
Fault Tolerant Web Services Composition as Planning
Dongning Rao1 Zhihua Jiang1,2 Yunfei Jiang1

1 Software Research Institute, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou
510275, P.R. China

2 Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China

Abstract
Fault existence is unavoidable in Web services (WS)
providing and calling, so fault tolerant WS has drawn
attention of researchers. But while AI planning is
known as a promising techniques for WS composition
(WSC) problem, few study focus on fault tolerant
WSC. So in this paper we first use fault tolerant
planning (FTP) approaches to address fault tolerant
WSC. We begin by translating WSC into planning
problem and than further translate it into FTP, finally
we use FTP planners on WSC. We demonstrate our
methods through examples in our work, and we
believe this work outlines an exciting direction.

Keywords: Web services composition, Fault tolerant,
AI planning

1. Introduction
WS are a family of distributed software components
that can be exposed and invoked over the internet.
This concept was put forward by major IT companies
like Microsoft, IBM and Sun as a Web-compatible
solution for distributed computing, with the
particularly attractive property of being an open, fully
standardized and vendor neutral approach. Commonly,
the Web Service Description Language (WSDL) [1] is
used to describe the syntactical interface of a WS As
WS are provided on Web, through socket connections,
as black boxes, there are many possibilities of fault,
from socket errors, to route issues, and most often the
errors or exceptions occurred during services
providing. In fact, industry world knows this very well,
Microsoft even provides a whole section in MSDN as
“Handling and Throwing Exceptions in XML Web
Services” [2]. Academic world also aware of the fault
existence and a lot of methods have been put forward,
e.g. [3]-[6].

The task of automated WSC is to automatically
sequence together WS into a composition that
achieves some user-defined objectives, and it has
received much interest to support business-to-business
or enterprise application integration. However,
dynamic composition of services is a hard problem

and it is not entirely clear which techniques serve
WSC best. Academic society draws their attention on
WSC as AI planning, where the Planning Domain
Definition Language (PDDL) [7] was developed to
serve as a standard domain (and problem)
specification language. Recently there are a lot of
works applying AI planning techniques to WSC, e.g.,
[8]-[10]. Early works in this research line looked WSC
as complex planning action composition as in [9], and
recent works as [10] start to consider more real world
conditions. But until now no one has considered the
failure existence nature of WSC.

The basic insight is there will always be fault or
exceptions during calling WS or returned by WS in
this flat world. As WSC as planning has been studied
for several years and has been proved very successful,
our approach is rooted in planning paradigm too.
Further more, we believe all the planners have
strengths and limitations, to take fault into account one
have to use fault tolerant planner. With respect to
these facts, we bring fault tolerant planning (FTP) into
WSC research, the approach sketched in this paper can
work under fault existing environment. To use FTP
planners, we have to translate our problem into a FTP
problem which should be in NADL+ [11] format. As
far as we know, the framework in this paper has never
been proposed before, although it builds heavily on
previous works.

We have introduced WS and WSC problem, so
the remainder of this paper is organized as follows.
For a better understanding for WSC as planning and
FTP, we focus on explaining them in Section 2. As a
major contribution of this work, the whole framework
will be introduced in Section 3, and detailed
description of its components will be presented in the
next three sections. Before summarize, a run-through
example will be presented in Section 7. Finally, in
Section 8, we summarize the paper and identify some
future research directions. We believe there is a whole
avenue in front of us in this new frontier research line
in WSC.

2. Background and related work

Before move on, we first extend our term and
introduce background and related work in WSC as
planning research field and FTP research field.

2.1. AI planning
Planning is a complex problem which has been
investigated extensively by AI research. [12]
characterizes the problem of planning as follows :
“Planning can be interpreted as a kind of problem
solving, where an agent uses its beliefs about available
actions and their consequences, in order to identify a
solution over an abstract set of possible plans". In
general, a planning problem has the following
components:

• Descriptions of the possible actions which
may be executed (a domain theory) in some
formal language;

• Description of the initial state of the world;
• Description of the desired goal;
The formalisms of these components are largely

rooted in the STRIPS [13] or the ADL language [14].
Over the time, many AI planning systems have been
developed, supporting different levels of expressivity.
In many cases these representations are in a middle
ground between ADL and STRIPS. To address this
problem, the PDDL was developed. Successor
versions of the original PDDL version are PDDL 2.1
[15], PDDL 2.2 [16], and PDDL 3.0 [17]. Several
other extensions have been proposed, for instance
NADL+[11], which is suitable for planning that both
explicitly represents uncontrollable environment
actions and failure effects of actions; NPDDL[18]
which extends PDDL to express nondeterminism,
limited sensing and iterative conditional plans;
PPDDL [19] which extends PDDL to express
probabilities.

