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Abstract—A test data compression method based on K-L 

transform is presented in this paper. The original test vector is 

divided into two parts by using K-L transform: the reference 

vector and the error vector. The reference vector is 

implemented approximately via Hadamard Matrix that has a 

simple hardware structure, and is integrated inside the circuit 

under test. The error vector is generated by using XOR 

between the reference vector and the original vector. In this 

paper, it encodes with the error vector, but without the 

original vector. In the procedure of synthesis, the reference 

vector generated by the hardware and the error vector 

produced by the decompression synthesize the original test 

vector. The experimental results show that this scheme can 

achieve an average compression ratio of 77.90%, improve 

about 15.36%~20.68% comparing with others. 

Keywords-K-L transform;test data compression;the reference 

vector; the error vector; Hadamard Matrix 

I. INTRODUCTION 

With the rapid development of IC fabrication processing, 
there is an increasing number of IP cores on a single 
SOC(System-of-a-chip) and a growing complexity of the 
chip. When testing for the chip, a large number of test data is 
required to guarantee high fault coverage. However, the 
enormous data volume requires an increasing performance of 
the automatic tester (ATE) and longer test application time. 
Therefore, how to reduce the volume of test data has become 
a great challenge of IC testing.  

Test data compression schemes can not only significantly 
decrease the amount of test data stored on the tester, but also 
effectively reduce the test application time for a given 
bandwidth. Test data compression schemes fall broadly into 
three categories [1]. Firstly, linear-decompression-based 
schemes decompress the data using only linear operations 
(that is LFSRs and XOR networks), however, the linear 
operations should have resolutions (that the test set can be 
encoded) if the number of free variables is 20 more than the 
number of specified bits [2]. Secondly, broadcast-scan- 
based schemes rely on broadcasting the same values of 
external scan chains to a large amount of internal scan chains, 
but the disadvantage of such schemes is the dependency 
between the internal scan chains and the external scan chains. 
Thirdly, code-based schemes use data compression codes to 
encode test cubes. For instance, Chandra [4] proposed FDR 
code to encode the runs of 0s in the test cubes, and Ei-Maleh 
[5] exhibited EFDR code to encode the runs of 0s and 1s 
simultaneously, and Liang [6] showed Alt-FDR code to 

encode the runs of 0s and 1s alternately. However, the 
existence of entropy limits the test compression [7]. 

Spectral analysis has been introduced into varied fields 
recently, such as test generation, test data compression. It 
deals with test vectors based on the characteristics of test 
vectors analyzing in the transform domain. Susskind [8] 
verified the coefficients of the circuit outputs by using Walsh 
spectrum to test a digital circuit for stuck-at faults. Hsiao and 
Seth [9] further expanded his work to compact the test set by 
selecting the Rademacher-Walsh coefficient of test set as the 
signature of output response. Khan and Bushnell [10][11] 
used spectral analysis to design the hardware architecture of 
the output response. 

There are less literatures on spectral analysis in the field 
of test data compression. In this paper, we combine the 
spectral analysis and test data compression to propose a test 
compression mothed based on K-L transform. The main 
work includes: the original test vector is divided into the 
reference vector and the error vector by using K-L transform; 
the reference vector is represented and generated by K-L 
transform matrix, and the error vector is encoded; the K-L 
transform matrix is hard to be produced and the hardware 
cost is high, hence it is replaced with Hadamard matrix that 
has a simple structure; in the procedure of synthesis, the 
reference vector generated by the hardware and the error 
vector produced by the decompression synthesize the 
original test vector. The experimental results show that this 
scheme can effectively improve the test compression ratio. 

II. K-L TRANSFORM 

A. Transform coding 

Transform coding realizes data modeling expression via 
mapping transformation, and its general model is shown in 
Fig.1. The mapping transformation transforms the original 
data from one domain to another domain, such as the signal 
is transformed from time domain to frequency domain, then 
encodes the data in another domain [12]. What is important 
is that the mapping transformation should produce a series of 
effective coefficients. When encoded, the total bits required 
to these coefficients are less than the bits required to the 
original data, thus the data can be efficiently compressed. 

Mapping 

transforming

The original data The transformed data
CodingQuantizing

 
Figure 1.  General model of transform coding 
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Orthogonal transformation method is used frequently, 
even though there are a large number of mapping 
transformation schemes. Fourier transform converts a 
function from time domain to frequency domain through 
complex domain orthogonal transform, thus simplifies the 
problem. Common transform coding is Krhunen-Leove 
transform (K-L transform), Hadamard transform, DCT 
transform and so on. 

