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Abstract—In this paper, a new univariate quasi-interpolation 

operator is presented by means of construction way with cubic 

Multiquadric functions. It possesses univariate cubic polynomial 

reproduction property, quasi convexity-preserving and shape-

preserving of order 4 properties, and a higher convergence rate. 

First, the quasi-interpolation operator  ( )RL x  is applied to 

approximate the derivative of order 1,2,3m   and its 

approximation capacity is obtained, i.e., 3 2

0 1( ) .mC h h c C c   

Second, it is used to construct numerical schemes to solve the 

diffusion equation. Using the derivative of the quasi-interpolation 

to approximate the spatial derivative of the differential equation. 

And applying Crank-Nicolson scheme and back Euler scheme to 

approximate the temporal derivative of the differential equation. 

And as 2( )c O h , the computational accuracy of the scheme is 

both 2 2( )O t h   and 2( )O t h   respectively. Finally, some 

numerical examples is given to verify the scheme for the one-

dimensional diffusion equation. The numerical results show that 

the numerical solution are very close to the exact solution.  

Keywords-Multiquadric quasi-interpolation;diffusion equation; 

shape-preserving property; approximation capacity 

I.  INTRODUCTION  

With the development of radial basis functions, more and 
more researchers construct interpolation functions with them, 
and have obtained better results. For example,[1,2] 
introduced some interpolation functions by using radial basis 
functions. In particular, the Multiquadric function of first 
degree was proposed in [3], which performed well in many 
fields, and Franke [4] also showed that the interpolation 
functions in virtue of Multiquadric functions were the best in 
accuracy and efficiency by performing many numerical 
experiments. However, when the number of interpolation 
points is very large, the interpolation matrix might be ill-
conditioning. Compared with interpolation, the quasi-
interpolation method not only can avoid the ill-conditioning 
problem, but also possesses the polynomial reproduction 
property and better shape-preserving properties. On the basis 
of these advantages of quasi-interpolation method, 
researching how to construct a quasi-interpolation operator 
with better properties to non-uniformly distributed data has 
been a hot topic recently [5,6,7]. For a good performance of 
the Multiquadric quasi-interpolation method scheme, many 
researchers have employed the Multiquadric quasi-

interpolation scheme as a numerical  method to solve partial 
differential equations [8,9,10,11]. 

In this article, we develop a method, namely, applying a 
kind of univariate Multiquadric quasi-interpolation to solve  
diffusion equation. The present method can be used to deal 
with the complicated boundary conditions and the initial 
conditions with scattered data. 

In our methods, we use the derivative of the Multiquadric 
quasi-interpolation to approximate the spatial derivative of 
the differential equations and employ Crank-Nicolson  and 
back Euler scheme for the approach of the temporal 
derivative. 

A. Constructing a quasi-interpolation operator by shift of 

cubic multiquadric function to scattered data 

Suppose ( )f x  is smooth enough, we will construct a quasi-

interpolation operator ( )RL x  by shifts of cubic multiquadric 

function 
3

2 2 2( ) [( ) ]j jx x x c      to scattered points 
0{ }n

j jx 
  and 

data points 
0{( , ( ))}j j j nx f x  

, where c  is a positive constant 

and  
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By rewriting (3), we get another expression of ( )RL x   as 

follows 
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where 
1 1[ , , ]j j jf x x x 

 denotes the divided difference of 

function ( )f x . 

B. The properties of quasi-interpolation operator ( )RL x  

Similar to [6,8], we can obtain the polynomial reproduction 

property and shape-preserving properties of the quasi-

interpolation operator ( )RL x  in following results. 

Theorem 1.1: Quasi-interpolation operator ( )RL x  satisfies 

the cubic polynomial reproduction property, i.e., 
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                  (5) 

Theorem 1.2: If the points sequence (1) is uniformly 

distributed and the data sequence 
0{ ( )}n

j jf x 
 stems from a 

convex function
0( ) [ , ]nf x C x x , then the quasi-interpolation 

operator ( )RL x  is also a quasi-convex function. 

