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Abstract—In the 21st century, as technologies of perceptual 

recognition develops, devices of information generation begin 

to accurately sense, measure and monitor the physical world in 

real time.Complex Event Processing(CEP), which can be used 

to extract user level information from raw data, becomes the 

key part of the IoT middleware. Most of the current study of 

complex event processing has not focus on distributed 

uncertain event streams. In this paper, a high performance 

method over distributed uncertain event streams is proposed. 

This method uses improved matched tree that include node 

buffer list and probability calculation to detect complex event 

in single uncertain event stream. Distributed stream processing 

platform Storm also is brought in to improve the performance 

and stability. Based on Storm, two level parallel methods are 

proposed to increase the throughput. The experiment study 

shows that this method is efficient to process complex events 

over distributed uncertain event streams. 

Keywords-complex event processing; distributed and parallel; 

uncertain event streams; storm 

I.  INTRODUCTION 

On account of networking requirements of the physical 
world and expansion demands of the information world, the 
Internet of Things as a new type of network emerges. A main 
problem to be solved of wide apply of The Internet of Things 
is the information processing part. For a RFID application, 
original events are formed by original signals from RFID 
reader’s reading. Events in reality are various and simple 
original events cannot be described directly. For instances, 
"cars are living home", "cars are running to the supermarket", 
and so on. Those events cannot be described by simple RFID 
events, but they are meaningful to users. We define complex 
events which were original events and were processed later 
to be significant to users. And we call this processing course 
Complex Event Processing, CEP [1]. 

Because RFID readers may misread, dirty read and omit 
events, RFID is of high level of uncertainty. We call the 
uncertain original RFID data uncertain events. Uncertain 
events arrange in a row according to the priority of delivery, 
thus uncertain event flow with timing relationships. Actually 
in many situations, atomic events read by RFID are uncertain 
ones. Uncertain event streams widely exist in reality, which 
contributes to the significance of complex event processing 
in the uncertain event streams. 

Because the Internet of Things is heterogeneous and 
owns mass data, upper-layer applications oriented to the 
Internet of Things are almost distributed systems. Generally, 
during the data processing procedure of applications of the 

Internet of Things, the business always requires efficiency 
and real-time performance. Therefore, distributed and 
parallel computing becomes the key point. In the early days, 
in the e Internet of Things, complex event processing 
employs centralized architectures. However, Information era 
has come where the Internet of Things should process mass 
data and centralized architectures cannot effectively 
complete the processing tasks any more.  

This problem can be summarized into two challenges to 
complex event processing of the distributed uncertain event 
stream. One is how to efficiently detect the real-time event 
flows of large number and high speed. The other is how to 
accurately compute the uncertain results caused by uncertain 
event source. To solve this problem, this paper proposes a 
processing method oriented to distributed uncertain event 
stream, Parallel And Distributed Uncertain event Stream 
Complex Event Processing (PDUCEP). PDUCEP extends 
the basic method of matched tree to process complex event 
in single event stream. In order to support distributed 
uncertain event streams, PDUCEP comes up with two level 
parallel method, and brings in distributed stream processing 
platform Storm. Meanwhile, another method is proposed 
which computes probability of  uncertain events based on 
markov chain. 

II. RELATED WORK 

Currently, related basic models of complex event 

processing include: models based on priority 

automatons[2,3], models based on Petri net [4,5], models 

based on directed graphs [6,7], and models based on 

matching tress. SASE is the earliest prototype system that 

executes complex event processing for RFID data. And 

SASE is the first that defines querylanguages of describing 

RFID complex events. Besides, it proposes a method of 

RFID complex event processing based on query 

programming. RCEDA method applies time charts to 

describe and detect complex events. However, this method 

considers only single complex event detection and ignores 

intermediate result sharing among complex events.  

Among the works ondistributed uncertain complex 

event processing, R and Suciu focus on uncertain  data 

problems of many applications on InternetofThings, and 

conclude great challenges from uncertain data faced by 

researchers uncertain data[10]. Dalvi theoretically explains 

the foundation of non-deterministic data management and 

related challenges [11].Mert proposed  the CEP method  of 

distributed resources oriented [12].Tao etc proposed a 
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distributed CEP method of RFID application oriented, but 

this method is not for large amount of data and to optimize 

the performance of sliding window [13]. 

III. PARALLEL AND DISTRIBUTED USCEP 

A. Event Model And Probability Calculation 

Definition1 simple probabilistic event : simple 
probabilistic event represented as:<RID,A, T, Pro> where 
RID is RFID tag and A is the area of RFID reader location, T 
is time scale of the incident. Pro is the value of the 
probability of occurrence, it represents the probability of 
event that RID in area A is Pro at time T. 