B. K-L transform 

K-L transform is based on statistical characteristics and 
featuring good de-correlation. It has been recognized as the 
best transform in the means square error (MSE) and an 
important technique in test data compression as well. 

The orthogonal matrix formed by the normalized 
orthogonal eigenvector of the covariance matrix of the test 
set T is called the K-L transform matrix A. The K-L 
transform is shown in the following formula (1), and the 
inverse transform is shown in the following formula (2).  

Y=AT                     (1) 
T=A’Y                     (2) 

Here, A’ means the transpose of the K-L transform matrix A. 
Although K-L transform has excellent performance on 

data compression, the amount of calculation required to 
calculate the covariance matrix and eigenvectors is large. So 
K-L transform is limited in practical use. The approach 
presented in this paper analyzes the characteristics of the 
original test set by using K-L transform, then discusses its 
theory compression ratio. 

C. Hadamard Transform 

The Hadamard transform was proposed to analyze the 
frequency characteristics for binary digital signals, which is 
similar to the Fourier transform for the analog signal [13]. 
While the Fourier transform uses sine functions as their basis, 
the Hadamard transform utilizes a series of orthogonal 
functions called Walsh functions. 

The Hadamard transform and its inverse transform can be 
expressed: 

 Y=HT                     (3) 
T=HY                     (4) 

Here, H represents the Hadamard matrix, and its inverse 
matrix is itself. 

Walsh function contains only two values +1 and -1, 
corresponding to two states of the digital logic. Any binary 
bit-stream can be uniquely represented as a linear 
combination of the orthogonal Walsh functions, which 
analogous to the analog domain where any continuous signal 
can be uniquely represented as a linear combination of the 
sine and cosine functions. Consequently, we actually study 
the frequency characteristics of the digital waveform by 
analyzing the binary bit-stream using Walsh functions. 

Hadamard transform matrix containing Walsh functions 
can be defined in two ways: the binary representation and the 
recursive representation. In this paper, Hadamard matrix is 
represented with the recursive definition: 
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H(0)=1, and 2
n
 is the order of the nth Hadamard matrix H(n),. 

For example, when n=2, H(0) can be shown as: 
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III. THE ALGORITHM 

A. The main algorithm 

Code-based schemes use data compression codes to 
encode the test cubes. This involves in the don’t care bits X 
filling. In this paper, the original test vector is divided into 
the reference vector and the error vector by using K-L 
transform. The reference vector is implemented 
approximately by using Hadamard Matrix that has a simple 
hardware structure, with integrated inside the circuit under 
test. The error vector is generated by using XOR between the 
reference vector and the original vector. In this paper it 
encodes with the error vector, but without the original vector. 
In the synthesis, the reference vector generated by the 
hardware and the error vector produced by the 
decompression make up the original test vector. 

The rows of the original test set refer to the number of 
the test vector, and the columns refer to the bits of the test 
vector. For instance, the original test set of the benchmark 
circuit s5378 has 111 test vectors that each has 214 bits, 
which means this test set has 111 rows and 214 columns. 
The test set consists of the specific bits 0, 1 and the don’t 
care bits X. When compressing, the specific bits usually 
cannot be changed, otherwise it will cause the loss of the 
fault coverage. For the stuck-at faults, the bit sequence 
among each test vector cannot be changed in the process of 
testing. If not, it may reduce the fault coverage. But the 
sequence among different test vectors can vary during the 
testing. It is shown that the correlation among the bits in 
each test vector is larger than the correlation among different 
test vectors. Therefore, the correlation among the columns 
(i.e. bits among each vector) is larger than the correlation 
among the rows (i.e. different test vectors) in the original test 
set. 

Since the good de-correlation of K-L transform, the 
results that K-L transform performs on the columns of the 
original test vector should be better than that on the rows 
theoretically. Consequently, the method proposed in this 
paper analyzes the original test set by using K-L transform 
on the columns and rows respectively. The procedure of K-L 
transform on the columns of the original test vector is 
considered as vertical K-L transform, and the procedure of 
K-L transform on the rows as horizontal K-L transform. 
Before utilizing K-L transform, it’s necessary to calculate the 
K-L transform matrix of the original test set. The calculation 
is described in the following example of a vertical K-L 
transform. Assuming that the size of the original test set T is 
m*n, the covariance matrix of the original test set T is 
calculated as following: 

      T

T TETTETEC   
E(T) is the mean value of the original test set T. We compute 

the eigenvalues k of the covariance matrix in order and the 
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eigenvectors uk which satisfy the following conditions: 
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Thus the K-L transform matrix A is an orthogonal matrix 
composed by eigenvectors, and its size is m*m. 

