






precision and road segmentation accuracy evaluation. For the 
vanishing point position precision analysis, we measure the 
Euclidean distance between estimated vanishing point and 
Ground Truth. For convenience, we normalized the distance 
value to domain [0, 1] by image diagonal length. For the 
reason that Ground Truth of images without internal 
vanishing point are unable to determine, we use only 103 
images with internal vanishing points for vanishing point 
estimation precision analysis. For the accuracy of road 
segmentation results, we compare segmentation results with 
the Ground Truth at pixel-wise level, more overlap means 
higher segmentation accuracy. Literature [8] introduced an 
evaluation measure named recall, defined as follows: 

recall =
∩
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∪
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t s

B B

B B
                             (7) 

Where Bt and Bs respectively represent for road area of 
Ground Truth and segmentation result by algorithm. 
According to its definition, recall is a linear function in 
domain [0, 1]. Only when the algorithm segmentation result 
and Ground Truth completely consistent, where Bt = Bs and 
recall = 1.  
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Figure 5.  Comparison of vanishing point estimation accuracy. X-axis is 
the normalized Euclidean distance and the Y-axis is percentage of 
estimated vanishing points of which the Euclidean distance to the Ground 
Truth is not greater than the corresponding value. 
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Figure 6.  Comparison of road segmentation accuracy. X-axis is recall 
value and Y-axis is percentage of images within recall not greater than the 
corresponding values. Higher Y-axis value means more images with the 
segmentation result not more than a certain threshold, the greater the road 
and the better the segmentation algorithm is. 

The experiment data generate from segmentation results 
of 213 images (including cases that vanishing point located 

internal and external the image). As shown in figure, the 
algorithm on vanishing point location estimation precision 
and road segmentation accuracy is always better than the 
other two algorithms. In time efficiency, more than 5 times 
speed up is attributed to the effective voter selection based 
on constrain of principal road orientation. 

V. CONCLUSIONS 
The concept of generalized vanishing point and principal 

orientation constrained road detection algorithm is proposed 
in this paper. Experimental implement and quantitative 
analysis donates that our method effectively solves the 
problem of existing algorithms in handling images with no 
internal vanishing point. Time efficiency is also improved 
without reducing accuracy of algorithm. 
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