






the approximation capacity of our quasi-interpolation 
operator ( )RL x . The results are shown in Figure 1. 

The second part, we test the diffusion equation. We 
consider the problem (7)-(9) with an exact analytical solution 

2( , ) sin(2 ).u x t t x  

It can be checked that the corresponding forcing term 
2( , ) 2 (1 2 )sin(2 ).g x t t t x    

The numerical results reported in the Tables below have 
been evaluated at [0,1]  and 1T  . Figures 2 and  Figures 

3 are show the error of the scheme (10) and scheme (11), 
respectively. From Figures 2-3, we find the numerical 
solutions are acceptable. Furthermore, we find the error 
become small as the parameter c  becoming small. 

 
Fig. 1. The function 4( )f x x  and its quasi-interpolation ( )RL x . 

 

Fig. 2. The error function with 1 1
,

300 10000
h t    for scheme (10). 

 
Fig. 3.The error function with 1 1

,
300 10000

h t   for scheme (11). 
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