The procedure of the vertical K-L transform is as follows. 
Firstly, for the first column of the test set, K-L transform is 
applied to extract the K-L coefficient matrix Y, and Y whose 
size is m*1 shows the energy distribution of the first column 
in the transform domain. For instance, the first number of Y 
represents the first column’s energy based on the first row of 
the K-L transform matrix, and the second number of Y 
reports the first column’s energy based on the second row of 
the K-L transform matrix, and so on. Secondly, the row 
matching the original test vector best is selected from the 
K-L transform matrix as its reference vector. Therefore, the 
row where the maximum value from the coefficient matrix Y 
in is obtained, and the corresponding row from the K-L 
transform matrix is transposed as the reference vector of the 
first column. Finally, the remaining columns in the original 
test set is coped with the same process, thus obtaining a 
reference matrix B. Note that the matrix B is generated by 
selecting the corresponding rows from the K-L transform 
matrix A based on the coefficient matrix Y. 

The error matrix D is the result of XOR between the 
original test set T and the reference matrix B. In this 
approach, the XOR has slight difference with the general 
XOR. When comparing the specific bit in the original test set 
T with the corresponding bit in the reference matrix B, the 
result is 0 if the two are same, or it is 1. When comparing the 
don’t care bit X in the original test set T with the 
corresponding bit in the reference matrix B, the result is the 
don’t care bit X whether the two are same or not. Obviously, 
the position where the don’t care bits are in the original test 
set is same with the position in the error matrix. In this paper, 
the error matrix D is encoded to compress, but not the 
original test set T. 

B. Preprocess and the discretization of the K-L transform 

matrix 

The original test set of the ISCAS’89 benchmark circuits 
consists of the specific bits 1,0 and the don’t care bits X, 
while the K-L transform matrix A is a real matrix based on 
the covariance matrix. Thus the original test set and the K-L 
transform matrix should be preprocessed before transforming. 
Since the don’t care bit X has no contribution to the energy 
distribution of the whole test set, the 0s in the original test set 
are set to the -1s, and the Xs are set to the 0s, and the 1s 
remain. The Xs are usually filled with the 0s or the 1s during 
compressing, in another word, the filled test set just consists 
of 0s and 1s. In this paper, the K-L transform matrix with the 
real style is discretized to a binary matrix by setting a 
threshold. The process is called the discretization of the K-L 
transform matrix. 

To select more similar reference vector to the original 
test vector, the K-L transform matrix after discretized should 
be more similar to the original test set. According to the 
characteristic of the original test set that the ratio of the 0s 
and 1s is close to 1, suppose when the ratio of the 0s and 1s 

in the K-L transform matrix is closer to 1, the compression 
will be better. Thus the proposed method chooses several 
different thresholds to show the relationship between the 
compress ratio and the thresholds. 

In this paper, the mean value of the original test set is 
viewed as a threshold for the K-L transform matrix , called 
the mean threshold. For the vertical K-L transform, an 
example of this threshold is to show the algorithm idea 
presented in the paper. Assuming that the original test set T 
as following, T only contains the specific bits for 
convenience: 
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Firstly, set the 0s in the original test set T to the -1s as 

following: 
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Secondly, calculate the covariance matrix C and the K-L 
transform matrix A: 
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Thirdly, gain the mean value of the original test set 
whose value is 0.2500 as the mean threshold, then set the 
values more than the threshold to 1 and the values less than 
the threshold to -1. So the discretized K-L transform matrix 
A is shown as following: 
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Fourthly, transform the first column of the original test 

set to obtain the coefficient matrix Y: 
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Fifthly, select the row from the K-L transform matrix A 

as the reference vector according to the row where the 
maximum value of the coefficient matrix Y in, i.e. the row 4. 
Take the same measures to the remaining columns in the 
original test set. Thus the reference matrix B is represented 
as: 
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Finally, the error matrix D is the result of XOR between 

the original test set T and the reference matrix B, shown as 
following: 
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As a result, the original test set is divided into two parts 

by using K-L transform: the reference matrix B and the error 
matrix D. As it can be seen, the high comparability between 
the original test vector and the reference vector leads to the 
growing number of 0s in the error vector. Consequently, in 
theory, the compression ratio obtained by encoding the error 
vector should be higher than that encoding the original test 
vector. 