Definition 2 complex probabilistic event : Complex 
event is a combination of primitive events or complex events 
by some rules. A complex probabilistic event is represented 
as <E, R, Ts, Pr> where E represents the elements that 
compose the complex event, R represents the rule of the 
combination, Ts represents the time span of the complex 
event and Pr is the probability. 

In the following we define some operators that can be 
used query language: 

Definition 3 ﹁operator : In the sequence of events, 

matched pattern event is not detected in the specified area.﹁
(A)≡A(t). It means that RID is not detected in the area A 

when time scale is t. Pro(﹁(A1))=1-Pro(A1). 

Definition 4 ∨operator : In the sequence of events, one 
matching pattern event is detected in the specified area 
among some. ∨(A,B)≡∃ X(t) X∈{A,B}. It means that RID 
is detected in the area A when time scale is t. If A1 and B1 

are independent of each other, Pro(∨(A1,B1))=1-Pro(∧(﹁
(A1),﹁(B1))). 

Definition 5 SEQ operator : In the sequence of events, 
matching pattern events are detected in the specified area by 
correct sequence. SEQ(A, B, C)≡t1<t2<t3 , 
∃ A(t1)∧B(t2)∧C(t3). It means that RID is detected in the 
area A , and then in the area B, in the area C finally. 

Definition 6 TSEQ operator : SEQ operator with time 
span limit. TEQ(A, B; 1,3) ≡t1<t2, 1≦t2-t1≦3, ∃ A(t1)∧B(t2). 
It means that RID is detected in the area A when time scale 
is t1, then after detection of at least one or up to three time 
scales, again in area B. 

In fact, calculation of the complex probabilistic events 
can be divided into two sets: Set I represents a collection of 
independent simple probabilistic events; Set D represents a 
collection of dependent simple probabilistic events. Set I can 

be calculated similar to definition 3 、 4 simply; Set D 

contains one or more Markov chain.It can be calculated by 

the following formula： 
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Where di is one Markov chain of dependent set D, e1 
represents the first event in the Markov chain, Pro(en+1|en) 

represents continuous events are related，it is calculated as 

follows: 
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In fact, we get the probability of Pro(en+1|en) by the 
conditional probabilistic table. Shown in table I, it is the 
conditional probabilistic lookup table of a specific RID. In 
the beginning, the initial value set manually through the 
historical experience. With the operation of the system, 
simple probabilisticstreams continue to flow into the system, 
the system according to the input stream for simple learning 
and changing. 

TABLE I.  CONDITIONAL PROBABILISTICLOOKUP TABLE 

 
 

B. Improved Uncertain CEP Over Single Event Stream 

Uncertain event streams detection is the main part of the 
CEP engine. The basic event stream detection method 
extends matched tree and we add a buffer list for each tree 
node to buffer the successful matching records. Tree leaf 
nodes are simple event node, intermediate node is the 
operator node that contains complex event rule. Each 
operator node consists of several child node, and each child 
node may be a leaf node or another operator node. They 
express the semantics by the logical rules of operator. When 
an event that associated with the node is detected, the 
probability value is calculated, and then successful record 
will be stored in buffer list. In addition, query event window 
limits the size of buffer list, so old record will be discarded. 

Detection is performed by recursively bottom-up. Each 
event query expression will be converted into the 
corresponding event matched tree. Whenever simple event 
that expressed by leaf node is detected, the leat node will 
update the event record in its history buffer, and notify its 
parent node that the new record is generated by sending 
message. Accord to parent node’s logic semantics, it will use 
the new record from this child node and the history records 
from other child nodes to generate as many new event 
records as possible. If the parent node gets a new record, and 
then it will notify its parent node again. This process will 
continue iteration, and stop in the situation that complex 
event back to the root node or all node can not produce the 
new record. When each new record that meets logical rule is 
generated, it will be calculated new probability value based 
on child node’s probability and semantics (method described 
in section IIIA). 

RID 

Conditional Event Probability 

B | A 0.9 

C | B 0.8 

... ... 
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Figure 1.  Matched Tree 

Now, our query expression is SEQ(TSEQ(A, B; 1, 3), C), 
so matched tree is showed as figure 1. After simple events 
(C0, A0, B2) arrive, TSEQ node find that A0 and B2 ment 
semantics, so it calculate the probability: pro(T2) = pro(A0) 
* pro(B|A) = 0.63, and generate new record T2 to buffer in 
history list. 