The classical view of a plan as a solution to a
planning problem is a sequence of operator instances:
given a description of an initial state, a goal state, and
a set of actions, the planning task is to generate a
sequence of actions that, when performed starting in
the initial state, will terminate in a goal state.
Typically, actions are primitive and are described in
terms of their precondition, and (conditional) effects.
As classical planning has too many assumptions that
make this model far away from real world,
nondeterministic planning (NDP) has been devoted to
increasing interests. In NDP, actions may have
different effects, which effects will become true can
only be found out during execution.

2.2. WSC as planning

Currently, WSC is addressed by two orthogonal efforts: the
business world developed the Business Process Language
for Web Services (BPEL4WS) [21] and the interaction
protocols are manually written; academic society draws their
attention on WSC as AI planning e.g. [9], [20], [8], [22]-
[24], current advance and some open problems are discussed
in [25]. Recently, several papers, e.g. [20], have
investigated the potentials and boundaries of applying
AI planning techniques to WSC. Unfortunately, the
planning problem corresponding to the automated
WSC is far from trivial, since it poses strong
requirements on the kind of planning techniques that
can be used. Specifically, it can be hardly addressed
by “classical planning” techniques.

[24] says: "By describing a Web service as a
process in terms of inputs, outputs, preconditions and
effect, using the metaphor of an action, composition
can be viewed as a planning problem.", and the same
idea is the basement of most papers in this research
line, e.g. [9], [20], [22], [23]. Ref. [8] further reveals
that web services have unpredicted nature inherit from
the internet, so it must be modeled with
nondeterministic behaviors, and planning algorithms
must work with uncertain effects. In this paper we will
follow these works and model Web Services as actions
with nondeterministic effects. In the mean time, as far
as we know, unlike in WS research line, up to date no
one has considered fault existence in WSC. So we
further extend these pioneers’ works and try to address
fault tolerant WSC as FTP.

2.3. FTP
To date, fault tolerant is still very hard for traditional
NDP techniques, but we found it can be presented by
some recent works as FTP. In [26], they take a first
step in this direction by introducing a new class of
fault tolerant non-deterministic plans (FTNDP). If
there is no fault and the effects of any action are
deterministic, than it will never be FTP, so in this
paper we use FTP and FTNDP exchangeable. FTP is
motivated by two observations:

• Non-determinism in real-world domains is
often caused by infrequent errors that make
otherwise deterministic actions fail.

• Normally, no actions are guaranteed to
succeed.

Due to these observations, FTP proposes a new
uncertainty model of action effects in SNDP that
distinguishes between primary and secondary effects
of actions. The primary effect models the usual
deterministic behavior of the action, while the
secondary effect models error effects. This definition
of fault tolerance is closely connected to fault
tolerance concepts in control theory and engineering.

FTP was first defined in [26], as follow:
Definition 1 (Fault Tolerant Planning Domain) A
fault tolerant planning domain is a tuple D =
<S;A;T;T’ >, where:
S is the set of states.
A is the set of actions.
T: S×A→ 2S is a deterministic transition relation of
primary effects; it associates to each current state s∈
S and to each action a∈A the set T(s,a)⊆S of next
states.
T’: S×A→ 2S is a non-deterministic transition relation
of secondary effects.

In [27], they defined plan problem in NDP.
Definition 2 (plan problem) A plan problem for
planning domain D is a tipple <D; I; G>, where:
D is the planning domain, D= <S;A;T>.
I∈S is the initial (belief) state.
G∈S is the goal (belief) state.

We further formalized it in FTP domain:
Definition 3 (FTP problem) A FTP problem for fault
tolerant planning domain D is a tipple <D; I; G>,
where:

D is the fault tolerant planning domain, D=
<S;A;T;T’>.