C. Approximate implementation 

Based on the coefficients, the reference vector is selected 
from the K-L transform matrix. Therefore, what important to 
implement the reference vector is to implement the K-L 
transform matrix. However, K-L transform involves in the 
calculation of the covariance matrix and eigenvectors which 
is complex and large, resulting in implementing the 
hardware architecture for K-L transform difficultly. In this 
approach, Hadamard matrix that has a simple structure is 
used to implement the K-L transform matrix approximately.  

The procedure implemented by Hadamard matrix is 
similar to that by K-L transform, and the difference for 
Hadamard is that the transform matrix is Hadamard-Walsh 
matrix, so it’s not repeated here. But it may cause the 
compression ratio drop. 

IV. SYNTHESIS 

As explained earlier, the original test vector is broken 
down to two parts to compress. The test vector should be 
decompressed before testing the circuit under test. The error 
vector is decompressed based on the coding scheme it 
utilized, and the reference vector is generated by the 
Hadamard-Walsh Generator [14] inside the circuit under test. 
Comparing with the original test vector, the error vector 
contains more 0s. Since the FDR scheme encodes the runs of 
0s in the test cube, the FDR scheme is chose to encode the 
error vector in this paper. The decompression structure of the 
error vector is the same as the FDR decompression 
structure[4], so it is not repeated here. In this paper, the 
vector synthesized by the error vector and the reference 
vector is called the synthesis vector. 

V. EXPERIMENTAL ANALYSIS 

Experiments were carried on the ISCA’89 benchmark 

circuits for investigating the efficiency of the proposed 

method for data compression based on the algorithm of K-L 

transform. Here only results for the larger benchmark circuits 

are reported. The experimental results in Table 1 compare 

the compression ratio between the vertical K-L transform 

and the horizontal K-L transform based on the proposed 

method. The length of test vectors and the number of test 

vectors are represented in columns 2 to 3. This experiment 

used the mean threshold and FDR code. The compression 

ratio of the FDR code without using transform coding [4], 

the vertical K-L transform, and the horizontal K-L transform 

are listed in the last 3 columns. It can be observed that the 

compression ratio of the proposed method is higher than that 

of the FDR code. Also note that the average compression 

ratio of the vertical K-L transform is better than the 

horizontal K-L transform, improves about 6.10%. This is due 

to the fact that the correlation among the columns (i.e. bits 

among each vector) in the original test set is larger than the 

correlation among the rows (i.e. different test vectors), and 

the K-L transform has a good de-correlation. Therefore, the 

vertical K-L transform is chose to perform in the next 

experiments. 

TABLE I.  THE COMPRESSION RATIO USING K-L TRANSFORM 

Circuit 

Length 

of 

vectors 

Number 

of 

vectors 

FDR 

[4] 

Compression ratio of the 

proposed method(%) 

Vertical 

K-L 

transform 

Horizontal 

K-L 

transform 

S5378 214 111 48.02 71.41 64.95 

S9234 247 159 43.59 69.92 62.22 

S13207 700 236 81.30 91.91 90.46 

S15850 611 126 66.22 82.98 78.67 

S38417 1664 99 43.26 74.83 58.65 

S38584 1464 136 60.91 76.34 75.84 

The average compression ratio 57.22 77..90 71.80 

The results in Table 2 show that the proposed method 
compares with other schemes [7]. Here the length of test 
vectors and the number of test vectors are omitted. The 
columns 2 to 4 report the compression ratio of the FDR 
code[4], the EFDR code[5] and the Alt-FDR code[15] 
respectively. And the proposed vertical K-L transform is 
repeated in the last column. Please note that in all cases, our 
method performs better than other schemes, the average 
compression ratio achieves 77.90%. As it can be seen from 
the results, our method improves the compression ratio 
between about 20.68% and 15.36%. The experimental results 
show that the vertical K-L transform technique has an 
effectivity and feasibility on test data compression. 