C. Storm And System Architecture 

In order to improve system performance and stability of 
the entire system, we bring in distributed stream processing 
platform Storm. It is a free, open-source, high fault tolerance, 
real-time, distributed computing system. Storm is often used 
in real-time analysis, online machine learning, continuous 
computing, distributed remote call , ETL and other fields. 
Figure 2 shows a logical calculation diagram of Storm 
Topology.  

 
Figure 2.  Storm Topology 

Storm’s core concepts include spout, bolt, topology. 
Sprout is a data source component, which produces data 
stream in a topology. Typically spout will read data from an 
external data source, and then convert them to the internal 
available data. Bolt handle data, which receive data in a 
topology and then perform logical tasks. Bolt can receive any 
number of input stream for processing, and some bolt may 
also launch new stream to next bolt. The network that made 
up of spout and bolt, calls topology. Topology is the highest 
level abstraction in storm. You can submit a topology to 
storm cluster to run task. Event streams will flow between 
some spout and bolt.  

System architecture shown in Figure 3. Data generated 
from RFID Reader, and then through data distributer into 
local cep. All local cep’s execution plan are assigned by the 
global cep. Global cep and N local CEP inter connected by 
Storm underlying mechanisms (The underlying mechanisms 
of storm are not belong discussed content of this paper). User 

submits a query request by cep client, after that the plan 
scheduling engine generate distributed query plan based on 
the two level parallel method. Once the plan coms, cep 
management will call the slave node to execute query plan. 

 

Figure 3.  System Architecture 

D. Global Parallel 

The basic idea of the global parallel design as follows: 
(1) After the global CEP engine generate user query plan, 

we divide each operator node into a single logical computing 
unit by the structure of query matched tree. We assign N 
local CEP to run the N logical unit, then all the local CEP is 
called as sub-task. 

(2) Local CEP’s responsibility is the task of original 
operator, so it only two layer typically, very simple operation. 
The input event streams of bolt node also are the first layer’s 
input. The second layer’s output event streams are the 
complex event that satisfying logic rule. Bolt does not buffer 
any result(except buffer list), all result move into next node 
directly. 

(3) Each local CEP node is run in parallel. If input event 
comes, they matching immediately. If output event generates, 
they also move immediately. All local cep node are not 
connected unorganized, global cep engine has responsibility 
to build the logical relationship. The generation of logical 
relationship is based on matched tree logic operators at all 
levels. Low-level operator nodes are always treated as an 
stream source to provide event streams for the high-level 
operator. 

 
Figure 4.  Global Parallel 

So all level operation of local cep node look likes the 
parallel pipeline described in computer architecture. Bolt is 
the logical execution component in Storm, it can be freely 
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assembled to any Topology that meet the needs of our own. 
In PDUCEP, each local cep node can be just the one class of 
bolt to perform. Because the needs from different levels of 
computing node coincided with the style of free combination 
from bolt. Figure 4 shows the example of global parallel. 

Now, we assume that there is an query plan: 

SEQ(TSEQ(A, B; 0, 1), TSEQ(C，D; 1, 2)), and a fragment 

of input event stream: (a1,b1,c1,d2,b2,d3). Then, let’s look at 
the specific processing through table II. 

TABLE II.  PROCESSING OF GLOBAL PARALLEL 

Time 
Stamp 

Event 
Input 

TSEQ 

(A，B) 

TSEQ 

(C，D) 

SEQ 

1 a1,b1,c1     

2 d2,b2 (a1,b1)   

3 d3 (a1,b1) 
(a1,b2) 

(c1,d2)  

4  (a1,b1) 
(a1,b2) 

(c1,d2) 
(c1,d3) 

(a1,b1,c1,d2) 

5    (a1,b1,c1,d2) 
(a1,b1,c1,d3) 
(a1,b2,c1,d3) 

Parallel processing are sequentially performed according 
to the time slice. The current each operator cell’s contents 
are generated by the previous time slice results and new 
input event streams. As we can see from the table, after the 
a1,b1,c1 reach, (a1,b1) is generated in TSEQ(A, B)’s buffer 
at time slice 2. After d2, b2 reach, TSEQ(A,B) and 

TSEQ(C,D) get result  (a1,b2)、(c1,d2) in parallel at time 

slice 3. When time slice arrives 4, TSEQ(C, D) generate 
(c1,d3). Meanwhile,SEQ node get the intermediate result 
from time slice 3, it generate a complex event result in 
parallel (a1,b1,c1,d2). According to this iteration, we can get 

the rest complex events combination: (a1,b1,c1,d3) 、
(a1,b2,c1,d3). Since then, we can clearly see that the whole 
process is based on parallel lines. 

