), consists of a set N of n nodes 
and a set E of e edges. The nodes represent tasks partitioned 
from an application; the edges represent precedence 
constraints and intertask communication. A task with no 
predecessors is called an entry task,       , whereas an exit 

task,       , is one that does not have any successors. Among 
the predecessors of a task   , the predecessor which 
completes the communication at the latest time is called the 
most influential parent (MIP) of the task denoted as MIP (i). 
The longest path of a task graph is the critical path (CP). 

The computation cost of the task    on a processor    is 

denoted as     . The weight on an edge, denoted as      

represents the communication cost between two tasks,     

and   . However, a communication cost is only required 

when two tasks are assigned to different processors. In other 
words, the communication cost when tasks are assigned to 
the same processor can be ignored. The earliest start and 
earliest finish times of, a task    on a processor    are 

defined as: 
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where    is the processor on which the MIP of task    is 
scheduled. 

C. Energy Model 

CMOS devices are the building blocks of most general 
purpose computing systems today. Power consumed in 
CMOS circuits can be divided into three components: 
dynamic, static and short-circuit power. The dynamic power 
dissipation is the most significant factor of the power 
consumption. Dynamic power can be approximated with the 
following formula: 
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where A is the average number of circuit switches per clock 
cycle, C  is the load capacitance, V is the supply voltage and 
f is the clock frequency. 

If           denotes the highest power,          denotes the 

highest voltage, and          denotes the highest frequency on 

processor   , then we can use (3) to compute the power when 

   executes with      as: 
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Since processors consume a certain amount of energy 
while idling, the total energy consumption of the execution 
for a precedence-constrained parallel application in this 
study is comprised of direct and indirect energy consumption. 
The direct energy consumption is defined as: 
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where      is the processor on which task    executed, and 

                is the supply voltage of the processor      . 

On the other hand, the indirect energy consumption is 
defined as: 
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where       is the set of idling slots on processor   , 

          is the lowest power on   , and      is the amount of 

idling time for        . Then, the total energy consumption is 

defined as: 
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IV. ENERGY-CONSCIOUS SCHEDULING HEURISTICR  

The AWES consists of two parts: (1) automatically 
calculate the optimum weight; (2) use objective function to 
get the approximately optimal task allocation. In addition, for 
further reducing the locality and sufficiently leveraging idle 
time, the MCER used in [12] is adopted. 

A. Optimum Weight Calculation 

The first phase in the AWES is to calculate the optimum 
weight. 

 

Algorithm 1: Calculate_Optimal_ a 

1: min_schedule_len←Task_Allocation(a =0) 
2: max_schedule_len←Task_Allocation(a =4) 
3: optimal_ a←4 
4:According to the scope of makespan, set a makespan 

to meet the demand, denoted Assigned_Makespan 
5: IF (Assigned_Makespan<min_schedule_len) THEN 
6:   optimal_ a←0 
7:   BREAK 
8: ELSE 
9:   WHILE(optimal_ a >=0) 
10:  temp_sched_len←Task_Allocation(a= optimal_a) 
11:   IF (temp_sched_len>Assigned_Makespan) THEN 
12:     optimal_ a -- 
13:   ELSE 
14:     BREAK 
15:   END IF 
16:  END WHILE 
17:END IF 
18:RETURN  optimal_a 

 
First, according to the allocation algorithm, we can 

conclude schedule length range (steps 1-2). Schedule length 
will increase as the weight, so the minimum makespan can 
be obtained when weight equals 0. And when weight is 
larger than a certain value (the experimental results obtained 
under 4), energy consumption will increase instead. 
Therefore, it is not necessary to use the weight larger than 4, 
the maximum makespan is obtained when weight equals 4. 
Steps 4 set a makespan requirement (Assigned_Makespan). 
If user setting is less than the minimum makespan, the 
optimal weight will be set as 0 (steps 5-7), otherwise, the 
weight from four starts diminishing, until the makespan is 
less than Assigned_Makespan or equals 0. In other words, 
once the system performance met, the loop terminates 
immediately, and set the optimal weight as the current 
weight. 

B. Task Allocation 

Scheduling algorithm must ensure the implementation of 
the predecessor task before the successor task execution. To 
satisfy this condition, we use b-level (e.g., [11]) to generate 
task allocation order. The b-level of a task is computed by 
adding the computation and communication costs along the 
longest path of the task from the exit task in the task graph. 
Note that, both computation and communication costs are 
averaged over all nodes and links.  

Algorithm 2: Task_Allocation 

1: Sort N in decreasing order by b-level value 
2: for every    in N do 

3:    ←   and   ←     

4:   for every    in   do 

5:    for every      in    do 

6:      Compute                     
7:      if                       >0  

8:          ←   and    ←     

9:      end if 
10:   end for 
11:  end for 
12:   Assign    on    with    
13:end for 
14:S←the current shedule 
15:for every    in N do 
16: Remove    in S 

17:    ←      and   ←                

18:  for every    in   do 

19:   for every      in    do  

20:    Recompute makespan 
21:    if no increase in makespan 

and               <              

22:    ←   and   ←     

23:    end if 
24:   end for 
25:  end for 
26:  Reassign    on    with    
27:end for 

 
The R metric devised and incorporated into task 

allocation effectively deals with the trade-off of makespan 
and energy savings. Specifically, the R value of a scheduling 
alternative (task-processor-VL combination) is of a measure 
to identify the degree of energy efficiency relative to task 
execution time. For each scheduling combination in 
consideration, its R value is computed in addition to that of 
the best combination seen up to that point of decision 
making; that is, the latter is recomputed with the current 
combination being considered. The actual R value 
computation starts from the second combination due to the 
involvement of two combinations in each computation. A 
positive R value indicates the finding of a new best 
scheduling alternative. For a given task   , the R value of a 
scheduling combination of processor    and voltage      with 

the best combination of    and    is defined as: 

,
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where                and              are the energy 

consumption of    on    with       and that of    on     with 

   ， the earliest finish time of the two task-processor 
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allocations are denoted as                and 

             ,       is the total power of the entire system 
in the idle state, and a is the weight. For a given ready task, 
its R value with each pair of processor and voltage level is 
computed using the current best combination of processor 
and VL (    and   ) for that task, and then the best 
combination—from which the maximum R value is 
obtained—is selected (steps 2-13). 