TABLE II.  THE COMPRESSION RATIO AMONG THE PROPOSED METHOD 

AND OTHERS 

Circuit 

The compression ratio(%) 

FDR[4] EFDR[5] Alt-FDR[15] 

The proposed 

vertical K-L 

transform 

S5378 48.02 51.93 -NA 71.41 

S9234 43.59 45.89 44.96 69.92 

S13207 81.30 81.85 80.23 91.91 

S15850 66.22 67.99 65.83 82.98 

S38417 43.26 60.57 60.55 74.83 

S38584 60.91 62.91 61.13 76.34 

The average 57.22 61.86 62.54 77.90 

To analyze the influence of different thresholds on the 
test compression, the results of the proposed method under 
different thresholds are provided in Table 3. In this 
experiment, we cope with four thresholds. The threshold 1 
refers to the means of the original test set called the means 
threshold, and the threshold 2 refers to the means of the K-L 
transform matrix called the average threshold. The threshold 
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3 describes the 3/4 threshold close to the maximum within 
the region between the maximum and the minimum of the 
K-L transform matrix. The threshold 4 depicts the 1/4 
threshold close to the minimum within the region between 
the maximum and the minimum of the K-L transform matrix. 
So the threshold 2 is located in the middle position between 
the threshold 3 and the threshold 4. The columns 2 to 4 list 
the compression ratio under the threshold 1, the threshold 2, 
the threshold 3 and the threshold 4. As shown by our 
experimental results, the compression ratio under the 
threshold 1 and the threshold 2 is higher than that under the 
threshold 3 and the threshold 4. The main explanation lies in 
a fact that under the threshold 1 and the threshold 2, the ratio 
of 0 and 1 in the K-L transform matrix is closer to 1,as 
mentioned before, thus provides more potential for 
compression. Furthermore, it is also observed that the results 
under the threshold 1 are better than that under the threshold 
2. The K-L transform matrix is based on the characteristic of 
the original test set, and the mean value of the original test 
set is more suitable for discretizing the K-L transform matrix 
than the mean value of the K-L transform matrix. The 
experimental results in Table 3 show that thresholds have 
influence on the data compression based on the proposed 
method, and the mean threshold performs best. Thus the 
mean threshold is used to discretize the K-L transform 
matrix. 

TABLE III.  THE COMPRESSION RATIO UNDER DIFFERENT THRESHOLDS 

Circuit 
The compression ratio under different thresholds(%) 

Threshold 1 Threshold 2 Threshold 3 Threshold 4 

S5378 71.41 70.12 65.36 64.58 

S9234 69.92 69.78 61.42 61.00 

S13207 91.91 91.70 87.88 87.90 

S15850 82.98 82.62 76.81 76.86 

S38417 74.83 74.64 71.70 71.67 

S38584 76.34 76.32 69.08 69.09 

The average 77.90 77.53 72.04 71.85 

Due to the complex implementation of K-L transform, 
the simple Hadamard matrix is applied to implement the K-L 
transform matrix approximately in this approach. The 
comparison of  the K-L theoretical compression ratio and 
the Hadamard implementation compression ratio is reported 
in Table 4. The compression ratios obtained by the FDR  

TABLE IV.  THE RESULTS COMPARING THE K-L TRANSFORM AND THE 

HADAMARD IMPLEMENTATION 

Circuit 
The compression ratio(%) 

FDR[4] 
The vertical K-L 

transform  

The Hadamard 

implementation  

S5378 48.02 71.41 64.65 

S9234 43.59 69.92 61.70 

S13207 81.30 91.91 86.55 

S15850 66.22 82.98 75.77 

S38417 43.26 74.83 69.95 

S38584 60.91 76.34 72.63 

The average 57.22 77.90 71.88 

code, the vertical K-L transform and the Hadamard matrix 

are listed in the columns 2 to 4. From the Table 4, it can be 

found that the compression ratio drops after using the 

Hadamard matrix to implement the K-L transform matrix, 

which mainly due to the K-L transform matrix implemented 

by the Hadamard matrix has error with the original transform 

matrix. However, the Hadamard scheme still achieves 

71.88%, improves 14.66% comparing to the FDR codes. 

VI. CONCLUSION 

A test data compression method based on the K-L 
transform has been presented in this paper. This scheme 
improves the compression ratio effectively by dividing the 
original test vector into two parts. The error vector can be 
encoded more efficient than the original vector. But the 
reference vector is implemented approximately by the 
Hadamard matrix. It reduce the hardware cost by replacing 
the complex K-L transform matrix with the simple 
Hadamard matrix, and the loss of the compression ratio is 
within acceptable limits. 
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