E. LocalParallel 

Bolt is the logic processing unit in Storm, and it carries 

the core work of the whole system. In the last section, we 

make each operator as a class of bolt node. It gets a pipelined 

parallel and hierarchical method. But we need to know that 

the instances of one bolt can get more than one in entire 

storm system. In other words, a class of bolt can generate 

multiple instances. Each instance of bolt actually is a thread, 

we call it as Task. A class of Tasks may appear in same 

server, but most of the situation is that they are not on the 

same server. 

Now, we assume that there is an uncertain input stream 

fragment: (A1B2A3B4......A199B200), meanwhile a user’s 

query is TSEQ(A, B; 0, 1). According to the single instance 

method, we only assign a bolt instance for TSEQ operator, 

and it need to match 100 times by serial scheme. But if we 

uses multiple instances plan on this bolt node, and let more 

instances handleuncertain simple event fragment, then the 

processing performance will be a larger increase. 

 

 
Figure 5.  Local parallel 

As we can see from figure 5. We expand bolt A into 

five instances, and the input streams are divided into five 

equal fragment at the same time. So, the first instance will 

get the sub-fragment (A1B2A3B4......A39B40) to run. After 

that, local result will move into next bolt node. If we have N 

instances now, then we can divide input streams into N parts 

by the order in accordance with time slice. Afterward, each 

fragment can move into each instance P1、P2......PN。 

However, there is a boundary problem that it may miss 

complex event. At the junction of event fragment that 

processed by Pi and Pi+1, if the last part of events in Pi and 

the beginning of events in Pi+1 meet the conditions of 

complex event, then they may can not run matching 

algorithm. Because the different instance may at different 

server, and they can not shared buffer list. In order to solve 

this problem, we use a boundary bolt to merge boundary data 

at the end of split flow. Boundary bolt will not check all 

input stream, on the contrary it only check events within a 

range of time slice between upper and lower boundary. Time 

limit is determined by the minimus time window in user’s 

query. Such as, TSEQ(A, B; 0, 1) shows the time limit is 1 

time slice. If input events are (A1B2A3B4), (A5B6A7B8), 

then only B4 and A5 need to be moved into boundary bolt. 

IV. EXPERIMENT  

In the experimental evaluations we compare the 

PDUCEP algorithm with the two other methods: Centered 

USCEP method (we call it CUSCEP) and distributed USCEP 

method (we call it DUSCEP),USCEP is the single uncertain 

event streams method that described in section III B.In the 

distributed USCEP method, we execute USCEP on all slave 

nodes parallel to get the result and move needed events to the 

master node but the two parallel method are not used. We 

use four computers with Intel Xeon E3-1200 processor and 

16GB memory. The operating system is CentOS 5.5. A car-

based SUMO network emulator is used to automatically 

generate a variety of RFID and sensor events by different 

device configurations. The emulator can simulate a variety of 

car networking scenarios that from simple to complex.  
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In the first experiment we studied the performance of 

the three uncertain vent processing methods for different 

buffer List Size and result shown in figure 6. As we can see, 

when the buffer List Size is large, throughput of all method 

are dropped at the same time, because buffer increases and 

the time that used in buffer operation 

(addition/delete/find/update) also augment. Furthermore, 

PDUCEP has better performance than the other two methods. 

The reason must be the two parallel method achieved the 

goal.  
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Figure 6.  Performance For Different Buffer List Size 
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Figure 7.  Performance For Different Query Depth 

In the next experiment, the buffer List size is fixed at 20. 

The performance for different QueryDepth is shown in 

figure7. QueryDepth is the depth of query matched tree. As 

we can see when the QueryDepth is increased, the 

performance for all methods is reduced. The reason is that 

the augment of tree depth makes basic detection processing 

complex. But the throughput reduction of PDUCEP is less 

that that of the other methods. Because pipeline layered 

design, the deeper matched tree becomes, the longer pipeline 

gets. So the performance reduction for PDUCEP is partly 

eliminated by the parallel method. 

From all the experiments we can see PDUCEP gets 

better performance and scalability than common methods for 

large buffer List Size and complex query. 

V. CONCLUSIONS 

In this paper we propose a method PDUCEP to detect 

distributed uncertain event Streams. Based on matched tree, 

it transform the different simple events to complex events 

with the combination of matched tree and node's buffer list. 

At the same time, it would calculate the new probability 

through markov chain. In addition, this method uses Storm to 

build system architecture. Base on Storm, we design two 

parallel scheme to improve performance : global and local 

parallel. The experiments show that PDUCEP is effective 

when process large uncertain event streams and it can be 

used for large-scale RFID applications. 
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