I∈S is the initial (belief) state.
G∈S is the goal (belief) state.
Of course if any action fails, the plan will never

going to make it, so we set up a upper bound for it,
and this definition is the N-FTP problem in [26].
Definition 4 (n-FTP problem) A n-FTP problem for
fault tolerant planning domain D is a tipple <D; I;
G;n>, where:
D is the fault tolerant planning domain, D=
<S;A;T;T’>.
I∈S is the initial (belief) state.
G∈S is the goal (belief) state.
n is the upper bound on the number of faults the plan
must be able to recover from.

[26] also bring algorithms for FTP, but as these
are not our contribution we refer readers to their work
instead of introduce them, any way that work is far
more sophisticated than a short section introduction.
Until today, no one uses FTP on WSC or WS research
line, we are the first attempt in this direction.

3. Architecture
FTP planners require NADL+ as input, but it is
ridiculous to ask WS owner to write a NADL+
description for WS, not even in PDDL format. Most
often, WS come along only with its WSDL description.
(In fact, you can just append “?wsdl” to the WS’s
webpage link such as “*.asmx” to view the WSDL
description.) So our framework first translates WS
description in WSDL format into PDDL format, and

then translate PDDL into NADL+, finally we use a
planner to solve the problem. Fig.1 shows the
flowchart of our framework, and Fig.2 is the system
architecture of our system.

Fig. 1: Framework Flowchart of WSC as FTP.

Fig. 2: Framework Architecture of WSC as FTP.

The first component is WSPlan, which is borrowed

from [23]. WSPlan extracts/translates action models
and system descriptions in PDDL format from WSDL
files associated with a WS. we will further introduce
WSPlan in Section 4. Then we provide a
PDDLCombiner to combine the action models with
problem manually provided in PDDL format, it
provides interface for human intervene. For the
concise of this paper, we choose to ignore the detail
implementation for this naïve tool. The third part of
our system is a tool presented along with [26], called
“transfer”, it covers the gap between PDDL and
NADL+. The “transfer” becomes one of our
basements, and it will be present in Section 5. Finally,
we try to find plans with a popular FTP planner,
BIFROST, and the planning step will be addressed in
Section 6.

System
WSPlan

transfer
PDDLCombiner

BIFROST

A
ct

io
ns

M

od
el

s
in

PD

D
L

WSC in
PDDL

W
SC

 in

N
A

D
L+

FTP Plans

WSDL files

WSC
problem

4. From WSDL to PDDL
In this section we will introduce the major work of
[23], WSPlan. Nowadays, industry world use WSDL
to create a Web service contract. WSDL documents do
the following:

• Describes what functionality a Web service
offers, how it communicates. It describes the
abstract interface of a Web service, specifies
which operations the service supports, and it
defines the format of the messages that must
be exchanged to perform the operation.

• Maps an abstract interface to a concrete set of
protocols. This mapping is called a “binding”,
which specifies the technical details of how to
communicate with a service.

• Describes a specific Web service
implementation. A Web service
implementation can support one or more
portTypes, each with one or more bindings.

Example 1: A WSDL Definition for a WS
WSDL Definitions
(00) <definitions
(01) xmlns="http://schemas.xmlsoap.org/wsdl/"
……
(15) <message name="PurchaseOrder">
(16) <part name="Message"
element="msp:PurchaseOrder"/>
(17) </message>
……
(33) <portType name="OrderPortType">
(34) <operation name="ProcessOrder">
(35) <input
(36)
wsa:Action="http://ex.mspress.microsoft.com/PO"
(37) message="msp:PurchaseOrder"/>
(38) <output message="msp: PurchaseOrder "/>
(39) </operation>
……
(50) </portType>
……
(70) </definitions>
Fig. 3: A WSDL Definition, from MSDN.

A WSDL document containing all three parts

describes everything that you need to call a specific
WS implementation, see Example 1 (Fig. 3). By [23],
this can be seen as operation description.