Since each scheduling decision that AWES makes still 
tends to be confined to a local optimum, MCER is 
incorporated with the energy reduction phase without 
sacrificing time complexity (steps 15-27). It is an effective 
technique in lowering energy consumption, although the 
technique may not help schedules escape from local optima. 
For each task, MCER considers all of the other combinations 
of task, host and VL to check whether any of these 
combinations reduces the energy consumption of the task 
without increasing the current makespan. 

V. EXPERIMENT & ANALYSIS 

This section presents the influence to the weight of the 
scheduling results, and compares AWES to existing three 
approaches which are HEFT, ECS and ECS+idle. HEFT is a 
well-known list-scheduling heuristic. ECS and ECS+idle are 
only two energy conscious scheduling algorithms for this 
situation. 

The performance of AWES was thoroughly evaluated 
with a large set of random task graphs obtained by TGFF. A 
large number of variations were made on these task graphs 
for more comprehensive experiments, In addition to task 
graphs, various different characteristics of processors were 
applied to simulations. The random task graph set consisted 
of different graph sizes, CCRs (communication to 
computation ratio) and number of processors (2, 4, 6, and 8). 
2000 graphs were randomly generated. 

In this study, for a given task graph, we normalize both 
its makespan and energy consumption to lower bounds, the 

“schedule length ratio” (SLR) and “energy consumption 

ratio” (ECR) were used as the primary performance metrics. 
Formally, the SLR and ECR values of the makespan M and 
energy consumption    of a schedule generated for a task 
graph G by a scheduling algorithm are defined as:  
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where CP is a set of CP tasks of G. 

A. Impact of Weight 

Now we investigate the impact on the scheduling as the 
weight a increases. As shown in fig.1a, the SLR increases 
with increasing a, and tends to a certain limit. The ECR 
decreases initially, then it begins to increase slowly and tends 

to a limit when a further increases (see fig.1b). This is 
because, the smaller energy consumption of the processor-
VL combination has more chances to be selected by the 
increase of a. It causes that the voltage becomes lower, the 
task completion time increases, which eventually leads to 
increase makespan and decline the energy consumption at 
the beginning. As for the rebound of ECR, the growth of task 
completion time cause more idle time of processor, which 
can lead to the increasing amount of the indirect energy 
consumption exceeding the declined amount of the direct 
energy consumption.  
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Figure 1.  Average SLR and ECR for different weight 

B. Comparison Results 

To prove the superiority of the objective function of this 
article, we set the weight as 4. The overall comparative 
results from our evaluation study are summarized in Table 1. 
Table 1 clearly signifies the superior performance of our 
algorithms over HEFT, ECS and ECS+idle. Specifically, 
schedules generated by AWES consumed on average 56 
percent, 38. 6 percent and 10 percent less energy than HEFT, 
ECS and ECS+idle, respectively. In addition, our proposed 
algorithm mostly outperformed those three algorithms with 
various different CCRs as shown in Figs. 2. 

TABLE I.  COMPARATIVE RESULTS 

Algorithm SLR ECR 

HEFT 2.578 6.151 

ECS+idle 8.463 4.409 

ECS 5.182 3.004 

AWES 5.107 2.705 

232

file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20140212173533/index.html%23%23


In many previous studies (e.g., [11]), HEFT has been 
proven to perform very competitively with a low time 
complexity. But it does not take energy consumption into 
consideration, so its energy consumption is much larger than 
the other three algorithms. And AWES can reach the same 
makespan of HEFT when a is 0, even when a takes 4, the 
makespan of AWES is only more than that of HEFT with 
2.529, while less than ECS and ECS+idle with 0.075 and 
3.356, respectively, so the SLR of AWES is compelling. 

ECS and ECS+idle consider energy consumption in the 
objective function, so they show a good energy saving effect 
compared to HEFT. The reason why ECS+idle has poorer 
performance than ECS, is that the objective function value in 
ECS+idle is too dependent on energy. However, the 
objective functions of ECS and ECS+idle are too localized, 
so there is still lots of space for improvement. From table 1, 
we can find the superior performance of AWES over ECS 
and ECS+idle, in addition, our algorithm can get less 
makespan by requirement. 
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Figure 2.  Average SLR and ECR for random DAGs 

The source of the main performance gain of our 
algorithm is the use of the R objective function. It can 
effectively balance makespan and energy consumption. In 
our experiments, further 3 percent improvements (on average) 
in energy consumption—for schedules after the main 
scheduling phase of AWES—were made by the MCER 
technique. 

VI. CONCLUSIONS 

This paper has presented an adaptive weight-based 
energy-efficient scheduling algorithm for heterogeneous 
computing systems, suitable for DVS-enabled heterogeneous 
computing systems designed to reduce energy consumption 
on the premise that the makespan requirement is met. First, 
according to the makespan requirement, the algorithm 
dynamically adjusts and gets the optimal weight. Then with 
the objective function based on the optimal weight, it could 
work out a near-optimal solution by balancing the makespan 
and energy saving. Thereby, the scheduling results meet the 
makespan requirement while reducing energy consumption. 

The experiments results show that, compared with other 
existing similar algorithm, ATWS can not only maintain a 
good schedule length, but also save a lot of energy. 
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