Theorem 1.3: The quasi-interpolation operator ( )RL x  is 

strict shape-preserving of order 3. 

Theorem 1.4: The quasi-interpolation operator ( )RL x  is 

strict shape-preserving of order 4. 
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C. The approximation order of the quasi-interpolation 

operator ( )RL x  

Similar to [8], we can obtain the convergence analysis to the 

approximation capacity of the quasi-interpolation operator 

( )RL x . 

Theorem 1.5: If the third order derivative of ( )f x  is 

Lipschitz continuous, then the approximation capacity of 

( )RL x  satisfies 

4( ) ( ) ( ),RL x f x O h


               (6) 

when 2( )c O h . 

II. NUMERICAL SCHEME USING QUASI-INTERPOLATION 

In this section, we present the numerical scheme for 
solving diffusion equation by using the quasi-interpolation. 
First, we study the derivative of order 1,2,3m   of the 

approximation capacity of the quasi-interpolation 
operator ( )RL x . 

Theorem 2.1: If the third order derivative of ( )f x  is 

Lipschitz continuous, then the derivative of order 1,2,3m   

of the approximation capacity of ( )RL x  satisfies 

( ) ( ) 3 2
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Proof: For any fixed [ , ]x A B , let ( )p y  be the local 

Taylor polynomial of ( )f y  at the fixed point x , i.e. 
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where , 0,1iC i   are positive constants and independent of x  

and h . 

Let [ , ], [0, ]A B I T  , be space and time domain, 

respectively. We denote :T I . The one-dimensional 

diffusion equation we consider in this paper reads 
2
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              (7) 

subject to the following initial and boundary conditions 

( ,0) 0, ,u x x                                    (8) 

( , ) ( , ) 0, .u A t u B t t I                          (9) 

Here ( , )g x t  is a source term. 

In space, we use the second derivative of the quasi-

interpolation to approximate
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In time, we use Crank-Nicolson scheme and back Euler 
scheme, then we get 
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            (11) 

where k

ju is the approximation of the value of ( , )j ku x t  

and ( , ), ;k

j j k kg g x t t k t t     is time step. 

Based on truncation error of Crank-Nicolson scheme and 
back Euler scheme in time and the approximation capacity of 

the quasi-interpolation operator ( )RL x  (see Theorem 2.1) in 

space, we obtain following result for 2( )c O h . 

Theorem 2.2: (1) The truncation error of the scheme (10) 
is of order 2 2( )O t h  . (2) The truncation error of the 

scheme (11) is of order 2( )O t h  . 

III. NUMERICAL EXAMPLES 

We test the algorithm by two parts. The first part, we test 
the quasi-interpolation. Suppose 4( )f x x is an approximated 

function, then we choose shape parameter 2c h  to obtain 
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the approximation capacity of our quasi-interpolation 
operator ( )RL x . The results are shown in Figure 1. 

The second part, we test the diffusion equation. We 
consider the problem (7)-(9) with an exact analytical solution 

2( , ) sin(2 ).u x t t x  

It can be checked that the corresponding forcing term 
2( , ) 2 (1 2 )sin(2 ).g x t t t x    

The numerical results reported in the Tables below have 
been evaluated at [0,1]  and 1T  . Figures 2 and  Figures 

3 are show the error of the scheme (10) and scheme (11), 
respectively. From Figures 2-3, we find the numerical 
solutions are acceptable. Furthermore, we find the error 
become small as the parameter c  becoming small. 

 
Fig. 1. The function 4( )f x x  and its quasi-interpolation ( )RL x . 

 

Fig. 2. The error function with 1 1
,

300 10000
h t    for scheme (10). 

 
Fig. 3.The error function with 1 1

,
300 10000

h t   for scheme (11). 
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