On the other hemisphere, AI planning researchers
provide PDDL as their domain description language.
PDDL1.2 [7] supports the following syntactic features:

• Basic STRIPS-style actions
• Conditional effects

• Universal quantification over dynamic
universes

• Domain axioms over stratified theories
• Specification of safety constraints
• Specification of hierarchical actions composed

of subactions and subgoals
• Management of multiple problems in multiple

domains using differing subsets of language
features to support sharing of domains across
different planners that handle varying levels of
expressiveness

Example 2: A PDDL Definition for an Action
(:action Lift
:parameters (?x - hoist ?y - crate ?z - surface ?p -
place)
:precondition (and (at ?x ?p) (available ?x) (at ?y ?p)
(on ?y ?z) (clear ?y))
:effect (and (not (at ?y ?p)) (lifting ?x ?y) (not
(clear ?y)) (not (available ?x))
 (clear ?z) (not (on ?y ?z))))
Fig. 4: A PDDL Action Definition, for International
Planning Competition Benchmark Depot Domain.

An example for PDDL 1.2 is illustrated in Fig.4.
Later PDDL 2.1 [15] added the ability of expressing
temporal and numeric properties of planning domains,
PDDL 2.2 [16] introduced derived predicates and
timed initial literals , PDDL 3.0 [17] involved
trajectory and preference. As the first step towards this
way, we only consider PDDL 1.2, so does [23].

WSDL and PDDL are coming from different
planet, they have their own strength and weakness, to
transform form WSDL into PDDL is a great work
more than this short section can covered. Here we just
briefly sketch [23]’s idea, and refer readers to [23] for
more detail.

Fig. 5 shows relevant parts of the conceptual
models of WSDL and PDDL. Bridging by an
annotation format (in the middle), WSPlan builds
connections between these two worlds, and finally
transfers WS WSDL description into action models in
PDDL. Each box in the illustration represents an
element of the WSDL 1.2 model, annotation model or
the PDDL model, respectively. The solid lines
represent concept associations and the dashed lines
represent the semantic associations captured by our
service annotation concept. We are not going to
further introduce this tool, but any way, following
their steps, we have PDDL format descriptions for WS.

Fig. 5: WSDL to PDDL, from [23].

 This translation result for Example 1(Fig. 3) is
presented in Example 3 (Fig. 6).

Example 3: PDDL Description for Example 1
(define (domain ORDERS)
 (:requirements ::strips :typing :equality :conditional-
effects)
……
 (:action ProcessOrder
 :parameters (?message0 ?)
 :precondition (and ())
 :effect
 (and
(when (not (Received ?message0))
(Received ?message0))
(when (and (Received ?message0)(not
(Received ?message1))
(Received ?message1))
(when (and (Received ?message1)(not
(Received ?message2))
and (Received ?message2)(ORDER))
……
Fig. 6: PDDL Representation for Fig.3.

5. From PDDL to NADL+
Before calling FTP planner, the system and problem
should be transferred into NADL+ format, so we
introduce “transfer” and how to transfer PDDL to
NADL+ in this section. NADL+ is one of the
successors of ADL, it was developed as a part of the
UMOP project [29]. However, despite providing a
very general framework for modeling non-
deterministic planning problems, it does not allow
additional information about transition costs, heuristic
estimates, and failure effects of actions. Hence later
NADL+ was developed and adds these features to the
language. According to [29], there are three main
differences between the two languages:

• NADL+ has three new optional action
description components dg, dh, and err. It uses
the entry heu to define the value of the
heuristic estimate in the initial state and the
goal states,

• Action descriptions may consist of
descriptions of several transition groups,

• NADL+ assumes that the system and
environment are described by as set of actions.

There are also three action components:
• dg: int associates a transition cost or weight

with the action.
• dh: int describes the change of a heuristic

estimate associated with each transition
represented by the transition group. The
change is always given in forward direction
even if the heuristic guides a backward search.

• err: formula defines a set of next states
reached by the action given that its execution
fails.

An NADL+ problem description consists of:
• A set of state variables;
• A set of system and environment actions;
• An initial and goal condition.
As traditionally in planning community, the set of

state variable assignments defines the state space of
the domain; the set of system actions must be non-
empty while the set of environment actions may be
empty if no active environment exists; each step,
exactly a single system and environment action is
performed.

An action has three main parts:
• A set of modified state variables;
• A precondition formula;
• An effect formula.
As traditionally in planning community, the set of

modified variables are the state variables which may
have their value changed by the action; in order for an
action to be applicable, the precondition formula must
be satisfied in the current state; the effect of the action
is defined by the effect formula. The value of state
variables not modified by a joint action is unchanged.
The initial and goal condition are formulas that must
be satisfied in the initial state and the goal states,
respectively. We refer readers to [29] for more detail
syntax, here we just give an example(Fig. 7).
Example 4: A NADL+ Description of Action
pick_upBlock1
con: posblock1
pre: posblock1 = 1 /\ posblock2 > 0 /\ posblock2 <> 2
/\ posblock3 > 0 /\ posblock3 <> 2 /\ posblock4 > 0 /\
posblock4 <> 2
eff: posblock1' = 0
Fig. 7: A NADL+ Action Definition, for International
Planning Competition Benchmark BlocksWorld Domain.

Along with NADL+, [29] provide a tool called

“transfer” to translate between PDDL and NADL+. If
the reader is interested in “transfer”, further details are

on the web for this open source project. After using
“transfer”, we get results as in Example 5 (Fig. 8).
Example 5: NADL+ Representation for Example 1
VARIABLES
 nat(10) message;
 bool order;
SYSTEM
 agt: sys
 processorder
 mod: message
 pre: message = 0
eff: message = message + 1
err: false
 mod: message
 pre: message = 1
eff: message = message + 1
err: false
 mod: message, order
 pre: message = 2
eff: message = message + 1/\ order=true
err: false
INITIALLY
 message = 0 /\ ~ order
GOAL
 message = 3 /\ order
Fig. 8: NADL+ Representation of Example 1

6. Planning
The last step is planning, which we are going to state
in this section. BIFROST is the Bdd-based InFoRmed
planning and cOntroller Synthesis Tool (BIFROST).
BIFROST version 0.7 is a software package for BDD-
based deterministic and non-deterministic planning
and heuristic search. The program is written in
C++/STL for the GNU GCC compiler running on a
Redhat Linux 7.1 PC. BIFROST uses the BuDDy 2.0
BDD-package [28].The input to BIFROST is a
planning problem written either in the STRIPS part of
PDDL or NADL+. Simply put, BIFROST can use
NADL+ as input and generate FTP plan.
 To avoid tedious jobs of introducing this open
source tool, we use examples instead of detail
operation manuals here.
Example 6: Using BIFROST
First prepare the following command line:
bifrost -i NADL -d D4V4M15.nadl -g MinHamming -l
500 -u 200 -n 8000000 -c 700000 -x 1.0 -y 1.0 -t 5000
-e ghSetAstar.exp -a ghSetAstar
Then run it under Linux enviorment
Fig. 9: Calling Example of BIFROST, from [29].

 Then we can get our planning result as :
Example 6: Result from BIFROST (1-FTP)
ProcessOrder0

ProcessOrder1
ProcessOrder2
ProcessOrder2
Fig. 10: Result of Planning

7. A work-through example
In the following example we will outline the different
aspects of our framework and the transform algorithm.
The following sample was adopted from Microsoft
website, and most of its steps have been introduced in
prior examples.
Sample:

In an E-Shop, there are three phases of a shopping,
first order, then review, and finally confirm.
Whatsoever, the website will confirm a purchase after
received three PurchaseOrder messages, if there are
less than three messages, it would drop them after a
time limitation.

Step 1: Get the WSDL for Web service.
See Example 1, Fig. 3.
Step 2 and Step 3: Use WSPlan method to

transform it into PDDL format and then manually
modify it. WSC problem specification should be
provided in PDDL here, too.

During step 2, there has some manual work. First
of all, the domain name has to be assigned, along with
every action name, because without any semantic
reasoning ability WSPlan uses meaningless name to
avoid conflict. Second, every domain description in
PDDL must be given a set of predicates, but “This is
needed to connect the predicates and constants to
semantic web ontologies. However, WSPlan does not
process ontological information yet.” [23], so this
work has to be done by hand. Last but not least, every
service must get something done, for example here
ProcessOrder suppose to relate a customer and a book,
and this underlining semantic issue can never be
covered by syntax transfer alone.

Any way, after translation, we have a PDDL file
like Example 3, Fig. 6. Of course, if we have experts
to rewrite it, we can have err effects other than “false”,
which means nothing happened to the world.

Step 4: Use “translator” provided by BIFROST to
translate this into NADL+.

It is our duty to notice that NADL+ has
instantiated all actions, which means it is very big, and
hence it required initial states and goal to be written
down before translation. Unfortunately, this translated
script can not used directly as fault tolerant planning
domain description. So we use flex to make a small
tool for it, and translate it in to FTP domain. The result
is like Example 4, Fig. 8.

Step 5: Use BIFROST to find a solution.
See Example 6, Fig. 9. and Example 7, Fig. 10.

8. Conclusions and future work
In this paper, we focus on WSC with fault tolerance,
which is more suitable for real world applications, and
the framework we presented can be seen as the core
contribution of this paper. As a difference with
previous work done in this direction, we first translate
WSC problem into NADL+ format, which means it
can be solved by FTP planners like BIFROST. This
process can in principle be reused for other non-
deterministic domain description and NDP planner
with no modifications whatsoever. Here are the main
points we tried to make:

• WS is born with non-deterministic nature, so
WSC should be handled in NDP scope.

• Fault existence is unavoidable in web service
providing and calling, it should be put on
researchers table at the beginning.

• Every planner has its strength and weakness, if
we want to make fault tolerant plan, we have
to use fault tolerant planner.

• PDDL is not suitable for web service
description in WSC.

Based on the above insights, and stand on giants’
shoulders, we investigate the potential of merging the
best characteristics of AI planning, especially NDP
and FTP, and WS in real world. To do so, we first
translate WSC into planning problem. This is done by
a semi-auto method, which builds heavily on [23]’s
work to translate WSDL into PDDL. And then we
further translate this PDDL file into NADL+ format,
by a tool called “transfer” provided by [29]. Finally
we use a FTP planner called BIFROST to address
WSC. We also demonstrate our methods through
examples in our work. We believe this framework can
be benefited from any advantages in either NDP or
WS research line.

One of the currently prominent service
composition planners is SHOP2 in [8], one of
SHOP2’s shortcomings is not allowing fault existence.
Comparing to WSC with SHOP2, our method can
provide fault tolerant ability. Another great work
which is also one of this paper’s stepping-stones is
[23]. But [23] works with deterministic planning and
we believe WS has a non-deterministic nature. So we
use non-deterministic domain description, instead of
PDDL for it.

Combining two research lines’ best characters is
very promising, and the results are often exciting. But,
this is by no means the end of the story. Here we note
some current limitations of our approach. First, the
semantic differences can be caused by many factors,
and to cover it is a crucial step toward fully automatic
translation. We prepare to set about combining
semantic match up later. Second, real world

applications have complex natures like synchronized
communication, and most of the WS today is stateless.
We plan to modify BIFROST to a synchronized one to
cover this problem. Third, planners have suffered a lot
from scale issues for a long time, but if it is used in
real world, the search space will grow exponentially.
Considering that the formulation of planning as
heuristic search with heuristics derived from problem
representations has turned out to be a fruitful approach
for classical planning, we are testing some heuristic
strategies on BIFROST.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of China.

References
[1] W3C, Web Service Description Language

(WSDL) version 1.2 (2002)
[2] http://msdn2.microsoft.com/en-

us/library/ds492xtk(VS.71).aspx
[3] N. Aghdaie and Y. Tamir, Implementation and

Evaluation of Transparent Fault-Tolerant Web
Service with Kernel-Level Support In Proc. of
the IEEE International Conference on Computer
Communications and Networks, pp. 63-68,
October 2002.

[4] D. Liang, C. L. Fang, C. Chen and F. Lin, Fault
tolerant Web service. Software Engineering
Conference, 2003, 10:310 – 319, 2003

[5] Y. Lee, J. Oh, and S.Han. Enriching Quality and
Fault-Tolerance of Web Services System.
International Journal of Web Services Practices,
1:153-157, 2005

[6] L. Ardissono, R. Furnari, A. Goy, G. Petrone and
M. Segnan, Fault Tolerant Web Service
Orchestration by Means of Diagnosis, In Proc. of
EWSA 2006 pp. 2-16, 2006

[7] M. Ghallab, A. Howe, C. Knoblock, , D.
McDermott, A. Ram, M. Veloso, D. Weld and D.
Wilkins, PDDL the planning domain definition
language, 1998.

[8] D. Wu, E. Sirin, J. Hendler, D. Nau and B. Parsia,
Automatic Web Services Composition Using
SHOP2, In Proc. of the Twelfth International
World Wide Web Conference (WWW2003), May
2003.

[9] S. McIlraith and R. Fadel, Planning with
Complex Actions, In Proc. of International
Workshop on Non-Monotonic Reasoning, 2002

[10] M. Pistore, P. Traverso and P. Bertoli,
Automated Composition of Web Services by

Planning in Asynchronous Domains, In Proc. of
ICAPS 2005, pp.2-11, 2005.

[11] R. M. Jensen and M. M. Veloso, OBDD-based
deterministic planning using the UMOP planning
framework, In Proc. of the AIPS-00 Workshop
on Model-Theoretic Approaches to Planning,
pp.26–31, 2000.

[12] S. Russel and P. Norvig, Artificial Intelligence:
A Modern Approach, Prentice-Hall Inc, 1995,

[13] R. E. Fikes and N. J. Nilsson, STRIPS: A new
approach to theorem proving in problem solving,
Artificial Intelligence, 1971.

[14] E. Pednault, ADL and the state-transition model
of action, Journal of Logic and Computation,
1994.

[15] M. Fox and D. Long, PDDL 2.1: An extension to
pddl for expressing temporal planning domains,
Journal of Artificial Intelligence Research, 20,
2003.

[16] S. Edelkamp and J. Hoffmann, PDDL2.2: the
Language for the classical part of the 4th
International Planning Competition, Albert
Ludwigs Universitat, Institut fur Informatik,
Freiburg, Germany, technical Report: 195, 2003.

[17] A. Gerevini and D. Long, Plan constraints and
preferences in PDDL3: The language of the fifth
international planning competition, Technical
report, University of Brescia, Italy, 2005.

[18] P. Bertoli, A. Cimatti, U. Dal Lago and M.
Pistore. Extending PDDL to nondeterminism,
limited sensing and iterative conditional plans, In
Proc. of ICAPS Workshop on PDDL, Informal
Proceedings, pp.15-24, 2003.

[19] H. L. S. Younes and M. L. Littman, PPDDL1.0:
An extension to PDDL for expressing planning
domains with probabilistic effects, Tech. rep.
CMU-CS-04-167, Carnegie Mellon University,
Pittsburgh, PA, 2004.

[20] D. McDermott, Estimated-regression planning
for interactions with web services, In Proc. of the
AI Planning Systems Conference 2002, AAAI,
2002.

[21] IBM, Microsoft and BEA, Web Services
Business Process Execution Language Version
1.0 2002.

[22] E. Martínez and Y. Lespérance, Web Service
Composition as a Planning Task: Experiments
using Knowledge-Based Planning, In Proc. of
the ICAPS-2004 Workshop on Planning and
Scheduling for Web and Grid Services, pp.62-69,
2004

[23] J. Peer, A PDDL based Tool for Automatic Web
Service Composition, In Proc. of the Second
Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR 2004) at the

20th International Conference on Logic
Programming, LNCS 3208, 2004.

[24] M. Vukovic and P. Robinson, Adaptive Planning
Based Web Service Composition for Context
Awareness, In Advances in Pervasive Computing,
176:247–252, 2004.

[25] B. Srivastava and J. Koehler, Web Service
Composition - Current Solutions and Open
Problems, In Proc. of ICAPS 2003 Workshop on
Planning for Web Services, 2003.

[26] R.M. Jensen, M. Veloso and R.E. Bryant, Fault
Tolerant Planning: Toward Probabilistic
Uncertainty Models in Symbolic Non-
Deterministic Planning In Proc. of the 14th
International Conference on Automated
Planning and Scheduling (ICAPS-2004), pp.335-
344, 2004.

[27] A. Cimatti, M. Pistore, M. Roveri and P.
Traverso, Weak, strong, and strong cyclic
planning via symbolic model checking, Artificial
Intelligence, 147:35--84, 2003.

[28] J. Lind-Nielsen, BuDDy - A Binary Decision
Diagram Package, Technical Report IT-TR:
1999-028, Institute of Information Technology,
Technical University of Denmark, 1999.
(http://cs.it.dtu.dk/buddy)

[29] R. M. Jensen, Efficient BDD-Based Planning for
Non-Deterministic, Fault Tolerant, and
Adversarial Domains. Ph.D. thesis, Carnegie
Mellon University, CMUCS-03-139. 2003.

